## Crystalfontz America, Incorporated

## GRAPHIC OLED MODULE SPECIFICATIONS



Close to actual size

| Crystalfontz Model Number | CFAL12864N-A-B1 |
| :--- | :--- |
| Hardware Version | Revision A, January 2009 |
| Data Sheet Version | Revision 1.5, October 2011 |
| Product Pages | www.crystalfontz.com/product/CFAL12864N-A-B1.html |

## Crystalfontz America, Incorporated

12412 East Saltese Avenue
Spokane Valley, WA 99216-0357
Phone: 888-206-9720
Fax: 509-892-1203
Email: techinfo@crystalfontz.com
URL: www.crystalfontz.com

Crystalfontz America, Inc. www.crystalfontz.com

# REVISION HISTORY 

| HARDWARE |
| :---: |
| Current hardware version: vA |


| DATA SHEET |  |
| :---: | :---: |
| 2011/10/31 | Current Data Sheet version: v1.5 <br> Since last revision, corrected photo with pins labeled. See Photo Reference for Pin Functions (Pg. 18). |
| 2011/03/30 | Current Data Sheet version: v1.4 <br> Changes since last revision: <br> - Added Development Kit / Demonstration Board Available. <br> - Corrected incomplete Circuit Example - Externally Supplied for Display. <br> - Added humidity specification in Absolute Maximum Ratings. <br> - Minor improvements to text and illustrations. |
| 2009/07/07 | Data Sheet version: v1.3 <br> Changes since last revision: <br> - Corrected error in Circuit Example - Externally Supplied for Display (Pg. 13). "Solve for VPANEL " was changed from " 12 v " to " 9 v ". <br> - Deleted "Special Code 2" from Module Classification Information (Pg. 6) because it is not needed. |
| 2009/05/20 | Data Sheet version: v1.2 <br> Changes since last revision: <br> - Removed all references to internal DC-DC Converter including in System Block Diagram (Pg. 11)_and a DC-DC converter circuit example that cannot be used. Instead, a Circuit Example - Externally Supplied for Display (Pg. 13)_ was added. <br> - Changed all references to Pin 4 from " $\mathrm{V}_{\mathrm{DD2}}$ " $\left(\mathrm{V}_{\mathrm{DCDC}}\right)$ to " NC " (No Connection). Does not apply. <br> - Clarified and expanded DC Characteristics (3.3v Operation) (Pg. 15). "Logic Supply Voltage" minimum changed from " +2.6 v " to " +2.4 v ". <br> - Moved "Duty" specification from DC Characteristics section to Optical Characteristics (Pg. 19). <br> - Added information about using Hand Soldering (Pg. 21) and Hot Bar Soldering Machine (Pg. 22). <br> - Added more sources for graphic driver libraries in APPENDIX B: SAMPLE CODE (Pg. 27). <br> - Updated APPENDIX C: OLED MODULE TERMS AND SYMBOLS (Pg. 32). <br> - Minor improvements to text, formatting, and drawings. |


| DATA SHEET (Continued) |  |
| :--- | :--- |
|  | Data Sheet version: v1.1 <br> Changes since last Data Sheet (v1.0): <br> - Corrected error in Circuit Example - Externally Supplied for <br> Display (Pg. 12). Drawing incorrectly showed a direct <br> connection between GND and VLoGIC. Part Change <br> Notification has been issued, PCN \#10013. <br> - Added illustration to explain Power Up and Power Down <br> Sequencing (Pg. 12). <br> - Added a photo with pins labeled. See Quick Reference for Pin <br> Functions (Front Photo) (Pg. 17). <br> - Added APPENDIX C: OLED MODULE TERMS AND <br> SYMBOLS (Pg. 31). <br> - Minor changes to tables and text to improve readability. |
| $2009 / 01 / 15$ | Data Sheet version: v1.0 <br> New Data Sheet. |

## The Fine Print

Certain applications using Crystalfontz America, Inc. products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications"). CRYSTALFONTZ AMERICA, INC. PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. Inclusion of Crystalfontz America, Inc. products in such applications is understood to be fully at the risk of the customer. In order to minimize risks associated with customer applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazard. Please contact us if you have any questions concerning potential risk applications.

Crystalfontz America, Inc. assumes no liability for applications assistance, customer product design, software performance, or infringements of patents or services described herein. Nor does Crystalfontz America, Inc. warrant or represent that any license, either express or implied, is granted under any patent right, copyright, or other intellectual property right of Crystalfontz America, Inc. covering or relating to any combination, machine, or process in which our products or services might be or are used.

The information in this publication is deemed accurate but is not guaranteed.
Company and product names mentioned in this publication are trademarks or registered trademarks of their respective owners.

Copyright © 2011 by Crystalfontz America, Inc., 12412 East Saltese Avenue, Spokane Valley, WA 99216-0357 U.S.A.

## CONTENTS

MAIN FEATURES ..... 5
Comparison to LCD (Liquid Crystal Display) Module ..... - 5
Development Kit / Demonstration Board Available ..... - 5
Features ..... $-5$
Module Classification Information ..... - 6
MECHANICAL SPECIFICATIONS ..... 6
Physical Characteristics ..... - 6
Module Outline Drawings ..... - 7
ELECTRICAL SPECIFICATIONS ..... 11
System Block Diagram ..... 11
Circuit Example - V ${ }_{\text {PANEL }}$ Externally Supplied ..... 12
Circuit Example - Externally Supplied for Display ..... 13
Power Up and Power Down Sequencing ..... 13
Absolute Maximum Ratings ..... 14
DC Characteristics (3.3v Operation) ..... 15
Details of Interface Pin Functions ..... 16
Photo Reference for Pin Functions ..... 18
ESD (Electro-Static Discharge) Specifications ..... 18
OPTICAL SPECIFICATIONS ..... 19
Optical Characteristics ..... 19
OLED CONTROLLER INTERFACE ..... 20
MODULE RELIABILITY AND LONGEVITY ..... 20
Module Reliability ..... 20
Module Longevity (EOL / Replacement Policy) ..... 20
CARE AND HANDLING PRECAUTIONS ..... 21
APPENDIX A: QUALITY ASSURANCE STANDARDS ..... 24
APPENDIX B: SAMPLE CODE ..... 27
Sources For Driver Libraries ..... 27
Sample Code ..... 27
APPENDIX C: OLED MODULE TERMS AND SYMBOLS ..... 32
APPENDIX D: SINO WEALTH SH1101A CONTROLLER SPECIFICATION SHEET ..... 36
LIST OF FIGURES
Figure 1. Module Outline Drawings (4 pages) ..... 7
Figure 2. System Block Diagram ..... 11
Figure 3. Circuit Example - V ${ }_{\text {PANEL }}$ Externally Supplied ..... 12
Figure 4. Circuit Example - External Supply for Display ..... 13
Figure 5. Power Up and Power Down Sequencing ..... 13
Figure 6. Front View of FPC (Pins Labeled) ..... 18
Figure 7. CFAL12864N-A-B1 has a $160^{\circ}$ Viewing Angle ..... 20
Figure 8. Use Kapton tape to secure tail before hand soldering ..... 22

## MAIN FEATURES

## COMPARISON TO LCD (LIQUID CRYSTAL DISPLAY) MODULE

The CFAL12864N-A-B1 is a two-color $128 \times 64$ dot matrix Organic Light-Emitting Diode (OLED) display module. The light weight, small size, and ultrathin form factor allows you to use this OLED module in applications where it would be difficult or impossible to fit a traditional STN LCD. The low power requirements (less than 90 mW with all pixels lit) make it possible for the CFAL12864N-A-B1 to be used in battery powered portable devices such as remote controls and scientific meters (for example, temperature, sound, and gas detection).

Compared to most LCD modules, this OLED module has a quicker response time and an extremely wide viewing angle. At the low end of an STN LCD's temperature range, an LCD module's contrast will typically be poor and the response time will be very slow. The contrast and response time of the CFAL12864N-A-B1 OLED module will remain essentially constant through the operating range, allowing it to operate in cold environments without the need for a heater.

## DEVELOPMENT KIT / DEMONSTRATION BOARD AVAILABLE

This module is available installed on a Crystalfontz CFA-10009 Demonstration PCB. The DMOL12864N-A-B1 kit has everything you need to easily demonstrate and experiment with the module. The kit can also be used as a reference for your designs. The CFA-10009 User Guide can be found at the end of this Data Sheet.

## FEATURES

$128 \times 64$ OLED COG (Chip on Glass) with a FPC tail (Flexible Printed Circuit).

- OLED panel is $26.7(\mathrm{~W}) \times 19.26(\mathrm{H}) \times 2.15(\mathrm{D})$ millimeters (1.05" (W) x.76" (H) x .085" (D)).
- Overall height (OLED panel + FPC) is 29.06 millimeters (1.14").
- 8-bit parallel (8080 or 6800) interface or SPI Interface.
$\square$ Built-in Sino Wealth SH1101A Controller.
$\square$ Emissive display with two distinct color areas: $128 \times 16$ yellow pixels on top and $128 \times 48$ blue pixels on bottom. Displays yellow or blue pixels on a dark area or dark pixels on a yellow or blue area (if operating with display pixels reversed/inverted).
$\square$ Viewing Angle is $>160^{\circ}$.
Very high contrast ratio.
Wide temperature operation: $-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.
$\square$ FPC has .62 mm maximum bend radius.
- RoHS compliant.


## MODULE CLASSIFICATION INFORMATION



| $\mathbf{1}$ | Brand | Crystalfontz America, Inc. |
| :--- | :--- | :--- |
| $\boldsymbol{( 2}$ | Display Type | L - OLED |
| $\boldsymbol{3}$ | Number of Pixels (Width) | 128 pixels |
| $\mathbf{4}$ | Number of Pixels (Height) | 64 pixels |
| $\mathbf{5}$ | Model Identifier | N |
| $\mathbf{6}$ | Display Color | A - Area colors |
| $\boldsymbol{7}$ | Special Codes 1 | B1 - Manufacturer's codes |

## MECHANICAL SPECIFICATIONS

## PHYSICAL CHARACTERISTICS

| ITEM | SIZE |
| :--- | :--- |
| Number of Pixels | $128 \times 64$ pixels |
| Panel Dimensions <br> (excludes FPC Tail) | $26.70(\mathrm{~W}) \times 19.26(\mathrm{H}) \times 2.15(\mathrm{D}) \mathrm{mm}$ |
| Overall Height Dimension <br> (Panel + FPC Tail) | $29.06(\mathrm{H}) \mathrm{mm}$ |
| Polarizer | $25.70(\mathrm{~W}) \times 14.40(\mathrm{H}) \mathrm{mm}$ |
| Viewing Area | $23.74(\mathrm{~W}) \times 13.20(\mathrm{H}) \mathrm{mm}$ |
| Active Area | $21.74(\mathrm{~W}) \times 11.20(\mathrm{H}) \mathrm{mm}$ |
| Pixel Size | $0.15(\mathrm{~W}) \times 0.15(\mathrm{H}) \mathrm{mm}$ |
| Pixel Pitch | $0.17(\mathrm{~W}) \times 0.17(\mathrm{H}) \mathrm{mm}$ |
| Aperture Rate* | $77.9 \%$ |
| Weight | 2 grams (typical) |
| *Aperture rate is defined by dividing an effective display area with unit <br> pixel area. |  |







## ELECTRICAL SPECIFICATIONS

## SYSTEM BLOCK DIAGRAM



Figure 2. System Block Diagram

## CIRCUIT EXAMPLE - VPANEL EXTERNALLY SUPPLIED



Figure 3. Circuit Example - V PANEL Externally Supplied

## Circuit Example Notes:

- Host Interface Selection: IS1 and IS2
- Pin connected to host interface: DB0~DB7, $\overline{R D}_{8080}\left(E_{6800}\right), \overline{W R}_{8080}\left(R / \bar{W}_{6800}\right)$, D/C, $\overline{R S T}, \overline{C S}$
- $V_{\text {BREF }}$, SENSE, FB, and SW should be left floating. Please observe $V_{\text {PANEL }}$ sequencing as described in DC Characteristics (3.3v Operation) (Pg. 15)
- $910 \mathrm{k} \Omega=\left(\right.$ Voltage at $\left.\mathrm{I}_{\text {REF }}-G N D\right) / I_{\text {REF }}$


## CIRCUIT EXAMPLE - EXTERNALLY SUPPLIED FOR DISPLAY

The Micrel MIC2290 is one of many possible $\mathrm{V}_{\text {PANEL }}$ supply solutions.


Figure 4. Circuit Example - External Supply for Display
Please refer to the Micrel MIC2290 datasheet for design details. See http://micrel.com/page.do?page=/product-info/ products/mic2290.shtml.

## POWER UP AND POWER DOWN SEQUENCING



Figure 5. Power Up and Power Down Sequencing

Crystalfontz America, Inc. www.crystalfontz.com October 2011

CFAL12864N-A-B1 Graphic OLED Module Data Sheet
Hardware vA / Data Sheet v1. 5

## ABSOLUTE MAXIMUM RATINGS

| ABSOLUTE MAXIMUM RATINGS | ¢ | $\begin{aligned} & \sum_{\sum}^{\Sigma} \\ & \sum_{\Sigma}^{\sum} \end{aligned}$ |  |
| :---: | :---: | :---: | :---: |
| Operating Temperature* | $\mathrm{T}_{\mathrm{OP}}$ | $-20^{\circ} \mathrm{C}$ | $+70^{\circ} \mathrm{C}$ |
| Storage Temperature* | $\mathrm{T}_{\text {ST }}$ | $-30^{\circ} \mathrm{C}$ | $+80^{\circ} \mathrm{C}$ |
| Humidity | RH | 0\% | 90\% |
| Logic Supply Voltage | V LOGIC | -0.3v | +3.5v |
| Driver Supply Voltage | $V_{\text {PANEL }}$ | -0.3v | +15 |
| *Prolonged exposure at temperatures outside of this range may cause permanent damage to the module. |  |  |  |

## DC CHARACTERISTICS (3.3V OPERATION)

| DC CHARACTERISTICS | TEST CONDITION | 元 | $\sum_{i}^{\sum \sum}$ |  | $\begin{aligned} & \sum_{\sum}^{\Sigma} \\ & \sum_{\underset{X}{x}}^{\underset{\Sigma}{x}} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Logic Supply Voltage | $\mathrm{T}_{\mathrm{OP}}=-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | $V_{\text {LOGIC }}$ | +2.4v | +3.3v | $+3.5 \mathrm{v}^{1}$ |
| OLED Driver Supply Voltage ${ }^{2}$ | $\mathrm{T}_{\mathrm{OP}}=-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | $V_{\text {Panel }}$ | +8v | +9v | +10v |
| Input High Voltage |  | $\mathrm{V}_{\mathrm{IH}}$ | $\begin{gathered} +0.8 \mathrm{vx} \mathrm{~V}_{\text {Logic }} \\ \text { For } \mathrm{V}_{\text {Logic }}=+3.3 \mathrm{v} \\ \mathrm{~V}_{\mathrm{IH}}=+0.8 \mathrm{vx}+3.3 \mathrm{v}=+2.64 \mathrm{v} \end{gathered}$ |  | $V_{\text {Logic }}$ |
| Input Low Voltage |  | $\mathrm{V}_{\text {IL }}$ | Ov (GND) |  | $\begin{gathered} +0.2 \mathrm{vx} \mathrm{~V}_{\text {Logic }} \\ \text { For } \mathrm{V}_{\text {Logic }}=+3.3 \mathrm{v} \\ \mathrm{~V}_{\mathrm{IL}}=+0.2 \mathrm{vx}+3.3 \mathrm{v}=+0.66 \mathrm{v} \end{gathered}$ |
| Output High Voltage | $\mathrm{l}_{\text {OUt }}=500 \mu \mathrm{~A}$ | $\mathrm{V}_{\mathrm{OH}}$ | $\begin{gathered} +0.8 \mathrm{vx} \mathrm{~V}_{\text {Logic }} \\ \text { For } \mathrm{V}_{\text {Logic }}=+3.3 \mathrm{v} \\ \mathrm{~V}_{\mathrm{IH}}=+0.8 \mathrm{vx}+3.3 \mathrm{v}=+2.64 \mathrm{v} \end{gathered}$ |  | $V_{\text {Logic }}$ |
| Output Low Voltage | $\mathrm{l}_{\text {OUT }}=500 \mu \mathrm{~A}$ | $\mathrm{V}_{\text {OL }}$ | Ov (GND) |  | $\begin{gathered} +0.2 \mathrm{vx} \mathrm{~V}_{\text {Logic }} \\ \text { For } \mathrm{V}_{\text {Logic }}=+3.3 \mathrm{v} \\ \mathrm{~V}_{\mathrm{IL}}=+0.2 \mathrm{vx}+3.3 \mathrm{v}=+0.66 \mathrm{v} \end{gathered}$ |
| Normal Mode Power Consumption | All pixels on $\begin{gathered} \mathrm{V}_{\text {LOGIC }}=+3.3 \mathrm{v} \\ \mathrm{~V}_{\text {PANEL }}=+9 \mathrm{v} \\ \text { Frame Rate }=100 \mathrm{H} \\ \text { Contrast Setting }=0 \times 64 \end{gathered}$ |  |  | 70.2 mW | 87.3 mW |

${ }^{1}$ Do not exceed +3.5 v absolute maximum.
${ }^{2}$ The $V_{\text {PANEL }}$ input must be a stable value with no ripple or noise.
This is a summary of the module's major operating parameters. For detailed information see APPENDIX D: SINO WEALTH SH1101A CONTROLLER SPECIFICATION SHEET (Pg. 36).

Crystalfontz America, Inc.
CFAL12864N-A-B1 Graphic OLED Module Data Sheet
www.crystalfontz.com
Hardware vA / Data Sheet v1. 5
October 2011

## DETAILS OF INTERFACE PIN FUNCTIONS

| PIN | SIGNAL |  | DESCRIPTION |
| :---: | :---: | :---: | :---: | :--- | :--- |


| PIN | SIGNAL | 岗 |  | DESCRIPTION |
| :---: | :---: | :---: | :---: | :---: |
| 14 | $\overline{W R}_{8080}\left(\mathrm{R} / \bar{W}_{6800}\right)$ | H/L | 1 | Host interface input. <br> 8080 Host: Active low. Signal on the databus is latched at the rising edge of $\overline{W R}$ signal. <br> 6800 Host: read/write control signal output <br> $R \bar{W}=$ High: Read (Host $<$ Module) <br> $R \bar{W}=$ Low: Write (Host $\rightarrow$ Module) |
| 15 | $\overline{\mathrm{RD}}_{8080}\left(\mathrm{E}_{6800}\right)$ | H/L | I | Host interface input. <br> 8080 Host: Active low. Signal on the databus is latched at the rising edge of $\overline{R D}$ signal. <br> 6800 Host: Enable control signal input active high. <br> $E=$ High: Read or Write Active <br> $E=$ Low: No Read or Write Active |
| 16 | $\mathrm{V}_{\text {COMH }}$ |  | O | High level voltage output for common signals. A low ESR capacitor should be connected between this pin and GND. Do not connect external power supply directly to this pin. |
| 17 | $V_{\text {PANEL }}$ | $\begin{gathered} +8 v \\ \text { to } \\ +10 v \end{gathered}$ | I | Only high voltage input on chip. Power must be supplied externally. Note: You must observe power sequencing for this pin. <br> Power Up - Display must be powered up and initialized before power is applied to the pin. <br> Power Down - Power must be removed from this pin before the display is powered off. |
| 18 | DB0 | H/L | I/O | Bidirectional databus connects to 8 -bit or 16 -bit standard host databus. In serial mode (IS1=0, IS2=0): DB0 serves as the serial clock input signal (SCL) and DB1 serves as the serial data input pin (SI). DB2-DB7 are high impedance. In serial mode, data can be written to the display but not read. Pin $14\left(\overline{\mathrm{WR}}_{8080}\left(\mathrm{R} / \overline{\mathrm{W}}_{6800}\right)\right)$ and pin15 $\left(\overline{\mathrm{RD}}_{8080}\left(\mathrm{E}_{6800}\right)\right)$ are unused and should be tied low. <br> In 6800 Parallel mode: Pin 14 is used as $R / \bar{W}_{6800}$. Pin 15 is used as $\mathrm{E}_{6800}$. Data is input or output on DB0-DB7. <br> In 8080 Parallel mode: Pin 14 is used as $\overline{W R}_{8080}$. Pin 15 is used as $\overline{\mathrm{RD}}_{8080}$. Data is input or output on DB0-DB7. |
| 19 | DB1 | H/L | I/O |  |
| 20 | DB2 | H/L | I/O |  |
| 21 | DB3 | H/L | I/O |  |
| 22 | DB4 | H/L | 1/O |  |
| 23 | DB5 | H/L | I/O |  |
| 24 | DB6 | H/L | I/O |  |
| 25 | DB7 | H/L | I/O |  |
| 26 | $\mathrm{I}_{\text {REF }}$ |  |  | Segment output current reference for brightness adjustment. A resistor should be connected between this pin and GND. Set the current at $10 \mu \mathrm{~A}$. |
| 27 | NC |  |  | No connection. |

## PHOTO REFERENCE FOR PIN FUNCTIONS



Figure 6. Front View of FPC (Pins Labeled)

## ESD (ELECTRO-STATIC DISCHARGE) SPECIFICATIONS

The circuitry is industry standard CMOS logic and susceptible to ESD damage. Please use industry standard antistatic precautions as you would for any other PCB such as expansion cards or motherboards. Ground your body, work surfaces, and equipment.

## OPTICAL SPECIFICATIONS

## OPTICAL CHARACTERISTICS

| ITEM | $\sum_{i}^{0}$ |  | $\begin{aligned} & \sum_{\sum}^{\Sigma} \\ & \sum_{\Sigma}^{\sum} \end{aligned}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Viewing Angle |  |  |  | $>160^{\circ}$ |  |
| Dark Room Contrast Ratio ${ }^{1}$ | CR |  |  | >100:1 |  |
| Response Time ${ }^{2}$ |  |  |  | $<1 \mathrm{~ms}$ |  |
| Luminous Intensity (IV) | $L_{B R}$ | with polarizer |  | $35 \mathrm{~cd} / \mathrm{m}^{2}$ | $60 \mathrm{~cd} / \mathrm{m}^{2}$ |
| Blue Chromaticity | x | CIE (1931) | 0.12 | 0.16 | 0.20 |
|  | y |  | 0.22 | 0.26 | 0.30 |
| Yellow Chromaticity | x |  | 0.43 | 0.47 | 0.51 |
|  | y |  | 0.40 | 0.50 | 0.54 |
| Duty | 1/32 |  |  |  |  |
| ${ }^{1}$ Contrast Ratio $=($ brightness with pixels light $) /($ brightness with pixels dark $)$. <br> ${ }^{2}$ Response Time: The amount of time it takes a pixel to change from active to inactive or back again. |  |  |  |  |  |

## Definition of Viewing Angle



Figure 7. CFAL12864N-A-B1 has a $160^{\circ}$ Viewing Angle

## OLED CONTROLLER INTERFACE

This module uses a Sino Wealth SH1101A controller. For your reference, we added APPENDIX D: SINO WEALTH SH1101A CONTROLLER SPECIFICATION SHEET (Pg. 36) to this Data Sheet.

## MODULE RELIABILITY AND LONGEVITY

## MODULE RELIABILITY

| ITEM | SPECIFICATION |
| :---: | :---: |
| CFAL12864N-A-B1 | 10,000 hours $>50 \%$ of Initial Brightness (New Module) |

OLED displays are an emissive technology. Each pixel is susceptible to dimming based on its individual use (burn-in). Frequently used pixels will dim more quickly than pixels that are not used as often. Please avoid using a bright, static, high-contrast image for a long time. If you want to leave the display powered on, please use scrolling text or alternating images to "wear level" the pixels. To conserve power and display lifetime, turn off or dim the display when it is not in use.

## MODULE LONGEVITY (EOL / REPLACEMENT POLICY)

Crystalfontz is committed to making all of our modules available for as long as possible. For each module we introduce, we intend to offer it indefinitely. We do not preplan a module's obsolescence. The majority of modules we have introduced are still available.

We recognize that discontinuing a module may cause problems for some customers. However, rapidly changing technologies, component availability, or low customer order levels may force us to discontinue ("End of Life", EOL) a module. For example, we must occasionally discontinue a module when a supplier discontinues a component or a manufacturing process becomes obsolete. When we discontinue a module, we will do our best to find an acceptable replacement module with the same fit, form, and function.

Crystalfontz America, Inc.

In most situations, you will not notice a difference when comparing a "fit, form, and function" replacement module to the discontinued module. However, sometimes a change in component or process for the replacement module results in a slight variation, perhaps an improvement, over the previous design.

Although the replacement module is still within the stated Data Sheet specifications and tolerances of the discontinued module, changes may require modification to your circuit and/or firmware. Possible changes include:

- Controller. A new controller may require minor changes in your code.
- Component tolerances. Module components have manufacturing tolerances. In extreme cases, the tolerance stack can change the visual or operating characteristics.

Please understand that we avoid changing a module whenever possible; we only discontinue a module if we have no other option. We will post Part Change Notices on the product's webpage as soon as possible. If interested, you can subscribe to future part change notifications.

## CARE AND HANDLING PRECAUTIONS

For optimum operation of the module and to prolong its life, please follow the precautions below.

## ESD (ELECTRO-STATIC DISCHARGE)

The circuitry is industry standard CMOS logic and susceptible to ESD damage. Please use industry standard antistatic precautions as you would for any other PCB such as expansion cards or motherboards. Ground your body, work surfaces, and equipment.

## DESIGN AND MOUNTING

- The exposed surface of the "glass" is actually a polarizer laminated on top of the glass. To protect the soft plastic polarizer from damage, the module ships with a protective film over the polarizer. Please peel off the protective film slowly. Peeling off the protective film abruptly may generate static electricity.
- The polarizer is made out of soft plastic and is easily scratched or damaged. When handling the module, avoid touching the polarizer. Finger oils are difficult to remove.
- To protect the soft plastic polarizer from damage, place a transparent plate (for example, acrylic, polycarbonate, or glass) in front of the module, leaving a small gap between the plate and the display surface. We use GE HP92 Lexan, which is readily available and works well.
- Do not disassemble or modify the module.
- Do not modify the tab of the metal holder or make connections to it.
- Do not reverse polarity to the power supply connections. Reversing polarity will immediately ruin the module.
- Use care to keep the exposed terminals clean. Contamination, including fingerprints may make the soldering difficult, and the reliability of the soldered connection poor.


## Hand Soldering

For prototype work, hand soldering may be acceptable. Preset soldering iron to $<260^{\circ} \mathrm{C}$. Do not apply heat for more than 3 to 4 seconds. The FPC is quite fragile; use extreme care when soldering by hand. Great care must be taken since the conductors of the tail are completely exposed in the area where they are soldered. Solder only to the exposed terminals of the FPC connector. The use of Kapton® tape to help locate and secure the FPC may be useful.

The image below of a CFAX12864 shows how Kapton tape should immediately be used to secure the tail to the PCB so the joint cannot flex and break.


Figure 8. Use Kapton tape to secure tail before hand soldering

## Hot Bar Soldering Machine

This module uses a "TAB" (tape automated bonding) or "COF" (chip on flex) style flex tail mated with a "COG" (chip on glass) display controller.

The TAB is soldered directly to corresponding pads on your PCB by using a hot-bar soldering machine. High volume contract manufacturers will be familiar with this type of construction and its assembly methods. Hot-bar soldering machines designed for prototype, rework or repair of TAB connections are available from equipment suppliers at reasonable cost. The TAB style connection requires no separate connector, so the cost is very low, and the ultra thin profile of the display is maintained.

We have had good experience with the APE Bondmaster, and their price is reasonable (\$US4K in May 2009). Other possible solutions are:
http://www.fancort.com/hotbar/hotbar.html
https://www.manncorp.com/hot-bar-soldering/pbs-series/index.php?auto=done
http://www.cherusal.com/tm-111mkiii.htm
The process is:

1. Pads on the PCB are tinned.
2. Tail is visually aligned to the PCB or by using the alignment holes.
3. Tail is held in place relative to the PCB with Kapton $®$ tape.
4. Bondmaster head is lowered, applying pressure between the tail and the PCB.
5. Bondmaster is "cycled", which means it heats up to the point of melting the solder and then cools down.
6. Bondmaster head is raised.

## AVOID SHOCK, IMPACT, TORQUE, OR TENSION

- Do not expose the module to strong mechanical shock, impact, torque, or tension.
- Do not drop, toss, bend, or twist the module.
- Do not place weight or pressure on the module.


## CLEANING

The polarizer (laminated to the glass) is soft plastic. The soft plastic is easily scratched or damaged. Be very careful when you clean the polarizer.

- Do not clean the polarizer with liquids. Do not wipe the polarizer with any type of cloth or swab (for example, Qtips).
- Use the removable protective film to remove smudges (for example, fingerprints) and any foreign matter. If you no longer have the protective film, use standard transparent office tape (for example, Scotch® brand "Crystal Clear Tape"). If the polarizer is dusty, you may carefully blow it off with clean, dry, oil-free compressed air.


## OPERATION

- We do not recommend connecting this module to a PC's parallel port as an "end product." This module is not "user friendly" and connecting it to a PC's parallel port is often difficult, frustrating, and can result in a "dead" display due to mishandling. For more information, see our forum thread at http://www.crystalfontz.com/forum/ showthread.php?s=\&threadid=3257.
- Your circuit should be designed to protect the module from ESD and power supply transients.
- Observe the operating temperature limitations: from $-20^{\circ} \mathrm{C}$ minimum to $+70^{\circ} \mathrm{C}$ maximum with minimal fluctuations. Operation outside of these limits may shorten the life and/or harm the display.
- Operate away from dust, moisture, and direct sunlight.


## STORAGE AND RECYCLING

- Store in an ESD-approved container away from dust, moisture, and direct sunlight, fluorescent lamps, or any ultraviolet ray.
- Observe the storage temperature limitations: from $-30^{\circ} \mathrm{C}$ minimum to $+80^{\circ} \mathrm{C}$ maximum with minimal fluctuations.
- Rapid temperature changes can cause moisture to form, resulting in permanent damage.
- Do not allow weight to be placed on the modules while they are in storage.
- Please recycle your outdated Crystalfontz modules at an approved facility.


## APPENDIX A: QUALITY ASSURANCE STANDARDS

## INSPECTION CONDITIONS

- Environment
- Temperature: $25 \pm 5^{\circ} \mathrm{C}$
- Humidity: $30 \sim 85 \%$ RH (noncondensing)
- For visual inspection of active display area
- Source lighting: two 20-Watt or one 40 -Watt fluorescent light
- Display adjusted for best contrast
- Viewing distance: $30 \pm 5 \mathrm{~cm}$ (about 12 inches)
- Viewing angle: inspect at $45^{\circ}$ angle of vertical line right and left, top and bottom


## COLOR DEFINITIONS

We try to describe the appearance of our modules as accurately as possible. For the photos, we adjust for optimal appearance. Actual display appearance may vary due to (1) different operating conditions, (2) small variations of component tolerances, (3) inaccuracies of our camera, (4) color interpretation of the photos on your monitor, and/or (5) personal differences in the perception of color.

## DEFINITION OF ACTIVE AREA AND VIEWING AREA



## ACCEPTANCE SAMPLING

| DEFECT TYPE | AQL* |
| :--- | :--- |
| Major | $\leq .65 \%$ |
| Minor | $<1.0 \%$ |
| *Acceptable Quality Level: maximum allowable error rate or variation from standard |  |

## DEFECTS CLASSIFICATION

Defects are defined as:

- Major Defect: results in failure or substantially reduces usability of unit for its intended purpose.
- Minor Defect: deviates from standards but is not likely to reduce usability for its intended purpose.


## ACCEPTANCE STANDARDS

| \# | DEFECT TYPE | CRITERIA |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Electrical defects | 1. No display, display malfunctions, or shorted segments. <br> 2. Current consumption exceeds specifications. |  |  | Major |
| 2 | Viewing area defect | Viewing area does not meet specifications. |  |  | Major |
| 3 | Blemishes or foreign matter on display segments |  | Defect Size | Acceptable Qty | Minor |
|  |  |  | $\leq 0.30 \mathrm{~mm}$ | 3 |  |
|  |  |  | $\leq 2$ defects within 10 mm of each other |  |  |
| 4 | Dark lines or scratches in display area | Defect Width | Defect Length | Acceptable Qty | Minor |
|  |  | $\leq 0.03 \mathrm{~mm}$ | $\leq 3.0 \mathrm{~mm}$ | 3 |  |
|  |  | 0.03 to 0.05 | $\leq 2.0 \mathrm{~mm}$ | 2 |  |
|  |  | 0.05 to 0.08 | $\leq 2.0 \mathrm{~mm}$ | 1 |  |
|  |  | 0.08 to 0.10 | $\leq 3.0 \mathrm{~mm}$ | 0 |  |
|  |  | $\geq 0.10$ | $>3.0 \mathrm{~mm}$ | 0 |  |

## ACCEPTANCE STANDARDS

| \# | DEFECT TYPE | CRITERIA |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 5 | Bubbles between polarizer film and glass |  | Defect Size | Acceptable Qty | Minor |
|  |  |  | $\leq 0.20 \mathrm{~mm}$ | Ignore |  |
|  |  |  | 0.20 to 0.40 mm | 3 |  |
|  |  |  | 0.40 to 0.60 mm | 2 |  |
|  |  |  | $\geq 0.60 \mathrm{~mm}$ | 0 |  |
| 6 | Display pattern defect |  |  |  | Minor |
|  |  | Pixel Size | Acc | ptable Qty |  |
|  |  | $((\mathrm{A}+\mathrm{B}) / 2) \leq 0.20 \mathrm{~mm}$ | $\leq 3$ total defects $\leq 2$ pinholes per digit |  |  |
|  |  | $\mathrm{C}>0 \mathrm{~mm}$ |  |  |  |
|  |  | $((\mathrm{D}+\mathrm{E}) / 2) \leq 0.25 \mathrm{~mm}$ |  |  |  |
|  |  | $((\mathrm{F}+\mathrm{G}) / 2) \leq 0.25 \mathrm{~mm}$ |  |  |  |
| 7 | PCB defects | 1. Oxidation or contamination on connectors.* <br> 2. Wrong parts, missing parts, or parts not in specification.* <br> 3. Jumpers set incorrectly. <br> 4. Solder (if any) on bezel, LED pad, zebra pad, or screw hole pad is not smooth. *Minor if display functions correctly. Major if the display fails. |  |  | Minor |
| 8 | Soldering defects | 1. Unmelted solder paste. <br> 2. Cold solder joints, missing solder connections, or oxidation.* <br> 3. Solder bridges causing short circuits.* <br> 4. Residue or solder balls. <br> 5. Solder flux is black or brown. *Minor if display functions correctly. Major if the display fails. |  |  | Minor |

## APPENDIX B: SAMPLE CODE

## SOURCES FOR DRIVER LIBRARIES

Graphic LCD driver libraries may save you a lot of time and help you develop a more professional product. Possible library sources are easyGUI, RAMTEX, Micrium, en.radzio.dxp.pl, and Segger emWin.

## SAMPLE CODE

This code will initialize the display and then cycle through between two images. You can download the complete source from this link: http://www.crystalfontz.com/product/CFAL12864NAB1.htmI\#docs.

Note: Please observe $V_{\text {PANEL }}$ sequencing as described in DC Characteristics (3.3v Operation) (Pg. 15).

```
#include <avr/io.h>
#include <util/delay.h>
// all on PORTC
#define OLED_CD PC7
#define OLED_RW PC6 // WR in }8080\mathrm{ mode
#define OLED_E PC5 // RD in }8080\mathrm{ mode
#define OLED_WR PC6 // WR in }8080\mathrm{ mode
#define OLED_RD PC5 // RD in }8080\mathrm{ mode
#define OLED_CS PC3
#define OLED_RES PC2
#define CLR_CD PORTC &= ~(1<<OLED_CD);
#define SET_CD PORTC |= (1<<OLED_CD);
#define CLR_CS PORTC &= ~(1<<OLED_CS);
#define SET_CS PORTC |= (1<<OLED_CS);
#define CLR_RESET PORTC &= ~(1<<OLED_RES);
#define SET_RESET PORTC |= (1<<OLED_RES);
// }6800\mathrm{ mode pin functions
#define CLR_RW PORTC &= ~(1 << OLED_RW); // }6800\mathrm{ mode
#define SET_RW PORTC |= (1 << OLED_RW); // }6800\mathrm{ mode
#define CLR_E PORTC &= ~(1 << OLED_E); // }6800\mathrm{ mode
#define SET_E PORTC |= (1 << OLED_E); // 6800 mode
// }8080\mathrm{ mode pin functions
#define CLR_WR PORTC &= ~(1 << OLED_WR); // 8080 mode
#define SET_WR PORTC |= (1 << OLED_WWR); // }8080\mathrm{ mode
#define CLR_RD PORTC &= ~(1 << OLED_RD); // }8080\mathrm{ mode
#define SET_RD PORTC |= (1 << OLED_RD); // 8080 mode
#define MODE6800 0
// for bmp function
```

```
typedef uint8_t bitmap_t[8][132];
/*-----------------------------------------------------------------------------------------------------
void delay(uint32_t twait)
    {
    while (twait--)
    asm volatile ("nop");
    }
/*-----------------------------------------------------------------------------------------------------------
uint8_t boot_logo[8][132] =
    {/* Binary data for image, deleted for clarity. Please
        download full zip from the link above. */ };
uint8_t bitmap[8][132] =
    {/* Binary data for image, deleted for clarity. Please
        download full zip from the link above. */ };
uint8_t bitmap2[8][132] =
    {/* Binary data for image, deleted for clarity. Please
        download full zip from the link above. */ };
/*-------------------------------------------------------------------------------------------------------
void oled_cmd(uint8_t cmd)
    {
    PORTA = cmd; // set up data on bus
    CLR_CS; // chip selected
    CLR_CD; // command mode
```

\#ifdef MODE6800
CLR_RW;
// clock E
SET_E;
CLR_E;
\#else
SET_RD;
// clock WR
CLR_WR;
SET_WR;
\#endif
SET_CS; // unselect chip
\}

void oled_data(uint8_t dat)
\{
PORTA = dat; // set up data on bus
SET_CD; // data mode
CLR_CS; // chip selected

Crystalfontz America, Inc. www.crystalfontz.com October 2011

CLR_RW;
// clock E
SET_E;
CLR_E;
\#else $\quad / / 8080$ mode
SET_RD;
// clock WR
CLR_WR;
SET_WR;
\#endif

```
SET_CS; // unselect chip
}
/*-------------------------------------------------------------------------------------------------------------
void OLED_clr(uint8_t color)
{
int i,p;
oled_cmd(0x40);
for (p=0;p<8;p++) // pages
    {
    oled_cmd(0xB0 + p); // set page address
    oled_cmd(0x10); // set high column address
    oled_cmd(0x00); // set low column address
    for (i=0;i<132;i++)
        {
        oled_data(color);
        }
    }
}
/*---------------------------------------------------------------------------------------------------------
void bmp(bitmap_t b)
{
unsigned char j=0;
unsigned char page=0;
for(page=0;page<8;page++)
    {
    oled_cmd(0xB0+page); // set page address
    oled_cmd(0x00); // set high column address
    oled_cmd(0x10); // set low column address
    for(j=0;j<132;j++)
        {
        oled_data(b[page][j]);
    }
    }
```

Crystalfontz America, Inc. www.crystalfontz.com

```
}
|*----------------------------------------------------------------------------------------------------
void init_OLED()
{
PORTD = 0; // all off
DDRD |= (1<<3); // VPANEL output
DDRA = 0xFF; // set PORTA for output
#ifdef MODE6800
    PORTC = 0b11011110;
#else
    PORTC = 0b11111110;
#endif
    DDRC = 0xFE;
    DDRD |= 0x06; // oled pins output
    delay(20000L);
    // reset the display
    CLR_RESET;
    delay(10000);
    SET_RESET;
    delay(20000);
    // enable VPANEL
    PORTD |= (1<<3);
delay(200000L);
oled_cmd(0xAE); // display OFF/ON 0xAE = display off, 0xAF = display on
oled_cmd(0xAD); // DC-DC voltage converter OFF
oled_cmd(0x8A); // 0x8A = OFF, 0x8B = ON
oled_cmd(0xA8); // Set multiplex ratio
oled_cmd(0x3F); // set for 64
oled_cmd(0xD3); // Set display offset
oled_cmd(0x00); // no offset (0-63 are acceptable values)
oled_cmd(0x40); // Set display start line (0x40 = start at line 0)
oled_cmd(0xA1); // Segment mapping (0xA0 normal, 0xA1 reversed)
oled_cmd(0xC8); // Common output scan direction (0xC0 = (0-COM[N-1]), 0xC8 = (COM[N-1] - 0)
oled_cmd(0xA6); // Set normal / reverse display (0xA6 = normal, 0xA7 = inverted/reverse)
oled_cmd(0xA4); // Set entire display off / on (0xA4 = off, 0xA5 = on)
```

Crystalfontz America, Inc. www.crystalfontz.com

CFAL12864N-A-B1 Graphic OLED Module Data Sheet

```
oled_cmd(0x81); // Contrast control mode set
oled_cmd(0x88); // (0x00-0xFF valid)
oled_cmd(0xD5); // Set Display clock divide ratio/oscillator frequency
oled_cmd(0x60); // Set for -5%
oled_cmd(0x00); // Set lower column address (0x00-0x0F valid)
oled_cmd(0xD9); // Set discharge/precharge period
oled_cmd(0x84); // (A3 - A0 pre charge, A7 - A4 dis charge) period adjustment
oled_cmd(0xAF); // Display on
delay(5000L);
OLED_clr(0x00); // clear display
}
|******************************************************************************************/
int main()
    {
init_OLED();
delay(20000L);
while (1)
    {
    bmp(boot_logo);
    delay(5000000L);
    bmp(bitmap);
    delay(5000000L);
    bmp(bitmap2);
    delay(5000000L);
    }
return 0;
}
/******************************************************************************************/
```


## APPENDIX C: OLED MODULE TERMS AND SYMBOLS

| Crystalfontz |  |  |  |  |
| :---: | :--- | :--- | :--- | :--- |
| Symbol |  |  |  |  |

Crystalfontz America, Inc.
CFAL12864N-A-B1 Graphic OLED Module Data Sheet www.crystalfontz.com Hardware vA / Data Sheet v1. 5
October 2011


Crystalfontz America, Inc.
CFAL12864N-A-B1 Graphic OLED Module Data Sheet www.crystalfontz.com Hardware vA / Data Sheet v1. 5

| Crystalfontz |
| :---: | :---: | :---: | :---: | :--- |
| Symbol |

Crystalfontz America, Inc. www.crystalfontz.com

CFAL12864N-A-B1 Graphic OLED Module Data Sheet Hardware vA / Data Sheet v1. 5

| Crystalfontz Symbol |  |  |  | Description |
| :---: | :---: | :---: | :---: | :---: |
| $V_{\text {REF }}$ |  |  |  | Voltage reference pin for pre-charge voltage in driving OLED device. Voltage should be set to match with the OLED driving voltage in current drive phase. It can either be supplied externally or by connecting to $\mathrm{V}_{\text {PANEL }}$. |
| $\mathrm{V}_{\mathrm{SL}}$ |  |  |  | Segment voltage reference pin. This pin should be left open. |
| $\overline{W R}_{8080}\left(\mathrm{R} / \bar{W}_{6800}\right)$ | $\mathrm{R} / \overline{\mathrm{W}}(\overline{\mathrm{WR}})$ | $\overline{\mathrm{WR}}(\mathrm{R} / \overline{\mathrm{W}})$ | R/W\# | Host interface input. <br> 8080 Host: Active low. Signal on the databus is latched at the rising edge of $\overline{W R}$ signal. <br> 6800 Host: Read/Write control signal output. $\begin{aligned} & R \bar{W}=\text { High: Read (Host } \leftarrow \text { Module) } \\ & R / \bar{W}=\text { Low: Write (Host } \rightarrow \text { Module) } \end{aligned}$ |

## APPENDIX D: SINO WEALTH SH1101A CONTROLLER SPECIFICATION SHEET

The complete Sino Wealth $132 \times 64$ Dot Matrix OLED/PLED Segment/Common Driver with Controller Data Sheet (59 pages) follows.

## SH1101A

## 132 X 64 Dot Matrix OLED/PLED Segment/Common Driver with Controller

## Features

■ Support maximum $132 \times 64$ dot matrix pane
■ Embedded 132 X 64 bits SRAM

- Operating voltage: (Normal mode)
- Logic voltage supply: VDD1 $=2.4 \mathrm{~V}-3.5 \mathrm{~V}$
- DC-DC voltage supply: VDD2 $=2.4 \mathrm{~V}-3.5 \mathrm{~V}$
- OLED Operating voltage supply: VPP = 7.0V-16.0V

■ Operating voltage:(Low voltage mode)

- Logic voltage supply: VDD1 $=1.65 \mathrm{~V}-3.5 \mathrm{~V}$
- DC-DC voltage supply: VDD2 $=2.4 \mathrm{~V}-3.5 \mathrm{~V}$
- OLED Operating voltage supply: VPP = 7.0V-9.0V

■ Maximum segment output current: $320 \mu \mathrm{~A}$
■ Maximum common sink current: 45 mA
■ 8-bit 6800-series parallel interface, 8 -bit 8080 -series parallel interface, serial peripheral interface

- Programmable frame frequency and multiplexing ratio
- Row re-mapping and column re-mapping (ADC)
- Vertical scrolling
- On-chip oscillator
- Available internal DC-DC converter
- 256-step contrast control on monochrome passive OLED panel
- Low power consumption
- Sleep mode: $<5 \mu \mathrm{~A}$
- Wide range of operating temperatures: -40 to $+85^{\circ} \mathrm{C}$
- Available in COG and TCP form


## General Description

SH1101A is a single-chip CMOS OLED/PLED driver with controller for organic/polymer light emitting diode dot-matrix graphic display system. SH1101A consists of 132 segments, 64 commons that can support a maximum display resolution of $132 \times 64$. It is designed for Common Cathode type OLED panel.
SH1101A also support low voltage mode: VDD1=1.65-3.5V and VPP $=7.0 \mathrm{~V}-9.0 \mathrm{~V}$.
SH1101A embeds with contrast control, display RAM oscillator and efficient DC-DC converter, which reduces the number of external components and power consumption. SH1101A is suitable for a wide range of compact portable applications, such as sub-display of mobile phone, calculator and MP3 player, etc.

## Pin Configuration







Pad Configuration


## Block Diagram



Pad Description

## Power Supply

| Pad No. | Symbol | I/O | Description |
| :---: | :---: | :---: | :---: |
| 28-31 | VdD1 | Supply | Power supply input: Normal mode: $2.4-3.5 \mathrm{~V}$ Low voltage mode: $1.65-3.5 \mathrm{~V}$ |
| 34, 44, 62 | VdD1 | Supply | Power supply output for pad option: Normal mode: 2.4-3.5V Low voltage mode: $1.65-3.5 \mathrm{~V}$ |
| 17-20 | VdD2 | Supply | 2.4-3.5V power supply pad for the internal buffer of the DC-DC voltage converter. |
| 7-13 | Vss | Supply | Ground. |
| 21, 32, 36, 42, 64 | Vss | Supply | Ground output for pad option. |
| 49-53, 71-73 | VPP | Supply | This is the most positive voltage supply pad of the chip. It should be supplied externally. |
| 66 | VPP | Supply | This is the most positive voltage output for pad option, which cannot be used as the most positive voltage input. |
| 4-6 | VsL | Supply | This is a segment voltage reference pad. This pad should be connected to Vss externally. |
| 1-3 | Vcl | Supply | This is a common voltage reference pad. This pad should be connected to Vss externally. |

OLED Driver Supplies

| Pad No. | Symbol | I/O | Description |
| :---: | :---: | :---: | :--- |
| 70 | VreF | I | This is a voltage reference pad for pre-charge voltage in driving OLED device. <br> Voltage should be set to match with the OLED driving voltage in current drive <br> phase. It can either be supplied externally or by connecting to VPP. |
| 65 | IREF | O | This is a segment current reference pad. A resistor should be connected <br> between this pad and Vss. Set the current at 10 $\mu A$. |
| $45-48,67-69$ | Vcomh | O | This is a pad for the voltage output high level for common signals. <br> A capacitor should be connected between this pad and Vss. |
| $14-16$ | SW | O | This is an output pad driving the gate of the external NMOS of the booster circuit. |
| 22 | FB | I | This is a feedback resistor input pad for the booster circuit. It is used to <br> adjust the booster output voltage level, VPP. |
| 23 | SENSE | I | This is a source current pad of the external NMOS of the booster circuit. <br> 24 VBREF |
| O | This is an internal voltage reference pad for booster circuit. A stabilization <br> capacitor, typical $1 \mu F$, should be connected to Vss. |  |  |

System Bus Connection Pads

| Pad No. | Symbol | I/O | Description |
| :---: | :---: | :---: | :---: |
| 37 | CL | I/O | This pad is the system clock input. When internal clock is enabled, this pad should be Left open. The internal clock is output from this pad. When internal oscillator is disabled, this pad receives display clock signal from external clock source. |
| 63 | CLS | 1 | This is the internal clock enable pad. <br> CLS = " H ": Internal oscillator circuit is enabled. <br> CLS = " L ": Internal oscillator circuit is disabled (requires external input). <br> When CLS = "L", an external clock source must be connected to the CL pad for normal operation. |
| 33 | C86 | 1 | This is the MPU interface switch pad. C86 = "H": 8080 series MPU interface. C86 = "L": 6800 series MPU interface. |
| 35 | P/S | 1 | This is the parallel data input/serial data input switch pad. <br> $P / S=$ " H ": Parallel data input. <br> $P / S=$ "L": Serial data input. <br> When P/S = "L", D2 to D7 are HZ. D2 to D7 may be "H", "L" or Open. $\overline{R D}(E)$ and $\overline{W R}(R / \bar{W})$ are fixed to either "H" or "L". With serial data input, RAM display data reading is not supported. These are MPU interface input selection pads. <br> See the following table for selecting different interfaces: |
| 38 | $\overline{\mathrm{CS}}$ | 1 | This pad is the chip select input. When $\overline{\mathrm{CS}}=$ " L ", then the chip select becomes active, and data/command $\mathrm{I} / \mathrm{O}$ is enabled. |
| 39 | $\overline{\mathrm{RES}}$ | 1 | This is a reset signal input pad. When $\overline{R E S}$ is set to "L", the settings are initialized. The reset operation is performed by the $\overline{\text { RES }}$ signal level. |
| 40 | A0 | I | This is the Data/Command control pad which determines whether the data bits are data or a command. <br> $\mathrm{A}=$ = " H ": the inputs at D 0 to D 7 are treated as display data. <br> $A 0=$ " L ": the inputs at D0 to D7 are transferred to the command registers. |
| 41 | $\begin{gathered} \overline{\mathrm{WR}} \\ (\mathrm{R} / \overline{\mathrm{W}}) \end{gathered}$ | 1 | This is a MPU interface input pad. <br> When connected to an 8080 MPU , this is active LOW. This pad connects to the 8080 <br> MPU $\overline{\mathrm{WR}}$ signal. The signals on the data bus are latched at the rising edge of the $\overline{\mathrm{WR}}$ signal. <br> When connected to a 6800 Series MPU: This is the read/write control signal input terminal. <br> When R/ $\bar{W}=$ " $H$ ": Read. <br> When $R / \bar{W}=$ "L": Write. |
| 43 | $\begin{aligned} & \overline{R D} \\ & (E) \end{aligned}$ | 1 | This is a MPU interface input pad. <br> When connected to an 8080 series MPU, it is active LOW. This pad is connected to the $\overline{\mathrm{RD}}$ signal of the 8080 series MPU, and the SH1101A data bus is in an output status when this signal is " L ". <br> When connected to a 6800 series MPU, this is active HIGH. This is used as an enable clock input of the 6800 series MPU. |
| $\begin{array}{\|c} 54-61 \\ 54 \\ 55 \end{array}$ | $\begin{gathered} \text { D0 - D7 } \\ (\mathrm{SCL}) \\ (\mathrm{SI}) \end{gathered}$ | $\begin{gathered} \text { I/O } \\ \text { I } \\ \text { I } \end{gathered}$ | This is an 8 -bit bi-directional data bus that connects to an 8 -bit or 16 -bit standard MPU data bus When the serial interface is selected, then D0 serves as the serial clock input pad (SCL) and D1 serves as the serial data input pad (SI). At this time, D2 to D7 are set to high impedance. <br> When the chip select is inactive, D0 to D7 are set to high impedance. |

## OLED Drive Pads

| Pad No. | Symbol | I/O | Description |
| :---: | :---: | :---: | :--- |
| $105-74$, <br> $238-269$ | COM0-63 | O | These pads are Common signal output for OLED display. |
| $106-237$ | SEG0-131 | O | These pads are Segment signal output for OLED display. |

Test Pads

| Pad No. | Symbol | I/O | Description |
| :---: | :---: | :---: | :--- |
| 25 | TEST1 | I | Test pads, internal pull low, no connection for user. |
| 27 | TEST2 | O | Test pads, no connection for user. |
| 26 | TEST3 | I | Test pads, no connection for user. |
| - | NC | - | NC pads, no connection for user. |

## Functional Description

## Microprocessor Interface Selection

The 8080-Parallel Interface, 6800-Parallel Interface or Serial Interface (SPI) can be selected by different selections of C86, P/S as shown in Table 1.

Table. 1

|  | 6800-Parallel Interface | 8080-Parallel Interface | Serial Interface |
| :---: | :---: | :---: | :---: |
| C86 | 0 | 1 | 0 |
| P/S | 1 | 1 | 0 |

## 6800-series Parallel Interface

The parallel interface consists of 8 bi-directional data pads (D7-DO), $\bar{W}(R / \bar{W}), \overline{R D}(E), A 0$ and $\overline{C S}$. When $\overline{W R}(R / \bar{W})=$ " $H$ ", read operation from the display RAM or the status register occurs. When $\overline{W R}(R / \bar{W})=$ "L", Write operation to display data RAM or internal command registers occurs, depending on the status of $A 0$ input. The $\overline{R D}(E)$ input serves as data latch signal (clock) when it is " H ", provided that $\overline{\mathrm{CS}}=$ " L " as shown in Table. 2.

Table. 2

| $\mathbf{P / S}$ | $\mathbf{C 8 6}$ | Type | $\overline{\mathbf{C S}}$ | $\mathbf{A 0}$ | $\overline{\mathbf{R D}}$ | $\overline{\mathrm{WR}}$ | D0 to D7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0 | 6800 microprocessor bus | $\overline{\mathrm{CS}}$ | $\mathrm{A0}$ | E | $\mathrm{R} / \overline{\mathrm{W}}$ | D 0 to $\mathrm{D7}$ |

In order to match the operating frequency of display RAM with that of the microprocessor, some pipeline processings are internally performed, which require the insertion of a dummy read before the first actual display data read. This is shown in Figure. 1 below.


Figure. 1

## 8080-series Parallel Interface

The parallel interface consists of 8 bi-directional data pads (D7-D0), $\overline{W R}(R / \bar{W}), \overline{R D}(E)$, $A 0$ and $\overline{C S}$. The $\overline{R D}(E)$ input serves as data read latch signal (clock) when it is " $L$ " provided that $\overline{C S}=$ " $L$ ". Display data or status register read is controlled by $A 0$ signal. The $\overline{W R}(R / \bar{W})$ input serves as data write latch signal (clock) when it is " $L$ " and provided that $\overline{C S}=$ " $L$ ". Display data or command register write is controlled by A0 as shown in Table. 3.

Table. 3

| $\mathbf{P / S}$ | $\mathbf{C 8 6}$ | Type | $\overline{\mathbf{C S}}$ | A0 | $\overline{\mathbf{R D}}$ | $\overline{\mathbf{W R}}$ | D0 to D7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 8080 microprocessor bus | $\overline{\mathrm{CS}}$ | A0 | $\overline{\mathrm{RD}}$ | $\overline{\mathrm{WR}}$ | D0 to $\mathbf{D 7}$ |

Similar to 6800-series interface, a dummy read is also required before the first actual display data read.

## Data Bus Signals

The SH1101A identifies the data bus signal according to $A 0, \overline{R D}(E)$ and $\overline{W R}(R / \bar{W})$ signals.
Table. 4

| Common | 6800 processor | $\mathbf{8 0 8 0}$ processor |  | Function |
| :---: | :---: | :---: | :---: | :--- |
| $\mathbf{A 0}$ | $(\mathbf{R} / \overline{\mathbf{W}})$ | $\overline{\mathbf{R D}}$ | $\overline{\mathbf{W R}}$ |  |
| 1 | 1 | 0 | 1 | Reads display data. |
| 1 | 0 | 1 | 0 | Writes display data. |
| 0 | 1 | 0 | 1 | Reads status. |
| 0 | 0 | 1 | 0 | Writes control data in internal register. (Command) |

## Serial Interface (SPI)

The serial interface consists of serial clock SCL, serial data SI, AO and CS. SI is shifted into an 8 -bit shift register on every rising edge of SCL in the order of D7, D6, ... and D0. A0 is sampled on every eighth clock and the data byte in the shift register is written to the display data RAM or command register in the same clock. See Figure. 2.

Table. 5

| $\mathbf{P / S}$ | $\mathbf{C 8 6}$ | Type | $\overline{\mathbf{C S}}$ | A0 | $\overline{\mathbf{R D}}$ | $\overline{\mathrm{WR}}$ | D0 | D1 | D2 to D7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | Serial Interface (SPI) | $\overline{\mathrm{CS}}$ | A 0 | - | - | SCL | SI | (HZ) |

Note: "-" Must always be HIGH or LOW.


Figure. 2

- When the chip is not active, the shift registers and the counter are reset to their initial statuses.
- Read is not possible while in serial interface mode.
- Caution is required on the SCL signal when it comes to line-end reflections and external noise. We recommend the operation be rechecked on the actual equipment.


## Access to Display Data RAM and Internal Registers

This module determines whether the input data is interpreted as data or command. When $\mathrm{AO}=$ " H ", the inputs at D 7 - DO are interpreted as data and be written to display RAM. When $A 0=$ "L", the inputs at D7-D0 are interpreted as command, they will be decoded and be written to the corresponding command registers.

## Display Data RAM

The Display Data RAM is a bit mapped static RAM holding the bit pattern to be displayed. The size of the RAM is $132 \times 64$ bits. For mechanical flexibility, re-mapping on both segment and common outputs can be selected by software.
For vertical scrolling of the display, an internal register storing display start line can be set to control the portion of the RAM data to be mapped to the display.

## The Page Address Circuit

As shown in Figure. 3, page address of the display data RAM is specified through the Page Address Set Command. The page address must be specified again when changing pages to perform access.

## The Column Address

As shown in Figure. 3, the display data RAM column address is specified by the Column Address Set command. The specified column address is incremented ( +1 ) with each display data read/ write command. This allows the MPU display data to be accessed continuously. Because the column address is independent of the page address, when moving, for example, from page 0 column 83 H to page 1 column 00 H , it is necessary to re-specify both the page address and the column address.
Furthermore, as shown in Table. 6, the Column re-mapping (ADC) command (segment driver direction select command) can be used to reverse the relationship between the display data RAM column address and the segment output. Because of this, the constraints on the IC layout when the OLED module is assembled can be minimized.

Table. 6

| Segment Output | SEG0 |  | SEG131 |
| :---: | :---: | :---: | :---: |
| ADC "0" | $0(\mathrm{H}) \rightarrow$ | Column Address | $\rightarrow 83(\mathrm{H})$ |
| ADC "1" | $83(\mathrm{H}) \leftarrow$ | Column Address | $\leftarrow 0(\mathrm{H})$ |

## The Line Address Circuit

The line address circuit, as shown in Figure. 3, specifies the line address relating to the common output when the contents of the display data RAM are displayed. Using the display start line address set command, what is normally the top line of the display can be specified (this is the COM0 output when the common output mode is normal, and the COM63 output for SH1101A, when the common output mode is reversed. The display area is a 64 -line area for the SH1101A from the display start line address.
If the line addresses are changed dynamically using the display start line address set command, screen scrolling, page swapping, etc. that can be performed relationship between display data RAM and address (if initial display line is 1DH).


Appendix

## The Oscillator Circuit

This is a RC type oscillator (Figure. 4) that produces the display clock. The oscillator circuit is only enabled when CLS = "H". When CLS = "L", the oscillation stops and the display clock is inputted through the CL terminal.


Figure. 4

## DC-DC Voltage Converter

It is a switching voltage generator circuit, designed for hand held applications. In SH1101A, built-in DC-DC voltage converter accompanied with an external application circuit (shown in Figure. 5) can generate a high voltage supply VPP from a low voltage supply input VDD2. VPP is the voltage supply to the OLED driver block.


Figure. 5
VPP $=\left(1+\frac{R 1}{R 2}\right) \times$ VBREF, (R2: 80-120k $\left.\Omega\right)$

## Current Control and Voltage Control

This block is used to derive the incoming power sources into different levels of internal use voltage and current. VPP and VdD2 are external power supplies. Vref, a reference voltage, which is used to derive the driving voltage for segments and commons. IREF is a reference current source for segment current drivers.

## Common Drivers/Segment Drivers

Segment drivers deliver 132 current sources to drive OLED panel. The driving current can be adjusted up to $320 \mu \mathrm{~A}$ with 256 steps. Common drivers generate voltage scanning pulses.

## Reset Circuit

When the $\overline{R E S}$ input falls to " $L$ ", these reenter their default state. The default settings are shown below:

1. Display is OFF. Common and segment are in high impedance state.
2. $132 \times 64$ Display mode.
3. Normal segment and display data column address and row address mapping (SEGO is mapped to column address 00H and COM0 mapped to row address 00 H ).
4. Shift register data clear in serial interface.
5. Display start line is set at display RAM line address 00 H .
6. Column address counter is set at 0 .
7. Normal scanning direction of the common outputs.
8. Contrast control register is set at 80 H .
9. Internal DC-DC is selected.

## Commands

The SH1101A uses a combination of $A 0, \overline{R D}(E)$ and $\overline{W R}(R / \bar{W})$ signals to identify data bus signals. As the chip analyzes and executes each command using internal timing clock only regardless of external clock, its processing speed is very high and its busy check is usually not required. The 8080 series microprocessor interface enters a read status when a low pulse is input to the $\overline{\mathrm{RD}}$ pad and a write status when a low pulse is input to the $\overline{W R}$ pad. The 6800 series microprocessor interface enters a read status when a high pulse is input to the $\mathrm{R} / \overline{\mathrm{W}}$ pad and a write status when a low pulse is input to this pad. When a high pulse is input to the E pad, the command is activated. (For timing, see AC Characteristics.). Accordingly, in the command explanation and command table, $\overline{\mathrm{RD}}$ (E) becomes $1(\mathrm{HIGH}$ ) when the 6800 series microprocessor interface reads status of display data. This is an only different point from the 8080 series microprocessor interface.
Taking the 8080 series, microprocessor interface as an example command will explain below.
When the serial interface is selected, input data starting from D7 in sequence.

## Command Set

1. Set Lower Column Address: ( $00 \mathrm{H}-0 \mathrm{FH}$ )
2. Set Higher Column Address: (10H-1FH)

Specifies column address of display RAM. Divide the column address into 4 higher bits and 4 lower bits. Set each of them into successions. When the microprocessor repeats to access to the display RAM, the column address counter is incremented during each access until address 132 is accessed. The page address is not changed during this time.

|  | A0 | $\frac{E}{R D}$ | $\frac{\mathrm{R} / \overline{\mathrm{W}}}{\overline{\mathrm{WR}}}$ | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Higher bits | 0 | 1 | 0 | 0 | 0 | 0 | 1 | A7 | A6 | A5 | A4 |
| Lower bits | 0 | 1 | 0 | 0 | 0 | 0 | 0 | A3 | A2 | A1 | A0 |


| A7 | A6 | A5 | A4 | A3 | A2 | A1 | A0 | Line address |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
|  |  |  |  | $:$ |  |  |  | $:$ |
| 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 131 |

Note: Don't use any commands not mentioned above.

## 3-5. Reserved Command

These three commands are reserved for user.
6. Set Display Start Line: (40H-7FH)

Specifies line address (refer to Figure. 3) to determine the initial display line or COM0. The RAM display data becomes the top line of OLED screen. It is followed by the higher number of lines in ascending order, corresponding to the duty cycle. When this command changes the line address, the smooth scrolling or page change takes place.

| A 0 | $\frac{\mathrm{E}}{\mathrm{RD}}$ | $\mathrm{R} / \overline{\mathrm{W}}$ <br> $\overline{\mathrm{WR}}$ | D 7 | D 6 | D 5 | D 4 | D 3 | D 2 | D 1 | D 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 0 | 0 | 1 | A 5 | A 4 | A 3 | A 2 | A 1 | A 0 |


| A5 | A4 | A3 | A2 | A1 | A0 | Line address |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 1 | 1 |
|  |  |  | $:$ |  |  |  |
| 1 | 1 | 1 | 1 | 1 | 0 | 62 |
| 1 | 1 | 1 | 1 | 1 | 1 | 63 |

7. Set Contrast Control Register: (Double Bytes Command)

This command is to set contrast setting of the display. The chip has 256 contrast steps from 00 to FF. The segment output current increases as the contrast step value increases.
Segment output current setting: ISEG $=\alpha / 256$ X IREF $X$ scale factor
Where: $\alpha$ is contrast step; IREF is reference current equals $10 \mu \mathrm{~A}$; Scale factor $=32$.

- The Contrast Control Mode Set: (81H)

When this command is input, the contrast data register set command becomes enabled. Once the contrast control mode has been set, no other command except for the contrast data register command can be used. Once the contrast data set command has been used to set data into the register, then the contrast control mode is released.

| A 0 | $\frac{\mathrm{E}}{\mathrm{RD}}$ | $\mathrm{R} / \overline{\mathrm{W}}$ <br> $\overline{\mathrm{WR}}$ | D 7 | D 6 | D 5 | D 4 | D 3 | D 2 | D 1 | D 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |

■ Contrast Data Register Set: ( $00 \mathrm{H}-\mathrm{FFH}$ )
By using this command to set eight bits of data to the contrast data register; the OLED segment output assumes one of the 256 current levels.
When this command is input, the contrast control mode is released after the contrast data register has been set.

| A0 | $\frac{\mathrm{E}}{\mathrm{RD}}$ | $\mathrm{R} / \overline{\mathrm{W}}$ | D7 | D6 | D 5 | D 4 | D 3 | D 2 | D 1 | D 0 | ISEG |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Small |
| 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |  |
| 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |  |
| 0 | 1 | 0 |  |  |  |  | $:$ |  |  |  | $:$ |
| 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | POR |
| 0 | 1 | 0 |  |  |  |  | $:$ |  |  |  | $:$ |
| 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 |  |
| 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | Large |

When the contrast control function is not used, set the D7-D0 to 1000,0000.
8. Set Segment Re-map: (AOH - A1H)

Change the relationship between RAM column address and segment driver. The order of segment driver output pads can be reversed by software. This allows flexible IC layout during OLED module assembly. For details, refer to the column address section of Figure. 3. When display data is written or read, the column address is incremented by 1 as shown in Figure. 1.

| A 0 | $\frac{\mathrm{E}}{\mathrm{RD}}$ | $\mathrm{R} / \overline{\mathrm{W}}$ <br> $\overline{\mathrm{WR}}$ | D 7 | D 6 | D 5 | D 4 | D 3 | D 2 | D 1 | D 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | ADC |

When ADC = " L ", the right rotates (normal direction). (POR)
When ADC = " H ", the left rotates (reverse direction).
9. Set Entire Display OFF/ON: (A4H - A5H)

Forcibly turns the entire display on regardless of the contents of the display data RAM. At this time, the contents of the display data RAM are held.
This command has priority over the normal/reverse display command.

| A 0 | $\frac{\mathrm{E}}{\mathrm{RD}}$ | $\mathrm{R} / \overline{\mathrm{W}}$ <br> $\overline{\mathrm{WR}}$ | D 7 | D 6 | D 5 | D 4 | D 3 | D 2 | D 1 | D 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | D |

When $\mathrm{D}=$ " L ", the normal display status is provided. (POR)
When $\mathrm{D}=$ " H ", the entire display ON status is provided.
10. Set Normal/Reverse Display: (A6H -A7H)

Reverses the display ON/OFF status without rewriting the contents of the display data RAM.

| A 0 | $\frac{\mathrm{E}}{\mathrm{RD}}$ | $\mathrm{R} / \overline{\mathrm{W}}$ <br> $\overline{\mathrm{WR}}$ | D 7 | D 6 | D 5 | D 4 | D 3 | D 2 | D 1 | D 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | D |

When $\mathrm{D}=$ " L ", the RAM data is high, being OLED ON potential (normal display). (POR)
When $\mathrm{D}=$ " H ", the RAM data is low, being OLED ON potential (reverse display)
11. Set Multiplex Ration: (Double Bytes Command)

This command switches default 64 multiplex modes to any multiplex ratio from 1 to 64 . The output pads COM0-COM63 will be switched to corresponding common signal.
■ Multiplex Ration Mode Set: (A8H)

| A 0 | $\frac{\mathrm{E}}{\mathrm{RD}}$ | $\mathrm{R} / \overline{\mathrm{W}}$ <br> $\overline{\mathrm{WR}}$ | D 7 | D 6 | D 5 | D 4 | D 3 | D 2 | D 1 | D 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 |

■ Multiplex Ration Data Set: ( $00 \mathrm{H}-3 \mathrm{FH}$ )

| A 0 | $\frac{\mathrm{E}}{\mathrm{RD}}$ | $\mathrm{R} / \overline{\mathrm{W}}$ <br> $\overline{\mathrm{WR}}$ | D 7 | D 6 | D 5 | D 4 | D 3 | D 2 | D 1 | D 0 | Multiplex Ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 0 | $*$ | $*$ | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| 0 | 1 | 0 | $*$ | $*$ | 0 | 0 | 0 | 0 | 1 | 0 | 2 |
| 0 | 1 | 0 | $*$ | $*$ | 0 | 0 | 0 | 0 | 1 | 1 | 3 |
| 0 | 1 | 0 |  |  |  |  | $:$ |  |  |  | $:$ |
| 0 | 1 | 0 | $*$ | $*$ | 1 | 1 | 1 | 1 | 1 | 0 | 63 |
| 0 | 1 | 0 | $*$ | $*$ | 1 | 1 | 1 | 1 | 1 | 1 | 64 (POR) |

12. Set DC-DC OFF/ON: (Double Bytes Command)

This command is to control the DC-DC voltage converter. The converter will be turned on by issuing this command then display ON command. The panel display must be off while issuing this command.

- DC-DC Control Mode Set: (ADH)

| A 0 | $\frac{\mathrm{E}}{\mathrm{RD}}$ | $\mathrm{R} / \overline{\mathrm{W}}$ <br> $\overline{\mathrm{WR}}$ | D 7 | D 6 | D 5 | D 4 | D 3 | D 2 | D 1 | D 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 |

■ DC-DC ON/OFF Mode Set: (8AH-8BH)

| A 0 | $\frac{\mathrm{E}}{\mathrm{RD}}$ | $\mathrm{R} / \overline{\mathrm{W}}$ <br> $\overline{\mathrm{WR}}$ | D 7 | D 6 | D 5 | D 4 | D 3 | D 2 | D 1 | D 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | D |

When $D=$ " $L$ ", $D C-D C$ is disable.
When $\mathrm{D}=$ " "H", DC-DC will be turned on when display on. (POR)
Table. 7

| DC-DC STATUS | DISPLAY ON/OFF STATUS | Description |
| :---: | :---: | :---: |
| 0 | 0 | Sleep mode |
| 0 | 1 | External VPP must be used. |
| 1 | 0 | Sleep mode |
| 1 | 1 | Built-in DC-DC is used, |

13. Display OFF/ON: (AEH - AFH)

Alternatively turns the display on and off.

| A 0 | $\frac{\mathrm{E}}{\mathrm{RD}}$ | $\mathrm{R} / \overline{\mathrm{W}}$ <br> $\overline{\mathrm{WR}}$ | D 7 | D 6 | D 5 | D 4 | D 3 | D 2 | D 1 | D 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | D |

When D = "L", Display OFF OLED. (POR)
When $\mathrm{D}=$ " H ", Display ON OLED.
When the display OFF command is executed, power saver mode will be entered.
Sleep mode:
This mode stops every operation of the OLED display system, and can reduce current consumption nearly to a static current value if no access is made from the microprocessor. The internal status in the sleep mode is as follows:
(1) Stops the oscillator circuit and DC-DC circuit.
(2) Stops the OLED drive and outputs HZ as the segment/common driver output.
(3) Holds the display data and operation mode provided before the start of the sleep mode.
(4) The MPU can access to the built-in display RAM.
14. Set Page Address: (BOH - B7H)

Specifies page address to load display RAM data to page address register. Any RAM data bit can be accessed when its page address and column address are specified. The display remains unchanged even when the page address is changed.

| A 0 | $\overline{\mathrm{RD}}$ | $\mathrm{R} / \overline{\mathrm{W}}$ <br> $\overline{\mathrm{WR}}$ | D 7 | D 6 | D 5 | D 4 | D 3 | D 2 | D 1 | D 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 0 | 1 | 0 | 1 | 1 | A 3 | A 2 | A 1 | A 0 |


| A3 | A2 | A1 | A0 | Page address |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 1 | 1 |
| 0 | 0 | 1 | 0 | 2 |
| 0 | 0 | 1 | 1 | 3 |
| 0 | 1 | 0 | 0 | 4 |
| 0 | 1 | 0 | 1 | 5 |
| 0 | 1 | 1 | 0 | 6 |
| 0 | 1 | 1 | 1 | 7 |

Note: Don't use any commands not mentioned above for user.
15. Set Common Output Scan Direction: ( $\mathrm{COH}-\mathrm{C} 8 \mathrm{H}$ )

This command sets the scan direction of the common output allowing layout flexibility in OLED module design. In addition, the display will have immediate effect once this command is issued. That is, if this command is sent during normal display, the graphic display will be vertically flipped.

| A0 | $\frac{\mathrm{E}}{\mathrm{RD}}$ | $\mathrm{R} / \overline{\mathrm{W}}$ <br> $\overline{\mathrm{WR}}$ | D 7 | D 6 | D 5 | D 4 | D 3 | D 2 | D 1 | D 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 0 | 1 | 1 | 0 | 0 | D | ${ }^{*}$ | ${ }^{*}$ | $*$ |

When $D=$ " L ", Scan from COM0 to COM [N-1]. (POR)
When $\mathrm{D}=$ " H ", Scan from COM $[\mathrm{N}-1]$ to COM0.
16. Set Display Offset: (Double Bytes Command)

This is a double byte command. The next command specifies the mapping of display start line to one of COM0-63 (it is assumed that COMO is the display start line, that equals to 0 ). For example, to move the COM16 towards the COM0 direction for 16 lines, the 6 -bit data in the second byte should be given by 010000 . To move in the opposite direction by 16 lines, the 6-bit data should be given by (64-16), so the second byte should be 100000.

- Display Offset Mode Set: (D3H)

| A 0 | $\frac{\mathrm{E}}{\mathrm{RD}}$ | $\mathrm{R} / \overline{\mathrm{W}}$ <br> $\overline{\mathrm{WR}}$ | D 7 | D 6 | D 5 | D 4 | D 3 | D 2 | D 1 | D 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 |

- Display Offset Data Set: (00H~3FH)

| A 0 | $\frac{\mathrm{E}}{\mathrm{RD}}$ | $\mathrm{R} / \overline{\mathrm{W}}$ <br> $\overline{\mathrm{WR}}$ | D 7 | D 6 | D 5 | D 4 | D 3 | D 2 | D 1 | D 0 | COMx |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 0 | $*$ | $*$ | 0 | 0 | 0 | 0 | 0 | 0 |  |
| 0 | 1 | 0 | $*$ | $*$ | 0 | 0 | 0 | 0 | 1 | 0 | 1 |
| 0 | 1 | 0 | $*$ | $*$ | 0 | 0 | 0 | 0 | 1 | 1 | 2 |
| 0 | 1 | 0 |  |  |  |  | $:$ |  |  |  | $\vdots$ |
| 0 | 1 | 0 | $*$ | $*$ | 1 | 1 | 1 | 1 | 1 | 0 | 62 |
| 0 | 1 | 0 | $*$ | $*$ | 1 | 1 | 1 | 1 | 1 | 1 | 63 |

Note: "*" stands for "Don't care"
17. Set Display Clock Divide Ratio/Oscillator Frequency: (Double Bytes Command)

This command is used to set the frequency of the internal display clocks (DCLKs). It is defined as the divide ratio (Value from 1 to 16) used to divide the oscillator frequency. POR is 1 . Frame frequency is determined by divide ratio, number of display clocks per row, MUX ratio and oscillator frequency.

- Divide Ratio/Oscillator Frequency Mode Set: (D5H)

| A 0 | $\frac{\mathrm{E}}{\mathrm{RD}}$ | $\mathrm{R} / \overline{\mathrm{W}}$ <br> $\overline{\mathrm{WR}}$ | D 7 | D 6 | D 5 | D 4 | D 3 | D 2 | D 1 | D 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |

- Divide Ratio/Oscillator Frequency Data Set: (00H-3FH)

| A 0 | $\frac{\mathrm{E}}{\mathrm{RD}}$ | $\mathrm{R} / \overline{\mathrm{W}}$ <br> $\overline{\mathrm{WR}}$ | D 7 | D 6 | D 5 | D 4 | D 3 | D 2 | D 1 | D 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 0 | A 7 | A 6 | A 5 | A 4 | A 3 | A 2 | A 1 | A 0 |

A3-A0 defines the divide ration of the display clocks (DCLK). Divide Ration $=\mathrm{A}[3: 0]+1$.

| $\mathrm{A}_{3}$ | $\mathrm{~A}_{2}$ | $\mathrm{~A}_{1}$ | $\mathrm{~A}_{\mathbf{0}}$ | Divide Ration |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 1 (POR) |
|  |  | $:$ |  | $:$ |
| 1 | 1 | 1 | 1 | 16 |

A7-A4 sets the oscillator frequency. Oscillator frequency increase with the value of A[7:4] and vice versa.

| A7 | A6 | A5 | A4 | Oscillator Frequency of <br> fosc |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | $-25 \%$ |
| 0 | 0 | 0 | 1 | $-20 \%$ |
| 0 | 0 | 1 | 0 | $-15 \%$ |
| 0 | 0 | 1 | 1 | $-10 \%$ |
| 0 | 1 | 0 | 0 | $-5 \%$ |
| 0 | 1 | 0 | 1 | $f$ osc (POR) |
| 0 | 1 | 1 | 0 | $+5 \%$ |
| 0 | 1 | 1 | 1 | $+10 \%$ |
| 1 | 0 | 0 | 0 | $+15 \%$ |
| 1 | 0 | 0 | 1 | $+20 \%$ |
| 1 | 0 | 1 | 0 | $+25 \%$ |
| 1 | 1 | 0 | 1 | $+30 \%$ |
| 1 | 1 | 1 | 0 | $+35 \%$ |
| 1 | 1 | 1 | 1 | $+40 \%$ |
| 1 |  |  |  | $+45 \%$ |

18. Set Dis-charge/Pre-charge Period: (Double Bytes Command)

This command is used to set the duration of the pre-charge period. The interval is counted in number of DCLK. POR is 2 DCLKs.
■ Pre-charge Period Mode Set: (D9H)

| A 0 | $\frac{\mathrm{E}}{\mathrm{RD}}$ | $\mathrm{R} / \overline{\mathrm{W}}$ <br> WR | D 7 | D 6 | D 5 | D 4 | D 3 | D 2 | D 1 | D 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 |

■ Dis-charge/Pre-charge Period Data Set: ( 00 H - FFH)

| A 0 | $\frac{\mathrm{E}}{\mathrm{RD}}$ | $\mathrm{R} / \overline{\mathrm{W}}$ <br> $\overline{\mathrm{WR}}$ | D 7 | D 6 | D 5 | D 4 | D 3 | D 2 | D 1 | D 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 0 | A 7 | A 6 | A 5 | A 4 | A 3 | A 2 | A 1 | A 0 |

Pre-charge Period Adjust: (A3-A0)

| $\mathrm{A}_{3}$ | $\mathrm{~A}_{2}$ | $\mathrm{~A}_{1}$ | $\mathrm{~A}_{0}$ | Pre-charge Period |
| :---: | :---: | :---: | :---: | :--- |
| 0 | 0 | 0 | 0 | INVALID |
| 0 | 0 | 0 | 1 | 1 DCLKs |
| 0 | 0 | 1 | 0 | 2 DCLKs (POR) |
|  |  | $:$ |  | $:$ |
| 1 | 1 | 1 | 0 | 14 DCLKs |
| 1 | 1 | 1 | 1 | 15 DCLKs |

Dis-charge Period Adjust: (A7 - A4)

| A7 | A6 | A5 | A4 | Dis-charge Period |
| :---: | :---: | :---: | :---: | :--- |
| 0 | 0 | 0 | 0 | INVALID |
| 0 | 0 | 0 | 1 | 1 DCLKs |
| 0 | 0 | 1 | 0 | 2 DCLKs (POR) |
|  |  | $:$ |  | $:$ |
| 1 | 1 | 1 | 0 | 14 DCLKs |
| 1 | 1 | 1 | 1 | 15 DCLKs |

19. Set Common pads hardware configuration: (Double Bytes Command)

This command is to set the common signals pad configuration (sequential or alternative) to match the OLED panel hardware layout
■ Common Pads Hardware Configuration Mode Set: (DAH)

| A 0 | $\frac{\mathrm{E}}{\mathrm{RD}}$ | $\mathrm{R} / \overline{\mathrm{W}}$ <br> $\overline{\mathrm{WR}}$ | D 7 | D 6 | D 5 | D 4 | D 3 | D 2 | D 1 | D 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 0 |

■ Sequential/Alternative Mode Set: ( $02 \mathrm{H}-12 \mathrm{H}$ )

| A 0 | $\frac{\mathrm{E}}{\mathrm{RD}}$ | $\mathrm{R} / \overline{\mathrm{W}}$ <br> $\overline{\mathrm{WR}}$ | D 7 | D 6 | D 5 | D 4 | D 3 | D 2 | D 1 | D 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 0 | 0 | 0 | 0 | D | 0 | 0 | 1 | 0 |

When D = "L", Sequential.
COM31, 30-1, 0 SEG0, 1-130, 131 COM32, 33-62, 63
When $\mathrm{D}=$ " H ", Alternative. (POR)

| COM62, 60-2, 0 | SEG0, 1-130, 131 | COM1, 3-61, 63 |
| :---: | :---: | :---: |

20. Set VCOM Deselect Level: (Double Bytes Command)

This command is to set the common pad output voltage level at deselect stage.

- VCOM Deselect Level Mode Set: (DBH)

| A 0 | $\frac{\mathrm{E}}{\mathrm{RD}}$ | $\mathrm{R} / \overline{\mathrm{W}}$ <br> $\overline{\mathrm{WR}}$ | D 7 | D 6 | D 5 | D 4 | D 3 | D 2 | D 1 | D 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 |

- VCOM Deselect Level Data Set: ( 00 H - FFH)

| A 0 | $\frac{\mathrm{E}}{\mathrm{RD}}$ | $\mathrm{R} / \overline{\mathrm{W}}$ <br> $\overline{\mathrm{WR}}$ | D 7 | D 6 | D 5 | D 4 | D 3 | D 2 | D 1 | D 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 0 | A 7 | A 6 | A 5 | A 4 | A 3 | A 2 | A 1 | A 0 |

$\operatorname{Vcom}=\beta \times$ Vref $=(0.430+A[7: 0] \times 0.006415) \times$ Vref

| A[7:0] | $\beta$ | A[7:0] | $\beta$ |
| :---: | :---: | :---: | :---: |
| 00H | 0.430 | 20H |  |
| 01H |  | 21H |  |
| 02H |  | 22 H |  |
| 03H |  | 23H |  |
| 04H |  | 24H |  |
| 05H |  | 25H |  |
| 06H |  | 26H |  |
| 07H |  | 27H |  |
| 08H |  | 28 H |  |
| 09H |  | 29H |  |
| OAH |  | 2AH |  |
| OBH |  | 2BH |  |
| OCH |  | 2 CH |  |
| ODH |  | 2DH |  |
| OEH |  | 2EH |  |
| OFH |  | 2FH |  |
| 10H |  | 30 H |  |
| 11H |  | 31 H |  |
| 12 H |  | 32H |  |
| 13H |  | 33H |  |
| 14H |  | 34 H |  |
| 15H |  | 35 H | 0.770 (POR) |
| 16H |  | 36 H |  |
| 17H |  | 37H |  |
| 18H |  | 38 H |  |
| 19H |  | 39 H |  |
| 1AH |  | 3AH |  |
| 1BH |  | 3BH |  |
| 1 CH |  | 3CH |  |
| 1DH |  | 3DH |  |
| 1EH |  | 3EH |  |
| 1FH |  | 3FH |  |
| 40H-FFH | 1 |  |  |

21. Read-Modify-Write: (EOH)

A pair of Read-Modify-Write and End commands must always be used. Once read-modify-write is issued, column address is not incremental by read display data command but incremental by write display data command only. It continues until End command is issued. When the End is issued, column address returns to the address when read-modify-write is issued. This can reduce the microprocessor load when data of a specific display area is repeatedly changed during cursor blinking or others.

| A 0 | $\frac{\mathrm{E}}{\mathrm{RD}}$ | $\mathrm{R} / \overline{\mathrm{W}}$ <br> $\overline{\mathrm{WR}}$ | D 7 | D 6 | D 5 | D 4 | D 3 | D 2 | D 1 | D 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |

Cursor display sequence:


Figure. 6
22. End: (EEH)

Cancels Read-Modify-Write mode and returns column address to the original address (when Read-Modify-Write is issued.)

| A 0 | $\frac{\mathrm{E}}{\mathrm{RD}}$ | $\mathrm{R} / \overline{\mathrm{W}}$ <br> $\overline{\mathrm{WR}}$ | D 7 | D 6 | D 5 | D 4 | D 3 | D 2 | D 1 | D 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 |



Figure. 7
23. NOP: (E3H)

Non-Operation Command.

| A 0 | $\frac{\mathrm{E}}{\mathrm{RD}}$ | $\mathrm{R} / \overline{\mathrm{W}}$ <br> $\overline{\mathrm{WR}}$ | D 7 | D 6 | D 5 | D 4 | D 3 | D 2 | D 1 | D 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 |

24. Write Display Data

Write 8-bit data in display RAM. As the column address is incremental by 1 automatically after each write, the microprocessor can continue to write data of multiple words.

| A0 | $\frac{E}{\mathrm{RD}}$ | $\mathrm{R} / \overline{\mathrm{W}}$ <br> $\overline{\mathrm{W}}$ | D 7 | D 6 | D 5 | D 4 | D 3 | D 2 | D 1 | D 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 0 | Write RAM data |  |  |  |  |  |  |  |

25. Read Status

| A 0 | $\frac{\mathrm{E}}{\mathrm{RD}}$ | $\mathrm{R} / \overline{\mathrm{W}}$ <br> WR | D 7 | D 6 | D 5 | D 4 | D 3 | D 2 | D 1 | D 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 1 | BUSY | $\mathrm{ON} / \mathrm{OFF}$ | $*$ | $*$ | $*$ | 0 | 0 | 0 |

BUSY: When high, the SH1101A is busy due to internal operation or reset. Any command is rejected until BUSY goes low. The busy check is not required if enough time is provided for each cycle.
ON/OFF: Indicates whether the display is on or off. When goes low the display turns on. When goes high, the display turns off. This is the opposite of Display ON/OFF command.
26. Read Display Data

Reads 8 -bit data from display RAM area specified by column address and page address. As the column address is increment by 1 automatically after each write, the microprocessor can continue to read data of multiple words. A single dummy read is required immediately after column address being setup. Refer to the display RAM section of FUNCTIONAL DESCRIPTION for details. Note that no display data can be read via the serial interface.

| A 0 | $\frac{\mathrm{E}}{\mathrm{RD}}$ | $\mathrm{R} / \overline{\mathrm{W}}$ <br> $\overline{\mathrm{WR}}$ | D 7 | D 6 | D 5 | D 4 | D 3 | D 2 | D 1 | D 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0 | 1 | Read RAM data |  |  |  |  |  |  |  |

## Command Table

| Command | Code |  |  |  |  |  |  |  |  |  |  | Function |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | A0 | $\overline{\mathbf{R D}}$ | $\overline{\text { WR }}$ | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |  |
| 1. Set Column Address 4 lower bits | 0 | 1 | 0 | 0 | 0 | 0 | 0 | Lower column address |  |  |  | Sets 4 lower bits of column address of display RAM in register. (POR = 00H) |
| 2. Set Column Address 4 higher bits | 0 | 1 | 0 | 0 | 0 | 0 | 1 | Higher column address |  |  |  | Sets 4 higher bits of column address of display RAM in register. $(P O R=10 \mathrm{H})$ |
| 3. Reserved Command <br> 4. Reserved Command <br> 5. Reserved Command | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | Reserved |
|  | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | Reserved |
|  | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | D | Reserved |
| 6. Set Display Start Line | 0 | 1 | 0 | 0 | 1 | Line address |  |  |  |  |  | Specifies RAM display line for COMO. (POR = 40H) |
| 7. The Contrast Control Mode Set Contrast Data Register Set | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | This command is to set Contrast Setting of the display. The chip has 256 contrast steps from 00 to FF. (POR = 80H) |
|  | 0 | 1 | 0 | Contrast Data |  |  |  |  |  |  |  |  |
| 8. Set Segment Re-map (ADC) | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | ADC | The right (0) or left (1) rotation. (POR = AOH) |
| 9. Set Entire Display OFF/ON | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | D | Selects normal display (0) or Entire Display ON (1). (POR $=\mathrm{A} 4 \mathrm{H}$ ) |
| 10. Set Normal/ Reverse Display | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | D | Normal indication (0) when low, but reverse indication (1) when high. $(\mathrm{POR}=\mathrm{A} 6 \mathrm{H})$ |
| 11. Multiplex Ration Mode Set Multiplex Ration Data Set | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | This command switches default 63 multiplex mode to any multiplex ratio from 1 to 64. $(\mathrm{POR}=3 \mathrm{FH})$ |
|  | 0 | 1 | 0 | * | * | Multiplex Ratio |  |  |  |  |  |  |
| 12. DC-DC Control Mode Set DC-DC ON/OFF Mode Set | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | This command is to control the DC-DC voltage DC-DC will be turned on when display on converter (1) or DC-DC OFF (0). (POR = 8BH) |
|  | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | D |  |

## Command Table (Continued)

| Command | Code |  |  |  |  |  |  |  |  |  |  | Function |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | A0 | $\overline{\mathrm{RD}}$ | $\overline{\text { WR }}$ | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |  |
| 13. Display OFF/ON | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | D | Turns on OLED panel (1) or turns off ( 0 ). ( $\mathrm{POR}=\mathrm{AEH}$ ) |
| 14. Set Page Address | 0 | 1 | 0 | 1 | 0 | 1 | 1 | Page Address |  |  |  | Specifies page address to load display RAM data to page address register. (POR $=\mathrm{BOH}$ ) |
| 15. Set Common Output Scan Direction | 0 | 1 | 0 | 1 | 1 | 0 | 0 | D | * | * | * | Scan from COMO to COM [N - 1] (0) or Scan from COM [N -1] to COMO (1). (POR = COH) |
| 16. Display Offset Mode Set | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | This is a double byte command which specifies the mapping of display start line to one of COM0-63.$(\mathrm{POR}=00 \mathrm{H})$ |
| Display Offset Data Set | 0 | 1 | 0 | * | * | COMx |  |  |  |  |  |  |
| 17. Set Display Divide Ratio/Oscillator Frequency Mode Set | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | This command is used to set the frequency of the internal display clocks. $(P O R=50 H)$ |
| Divide Ratio/Oscillator Frequency Data Set | 0 | 1 | 0 | Oscillator Frequency |  |  |  | Divide Ratio |  |  |  |  |
| 18. Dis-charge / <br> Pre-charge Period <br> Mode Set <br> Dis-charge <br> /Pre-charge Period <br> Data Set | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | This command is used to set the duration of the dis-charge and pre-charge period. $(\mathrm{POR}=22 \mathrm{H})$ |
|  | 0 | 1 | 0 | Dis-charge Period |  |  |  | Pre-charge Period |  |  |  |  |
| 19. Common Pads Hardware Configuration Mode Set Sequential/Alternat ive Mode Set | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | This command is to set the common signals pad configuration. $(\mathrm{POR}=12 \mathrm{H})$ |
|  | 0 | 1 | 0 | 0 | 0 | 0 | D | 0 | 0 | 1 | 0 |  |
| 20. VCOM Deselect Level Mode Set VCOM Deselect Level Data Set | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | This command is to set the common pad output voltage level at deselect stage.$(\mathrm{POR}=35 \mathrm{H})$ |
|  | 0 | 1 | 0 | VCOM ( $\beta \times$ Vref) |  |  |  |  |  |  |  |  |
| 21. Read-Modify-Write | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | Read-Modify-Write start. |
| 22. End | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | Read-Modify-Write end. |
| 23. NOP | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | Non-Operation Command |
| 24. Write Display Data | 1 | 1 | 0 | Write RAM data |  |  |  |  |  |  |  |  |
| 25. Read Status | 0 | 0 | 1 | BUSY | $\begin{aligned} & \text { ON/ } \\ & \text { OFF } \end{aligned}$ | * | * | * | 0 | 0 | 0 |  |
| 26. Read Display Data | 1 | 0 | 1 | Read RAM data |  |  |  |  |  |  |  |  |

Note: Do not use any other command, or the system malfunction may result.

## Command Description

## Instruction Setup: Reference

1. Power On and Initialization
1.1. When the built-in DC-DC pump power is being used immediately after turning on the power:

1.2. When the external DC-DC pump power is being used immediately after turning on the power:


## 2. Power Off



## Absolute Maximum Rating*


Input Voltage . . . . . . . . . . . . . . . . . . . - 0.3 V to VDD1 + 0.3 V
Operating Ambient Temperature
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature

## Electrical Characteristics

DC Characteristics (Vss $=0 \mathrm{~V}$, VDD1 $=2.4-3.5 \mathrm{~V}$ TA $=+25^{\circ} \mathrm{C}$, unless otherwise specified)

| Symbol | Parameter | Min. | Typ. | Max. | Unit | Condition |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| VdD1 | Operating voltage | 2.4 | - | 3.5 | V | Normal mode |
|  |  | 1.65 | - | 3.5 |  | Low voltage mode |
| VDD2 | Operating voltage | 2.4 | - | 3.5 | V |  |
| VPP | OLED Operating voltage | 7.0 | - | 16.0 | V | Normal mode |
|  |  | 7.0 | - | 9.0 |  | Low voltage mode |
| Vbref | Internal voltage reference | -5\% | 1.26* | +5\% | V | With one $1 \mu \mathrm{~F}$ capacitor, 1.26 V is the reference value. |
| IDD1 | Dynamic current consumption 1 | - | 110 | 160 | $\mu \mathrm{A}$ | Vdd1 $=3 \mathrm{~V}$, VdD2 $=3 \mathrm{~V}$, IREF $=10 \mu \mathrm{~A}$, Contrast $\alpha=256$, Bulid-in DC-DC OFF, Display ON, display data = All ON, No panel attached. |
| IDD2 | Dynamic current consumption 2 | - | 190 | 285 | $\mu \mathrm{A}$ | $V_{D D 1}=3 V, V_{D D 2}=3 V, V_{P P}=12 \mathrm{~V}$, IREF $=-10 \mu \mathrm{~A}$, Contrast $\alpha=256$, Bulid-in DC-DC ON, Display ON, Display data = All ON, No panel attached. |
| IPP | OLED dynamic current consumption | - | 550 | 825 | $\mu \mathrm{A}$ | $V_{D D 1}=3 \mathrm{~V}, \mathrm{VDD2}=3 \mathrm{~V}, \mathrm{VPP}=12 \mathrm{~V}$, IREF $=-10 \mu \mathrm{~A}$, Contrast $\alpha=256$, Display ON, All ON, No panel attached. |
| Isp | Sleep mode current consumption in VDD1 \& VDD2 | - | 0.01 | 5 | $\mu \mathrm{A}$ | During sleep, $\mathrm{TA}^{\text {a }}=+25^{\circ} \mathrm{C}, \mathrm{V} D 12=3 \mathrm{~V}, \mathrm{~V} D \mathrm{D} 2=3 \mathrm{~V}$. |
|  | Sleep mode current consumption in VPP | - | 0.01 | 5 | $\mu \mathrm{A}$ | During sleep, $\mathrm{TA}^{\text {a }}=+25^{\circ} \mathrm{C}, \mathrm{VPP}=12 \mathrm{~V}$. |
| ISEG | Segment output current | -308 | -320 | -342 | $\mu \mathrm{A}$ | VDD1 $=3 \mathrm{~V}, \mathrm{VPP}=12 \mathrm{~V}$, IREF $=-10 \mu \mathrm{~A}$, RLoad $=20 \mathrm{k} \Omega$, Display ON. Contrast $\alpha=256$. |
|  |  | - | -220 | - | $\mu \mathrm{A}$ | VDD1 $=3 \mathrm{~V}, \mathrm{VPP}=12 \mathrm{~V}$, IREF $=-10 \mu \mathrm{~A}$, RLoad $=20 \mathrm{k} \Omega$, Display ON. Contrast $\alpha=176$. |
|  |  | - | -120 | - | $\mu \mathrm{A}$ | VDD1 $=3 \mathrm{~V}, \mathrm{VPP}=12 \mathrm{~V}$, IREF $=-10 \mu \mathrm{~A}$, RLoad $=20 \mathrm{k} \Omega$, Display ON. Contrast $\alpha=96$. |
|  |  | - | -20 | - | $\mu \mathrm{A}$ | VDD1 $=3 \mathrm{~V}, \mathrm{VPP}=12 \mathrm{~V}$, IREF $=-10 \mu \mathrm{~A}$, RLoad $=20 \mathrm{k} \Omega$, Display ON. Contrast $\alpha=16$. |
| $\Delta \mathrm{ISEG1}$ | Segment output current uniformity | - | - | $\pm 3$ | \% | $\begin{aligned} & \text { } \begin{array}{l} \text { ISEG1 }=(\text { ISEG }- \text { IMID }) / \text { IMID } \times 100 \% \\ \text { IMID }=(\text { IMAX }+ \text { IMIN }) / 2 \\ \text { ISEG [0:131] at contrast } \alpha=256 . \\ \hline \end{array} \end{aligned}$ |
| $\Delta \mathrm{ISEG2}$ | Adjacent segment output current uniformity | - | - | $\pm 2$ | \% | $\begin{aligned} & \Delta \text { ISEG2 }=(\text { ISEG }[\mathrm{N}]-\operatorname{ISEG}[\mathrm{N}+1]) /(\operatorname{ISEG}[\mathrm{N}]+\operatorname{ISEG}[\mathrm{N}+1]) \times 100 \% \\ & \text { ISEG }[0: 131] \text { at contrast } \alpha=256 . \end{aligned}$ |

DC Characteristics (Continued)

| Symbol | Parameter | Min. | Typ. | Max. | Unit | Condition |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Vінс | High-level input voltage | 0.8 X VDD1 | - | VdD1 | V | $\mathrm{A} 0, \mathrm{D} 0-\mathrm{D} 7, \overline{\mathrm{RD}}(\mathrm{E}), \overline{\mathrm{WR}}(\mathrm{R} / \overline{\mathrm{W}}), \overline{\mathrm{CS}} \text {, }$ |
| VILC | Low-level input voltage | Vss | - | 0.2 X VDD1 | V | CLS, CL, C86, P/S and RES |
| Vонс | High-level output voltage | 0.8 X VDD1 | - | VDD1 | V | $\mathrm{IOH}=-0.5 \mathrm{~mA}(\mathrm{DO}-\mathrm{D} 7$, and CL). |
| Volc | Low -level output voltage | Vss | - | 0.2 X VDD1 | V | $\mathrm{IOL}=0.5 \mathrm{~mA}$ ( $\mathrm{DO} 0-\mathrm{D} 7$, and CL). |
| ILI | Input leakage current | -1.0 | - | 1.0 | $\mu \mathrm{A}$ | $\operatorname{VIN}=\operatorname{VDD1}$ or $\operatorname{Vss}(A 0, \overline{R D}(E), \overline{W R}(R / \bar{W})$, $\overline{\mathrm{CS}}, \mathrm{CLS}, \mathrm{C} 86, \mathrm{P} / \mathrm{S}$ and $\overline{\mathrm{RES}}$ ). |
| IHZ | HZ leakage current | -1.0 | - | 1.0 | $\mu \mathrm{A}$ | When the D0-D7, and CL are in high impedance. |
| fosc | Oscillation frequency | 315 | 360 | 420 | kHz | $\mathrm{TA}^{\prime}=+25^{\circ} \mathrm{C}$. |
| frRm | Frame frequency for 64 Commons | - | 104 | - | Hz | When fosc $=360 \mathrm{kHz}$, Divide ratio $=1$, common width $=54$ DCLKs. |

## AC Characteristics

(1) System buses Read/Write characteristics 1 (For the 8080 Series Interface MPU)

$\left(\mathrm{VDD} 1=2.4-3.5 \mathrm{~V}, \mathrm{TA}=+25^{\circ} \mathrm{C}\right)$

| Symbol | Parameter | Min. | Typ. | Max. | Unit | Condition |
| :---: | :--- | :---: | :---: | :---: | :---: | :---: |
| tcyc8 | System cycle time | 300 | - | - | ns |  |
| tas8 | Address setup time | 0 | - | - | ns |  |
| taH8 | Address hold time | 0 | - | - | ns |  |
| tDs8 | Data setup time | 40 | - | - | ns |  |
| tDH8 | Data hold time | 15 | - | - | ns |  |
| tch8 | Output disable time | 10 | - | 70 | ns | $\mathrm{CL}=100 \mathrm{pF}$ |
| tacc8 | $\overline{R D}$ access time | - | - | 140 | ns | $\mathrm{CL}=100 \mathrm{pF}$ |
| tccLw | Control L pulse width (WR) | 100 | - | - | ns |  |
| tccLR | Control L pulse width (RD) | 120 | - | - | ns |  |
| tcchw | Control H pulse width (WR) | 100 | - | - | ns |  |
| tcchR | Control H pulse width (RD) | 100 | - | - | ns |  |
| tR | Rise time | - | - | 15 | ns |  |
| tF | Fall time | - | 15 | ns |  |  |


| Symbol | Parameter | Min. | Typ. | Max. | Unit | Condition |
| :---: | :--- | :---: | :---: | :---: | :---: | :--- |
| tcrC8 | System cycle time | 600 | - | - | ns |  |
| tas8 | Address setup time | 0 | - | - | ns |  |
| taH8 | Address hold time | 0 | - | - | ns |  |
| tDS8 | Data setup time | 80 | - | - | ns |  |
| tDH8 | Data hold time | 30 | - | - | ns |  |
| tch8 | Output disable time | 20 | - | 140 | ns | $\mathrm{CL}=100 \mathrm{pF}$ |
| tacc8 | $\overline{R D}$ access time | - | - | 280 | ns | $\mathrm{CL}=100 \mathrm{pF}$ |
| tccLw | Control L pulse width (WR) | 200 | - | - | ns |  |
| tccLR | Control L pulse width (RD) | 240 | - | - | ns |  |
| tcchw | Control H pulse width (WR) | 200 | - | - | ns |  |
| tcchR | Control H pulse width (RD) | 200 | - | - | ns |  |
| tR | Rise time | - | - | 30 | ns |  |
| tF | Fall time | - | - | 30 | ns |  |

(2) System buses Read/Write Characteristics 2 (For the 6800 Series Interface MPU)

$\left(\mathrm{VDD} 1=2.4-3.5 \mathrm{~V}, \mathrm{TA}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right)$

| Symbol | Parameter | Min. | Typ. | Max. | Unit |  |
| :---: | :--- | :---: | :---: | :---: | :---: | :--- |
| tcrc6 | System cycle time | 300 | - | - | ns |  |
| tAS6 | Address setup time | 0 | - | - | ns |  |
| taH6 | Address hold time | 0 | - | - | ns |  |
| tDS6 | Data setup time | 40 | - | - | ns |  |
| tDH6 | Data hold time | 15 | - | - | ns |  |
| toH6 | Output disable time | 10 | - | 70 | ns | $\mathrm{CL}=100 \mathrm{pF}$ |
| tacc6 | Access time | - | - | 140 | ns | $\mathrm{CL}=100 \mathrm{pF}$ |
| tewhw | Enable H pulse width (Write) | 100 | - | - | ns |  |
| tEWHR | Enable H pulse width (Read) | 120 | - | - | ns |  |
| tEWLw | Enable L pulse width (Write) | 100 | - | - | ns |  |
| tEWLR | Enable L pulse width (Read) | 100 | - | - | ns |  |
| tR | Rise time | - | - | 15 | ns |  |
| tF | Fall time | - | - | 15 | ns |  |


| Symbol | Parameter | Min. | Typ. | Max. | Unit |  |
| :---: | :--- | :---: | :---: | :---: | :---: | :---: |
| tcyc6 | System cycle time | 600 | - | - | ns |  |
| tas6 | Address setup time | 0 | - | - | ns |  |
| taH6 | Address hold time | 0 | - | - | ns |  |
| tDS6 | Data setup time | 80 | - | - | ns |  |
| tDH6 | Data hold time | 30 | - | - | ns |  |
| toH6 | Output disable time | 20 | - | 140 | ns | CL $=100 \mathrm{pF}$ |
| tacc6 | Access time | - | - | 280 | ns | CL $=100 \mathrm{pF}$ |
| tewhw | Enable H pulse width (Write) | 200 | - | - | ns |  |
| tEwhR | Enable H pulse width (Read) | 240 | - | - | ns |  |
| tEwLw | Enable L pulse width (Write) | 200 | - | - | ns |  |
| tEwLR | Enable L pulse width (Read) | 200 | - | - | ns |  |
| tR | Rise time | - | - | 30 | ns |  |
| tF | Fall time | - | - | 30 | ns |  |

(3) System buses Write characteristics 3(For the Serial Interface MPU)

(VDD1 $\left.=2.4-3.5 \mathrm{~V}, \mathrm{TA}=+25^{\circ} \mathrm{C}\right)$

| Symbol | Parameter | Min. | Typ. | Max. | Unit |  |
| :---: | :--- | :---: | :---: | :---: | :---: | :---: |
| tscyc | Serial clock cycle | 250 | - | - | ns |  |
| tSAS | Address setup time | 150 | - | - | ns |  |
| tsAH | Address hold time | 150 | - | - | ns |  |
| tsDS | Data setup time | 100 | - | - | ns |  |
| tsDH | Data hold time | 100 | - | - | ns |  |
| tcss | $\overline{\text { CS }}$ setup time | 120 | - | - | ns |  |
| tcsH | $\overline{\mathrm{CS}}$ hold time time | 60 | - | - | ns |  |
| tsHw | Serial clock H pulse width | 100 | - | - | ns |  |
| tsLW | Serial clock L pulse width | 100 | - | - | ns |  |
| tR | Rise time | - | - | 15 | ns |  |
| tF | Fall time | - | - | 15 | ns |  |

. (VDD1 $\left.=1.65-3.5 \mathrm{~V}, \mathrm{TA}=+25^{\circ} \mathrm{C}\right)$

| Symbol | Parameter | Min. | Typ. | Max. | Unit |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| tscrc | Serial clock cycle | 500 | - | - | ns |  |
| tSAS | Address setup time | 300 | - | - | ns |  |
| tSAH | Address hold time | 300 | - | - | ns |  |
| tsDS | Data setup time | 200 | - | - | ns |  |
| tsDH | Data hold time | 200 | - | - | ns |  |
| tcss | $\overline{\mathrm{CS}}$ setup time | 240 | - | - | ns |  |
| tcsh | $\overline{\mathrm{CS}}$ hold time time | 120 | - | - | ns |  |
| tsHw | Serial clock H pulse width | 200 | - | - | ns |  |
| tsLw | Serial clock L pulse width | 200 | - | - | ns |  |
| tR | Rise time | - | - | 30 | ns |  |
| tF | Fall time | - | - | 30 | ns |  |

## (4) Reset Timing



| Symbol | Parameter | Min. | Typ. | Max. | Unit | Condition |
| :---: | :--- | :---: | :---: | :---: | :---: | :---: |
| tR | Reset time | - | - | 2.0 | $\mu \mathrm{~s}$ |  |
| tRW | Reset low pulse width | 10.0 | - | - | $\mu \mathrm{s}$ |  |

## Application Circuit (for reference only)

Reference Connection to MPU:

1. 8080 series interface: (Internal oscillator, External VPP)


Figure. 8

## Note:

C1-C3: $4.7 \mu \mathrm{~F}$.
R1: about 910k $\Omega$, R1 = (Voltage at IRef - Vss)//ref
2. 6800 Series Interface: (Internal oscillator, Built-in DC-DC)


Figure. 9

## Note:

L, D, Q, R1, R2, R3, C1-C6: Please refer to following description of DC-DC module.
C6, C7: $4.7 \mu \mathrm{~F}$
R3: about $910 \mathrm{k} \Omega$, $\mathrm{R}_{4}=($ Voltage at IRef - Vss)/Iref
3. Serial Interface: (External oscillator, External VPP)


Figure. 10

## Note:

C1-C3: $4.7 \mu \mathrm{~F}$
R1: about $910 \mathrm{k} \Omega$, R1 = (Voltage at IREF - Vss)/Iref

## DC-DC:

Below application circuit is an example for the input voltage of 3 V VDD2 to generate VPP of about $12 \mathrm{~V} @ 10 \mathrm{~mA}-25 \mathrm{~mA}$ application.


Figure. 11

| Symbol | Value | Recommendation |
| :--- | :--- | :--- |
| L | $10 \mu \mathrm{H}$ | LQH3C100K24 |
| D | SCHOTTKY DIODE | 20V@0.5A, MBR0520 |
| Q | MOSFET | N-FET with low RdS(ON) and low VTH, <br> MGSF1N02LT1 |
| $\mathrm{R}_{1}$ | $930 \mathrm{k} \Omega$ | $1 \%, 1 / 8 \mathrm{~W}$ |
| R2 | $110 \mathrm{k} \Omega$ | $1 \%, 1 / 8 \mathrm{~W}$ |
| $\mathrm{R}_{3}$ | $0.12 \Omega$ | $1 \%, 1 / 2 \mathrm{~W}$ |
| $\mathrm{C}_{1}$ | $1-10 \mu \mathrm{~F}$ | Low ESR/6.3V |
| $\mathrm{C}_{2}$ | $0.1-1 \mu \mathrm{~F}$ | Ceramic/16V |
| $\mathrm{C}_{3}$ | $1 \mu \mathrm{~F}$ | Ceramic/16V |
| $\mathrm{C}_{4}$ | $6.8 \mu \mathrm{~F}$ | Low ESR/16V |
| $\mathrm{C}_{5}$ | 1000 pF | Ceramic/16V |

## Tray Information



SECTION A-A

|  | Spec |
| :---: | :---: |
|  | mm (mil) |
| W 1 | $50.70 \pm 0.05(1996)$ |
| W2 | $45.50 \pm 0.10$ (1791) |
| W3 | $45.95 \pm 0.10$ (1809) |
| H | $3.95 \pm 0.05$ (156) |
| E | $2.20 \pm 0.05$ (87) |
| K | $1.45 \pm 0.10 \quad(57)$ |
| Dx | $8.87 \pm 0.05$ (349) |
| TPx | $32.97 \pm 0.10(1298)$ |
| Dy | $4.38 \pm 0.05$ (172) |
| TPy | $41.94 \pm 0.10$ (1651) |
| $P \times$ | $10.99 \pm 0.05$ (433) |
| Py | $2.33 \pm 0.05 \quad(92)$ |
| X | $9.45 \pm 0.05$ (372) |
| $Y$ | $1.26 \pm 0.05$ (50) |
| Z | $0.63 \pm 0.05$ (25) |
| N | 76 (pocket number) |

## SH1101A-TCP03 TCP Pin Layout


(Copper Side View)

SH1101A-TCP03 TCP Pin Assignment (Total: 211 pins)

| Pin No. | Designation |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | NC | 41 | COM48 | 81 | SEG7 | 121 | SEG47 |
| 2 | Vss | 42 | COM46 | 82 | SEG8 | 122 | SEG48 |
| 3 | SW | 43 | COM44 | 83 | SEG9 | 123 | SEG49 |
| 4 | VdD2 | 44 | COM42 | 84 | SEG10 | 124 | SEG50 |
| 5 | FB | 45 | COM40 | 85 | SEG11 | 125 | SEG51 |
| 6 | SENSE | 46 | COM38 | 86 | SEG12 | 126 | SEG52 |
| 7 | Vbref | 47 | COM36 | 87 | SEG13 | 127 | SEG53 |
| 8 | NC | 48 | COM34 | 88 | SEG14 | 128 | SEG54 |
| 9 | NC | 49 | COM32 | 89 | SEG15 | 129 | SEG55 |
| 10 | NC | 50 | COM30 | 90 | SEG16 | 130 | SEG56 |
| 11 | VDD1 | 51 | COM28 | 91 | SEG17 | 131 | SEG57 |
| 12 | C86 | 52 | COM26 | 92 | SEG18 | 132 | SEG58 |
| 13 | P/S | 53 | COM24 | 93 | SEG19 | 133 | SEG59 |
| 14 | NC | 54 | COM22 | 94 | SEG20 | 134 | SEG60 |
| 15 | $\overline{\mathrm{CS}}$ | 55 | COM20 | 95 | SEG21 | 135 | SEG61 |
| 16 | $\overline{\mathrm{RES}}$ | 56 | COM18 | 96 | SEG22 | 136 | SEG62 |
| 17 | A0 | 57 | COM16 | 97 | SEG23 | 137 | SEG63 |
| 18 | $\overline{\mathrm{WR}}$ | 58 | COM14 | 98 | SEG24 | 139 | SEG64 |
| 19 | $\overline{\mathrm{RD}}$ | 59 | COM12 | 99 | SEG25 | 139 | SEG65 |
| 20 | D0 | 60 | COM10 | 100 | SEG26 | 140 | SEG66 |
| 21 | D1 | 61 | COM8 | 101 | SEG27 | 141 | SEG67 |
| 22 | D2 | 62 | COM6 | 102 | SEG28 | 142 | SEG68 |
| 23 | D3 | 63 | COM4 | 103 | SEG29 | 143 | SEG69 |
| 24 | D4 | 64 | COM2 | 104 | SEG30 | 144 | SEG70 |
| 25 | D5 | 65 | COM0 | 105 | SEG31 | 145 | SEG71 |
| 26 | D6 | 66 | NC | 106 | SEG32 | 146 | SEG72 |
| 27 | D7 | 67 | NC | 107 | SEG33 | 147 | SEG73 |
| 28 | Iref | 68 | NC | 108 | SEG34 | 148 | SEG74 |
| 29 | Vcome | 69 | NC | 109 | SEG35 | 149 | SEG75 |
| 30 | VPP | 70 | NC | 110 | SEG36 | 150 | SEG76 |
| 31 | NC | 71 | NC | 111 | SEG37 | 151 | SEG77 |
| 32 | NC | 72 | NC | 112 | SEG38 | 152 | SEG78 |
| 33 | NC | 73 | NC | 113 | SEG39 | 153 | SEG79 |
| 34 | COM62 | 74 | SEG0 | 114 | SEG40 | 154 | SEG80 |
| 35 | COM60 | 75 | SEG1 | 115 | SEG41 | 155 | SEG81 |
| 36 | COM58 | 76 | SEG2 | 116 | SEG42 | 156 | SEG82 |
| 37 | COM56 | 77 | SEG3 | 117 | SEG43 | 157 | SEG83 |
| 38 | COM54 | 78 | SEG4 | 118 | SEG44 | 158 | SEG84 |
| 39 | COM52 | 79 | SEG5 | 119 | SEG45 | 159 | SEG85 |
| 40 | COM50 | 80 | SEG6 | 120 | SEG46 | 160 | SEG86 |

SH1101A-TCP03 TCP Pin Assignment (continued)

| Pin No. | Designation |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 161 | SEG87 | 176 | NC | 191 | COM27 | 206 | COM57 |
| 162 | SEG88 | 177 | NC | 192 | COM29 | 207 | COM59 |
| 163 | SEG89 | 178 | COM1 | 193 | COM31 | 208 | COM61 |
| 164 | SEG90 | 179 | COM3 | 194 | COM33 | 209 | COM63 |
| 165 | SEG91 | 180 | COM5 | 195 | COM35 | 210 | NC |
| 166 | SEG92 | 181 | COM7 | 196 | COM37 | 211 | NC |
| 167 | SEG93 | 182 | COM9 | 197 | COM39 |  |  |
| 168 | SEG94 | 183 | COM11 | 198 | COM41 |  |  |
| 169 | SEG95 | 184 | COM13 | 199 | COM43 |  |  |
| 170 | NC | 185 | COM15 | 200 | COM45 |  |  |
| 171 | NC | 186 | COM17 | 201 | COM47 |  |  |
| 172 | NC | 187 | COM19 | 202 | COM49 |  |  |
| 173 | NC | 188 | COM21 | 203 | COM51 |  |  |
| 174 | NC | 189 | COM23 | 204 | COM53 |  |  |
| 175 | NC | 190 | COM25 | 205 | COM55 |  |  |

## Note:

Following is the details of pad connection in SH1101A-TCP03 (TCP Form).
■ "CLS" pad connects to "VDD1" pad, Internal oscillator circuit is enabled.
■ "Vref" pad connects to "Vpp" pad.
■ "Vcl" \& "Vsl" pad connects to "Vss" pad.
■ "C86" \& "P/S" pad options can be selected by user. So SH1101A-TCP03 (TCP Form) supports 8-bit 6800-series parallel interface, 8-bit 8080-series parallel interface or serial peripheral interface.
■ SH1101A-TCP03 (TCP Form) supports internal DC-DC converter function.

External View of SH1101A-TCP03 TCP Pins


PACK DIRECTION


NOTES

1. All SR Dimension Tolerance $\pm 0.200 \mathrm{~mm}$ if not specified

2 All SL Dimension Tolerance $\pm 005 \mathrm{~mm}$ if not specified
3 rorner radiuses unless otherwise specified is 020 mm
PKG Reel Size $\phi 405 \mathrm{~mm}$
5. Input IL total pitch from left 2nd to right 2nd

6 Output IL total pitch from left 2 nd to right 2 nd
7. IL Pitch=45um ; Min Pitch=45um||L/Trace

## Cautions Concerning Storage:

1. When storing the product, it is recommended that it be left in its shipping package.

After the seal of the packing bag has been broken, store the products in a nitrogen atmosphere
2. Storage conditions:

| Storage state | Storage conditions |
| :--- | :--- |
| unopened (less than 90 days) | Temperature: 5 to $30^{\circ} \mathrm{C}$; humidity: $80 \%$ RH or less. |
| After seal of broken (less than $\mathbf{3 0}$ days) | Room temperature, dry nitrogen atmosphere |

3. Don't store in a location exposed to corrosive gas or excessive dust.
4. Don't store in a location exposed to direct sunlight of subject to sharp changes in temperature.
5. Don't store the product such that it subjected to an excessive load weight, such as by stacking.
6. Deterioration of the plating may occur after long-term storage, so special care is required.

It is recommended that the products be inspected before use.

## SH1101A-TCP06 TAB Pin Layout



SH1101A-TCP06 TAB Pin Assignment (Total: 249 pads)

| Pin No. | Designation |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | NC | 41 | COM49 | 81 | SEG123 | 121 | SEG83 |
| 2 | VPP | 42 | COM47 | 82 | SEG122 | 122 | SEG82 |
| 3 | Vcome | 43 | COM45 | 83 | SEG121 | 123 | SEG81 |
| 4 | IREF | 44 | COM43 | 84 | SEG120 | 124 | SEG80 |
| 5 | D7 | 45 | COM41 | 85 | SEG119 | 125 | SEG79 |
| 6 | D6 | 46 | COM39 | 86 | SEG118 | 126 | SEG78 |
| 7 | D5 | 47 | COM37 | 87 | SEG117 | 127 | SEG77 |
| 8 | D4 | 48 | COM35 | 88 | SEG116 | 128 | SEG76 |
| 9 | D3 | 49 | COM33 | 89 | SEG115 | 129 | SEG75 |
| 10 | D2 | 50 | COM31 | 90 | SEG114 | 130 | SEG74 |
| 11 | D1 | 51 | COM29 | 91 | SEG113 | 131 | SEG73 |
| 12 | D0 | 52 | COM27 | 92 | SEG112 | 132 | SEG72 |
| 13 | $\overline{\mathrm{RD}}$ | 53 | COM25 | 93 | SEG111 | 133 | SEG71 |
| 14 | $\overline{\mathrm{WR}}$ | 54 | COM23 | 94 | SEG110 | 134 | SEG70 |
| 15 | A0 | 55 | COM21 | 95 | SEG109 | 135 | SEG69 |
| 16 | $\overline{R E S}$ | 56 | COM19 | 96 | SEG108 | 136 | SEG68 |
| 17 | $\overline{\mathrm{CS}}$ | 57 | COM17 | 97 | SEG107 | 137 | SEG67 |
| 18 | NC | 58 | COM15 | 98 | SEG106 | 139 | SEG66 |
| 19 | P/S | 59 | COM13 | 99 | SEG105 | 139 | SEG65 |
| 20 | C86 | 60 | COM11 | 100 | SEG104 | 140 | SEG64 |
| 21 | VdD1 | 61 | COM9 | 101 | SEG103 | 141 | SEG63 |
| 22 | NC | 62 | COM7 | 102 | SEG102 | 142 | SEG62 |
| 23 | NC | 63 | COM5 | 103 | SEG101 | 143 | SEG61 |
| 24 | NC | 64 | COM3 | 104 | SEG100 | 144 | SEG60 |
| 25 | Vbref | 65 | COM1 | 105 | SEG99 | 145 | SEG59 |
| 26 | SENSE | 66 | NC | 106 | SEG98 | 146 | SEG58 |
| 27 | FB | 67 | NC | 107 | SEG97 | 147 | SEG57 |
| 28 | VdD2 | 68 | NC | 108 | SEG96 | 148 | SEG56 |
| 29 | SW | 69 | NC | 109 | SEG95 | 149 | SEG55 |
| 30 | Vss | 70 | NC | 110 | SEG94 | 150 | SEG54 |
| 31 | NC | 71 | NC | 111 | SEG93 | 151 | SEG53 |
| 32 | NC | 72 | NC | 112 | SEG92 | 152 | SEG52 |
| 33 | NC | 73 | SEG131 | 113 | SEG91 | 153 | SEG51 |
| 34 | COM63 | 74 | SEG130 | 114 | SEG90 | 154 | SEG50 |
| 35 | COM61 | 75 | SEG129 | 115 | SEG89 | 155 | SEG49 |
| 36 | COM59 | 76 | SEG128 | 116 | SEG88 | 156 | SEG48 |
| 37 | COM57 | 77 | SEG127 | 117 | SEG87 | 157 | SEG47 |
| 38 | COM55 | 78 | SEG126 | 118 | SEG86 | 158 | SEG46 |
| 39 | COM53 | 79 | SEG125 | 119 | SEG85 | 159 | SEG45 |
| 40 | COM51 | 80 | SEG124 | 120 | SEG84 | 160 | SEG44 |

TAB Pin Assignment (continued)

| Pin No. | Designation |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 161 | SEG43 | 184 | SEG20 | 207 | NC | 230 | COM28 |
| 162 | SEG42 | 185 | SEG19 | 208 | NC | 231 | COM30 |
| 163 | SEG41 | 186 | SEG18 | 209 | NC | 232 | COM32 |
| 164 | SEG40 | 187 | SEG17 | 210 | NC | 233 | COM34 |
| 165 | SEG39 | 188 | SEG16 | 211 | NC | 234 | COM36 |
| 166 | SEG38 | 189 | SEG15 | 212 | NC | 235 | COM38 |
| 167 | SEG37 | 190 | SEG14 | 213 | NC | 236 | COM40 |
| 168 | SEG36 | 191 | SEG13 | 214 | NC | 237 | COM42 |
| 169 | SEG35 | 192 | SEG12 | 215 | NC | 238 | COM44 |
| 170 | SEG34 | 193 | SEG11 | 216 | COM0 | 239 | COM46 |
| 171 | SEG33 | 194 | SEG10 | 217 | COM2 | 240 | COM48 |
| 172 | SEG32 | 195 | SEG9 | 218 | COM4 | 241 | COM50 |
| 173 | SEG31 | 196 | SEG8 | 219 | COM6 | 242 | COM52 |
| 174 | SEG30 | 197 | SEG7 | 220 | COM8 | 243 | COM54 |
| 175 | SEG29 | 198 | SEG6 | 221 | COM10 | 244 | COM56 |
| 176 | SEG28 | 199 | SEG5 | 222 | COM12 | 245 | COM58 |
| 177 | SEG27 | 200 | SEG4 | 223 | COM14 | 246 | COM60 |
| 178 | SEG26 | 201 | SEG3 | 224 | COM16 | 247 | COM62 |
| 179 | SEG25 | 202 | SEG2 | 225 | COM18 | 248 | NC |
| 180 | SEG24 | 203 | SEG1 | 226 | COM20 | 249 | NC |
| 181 | SEG23 | 204 | SEG0 | 227 | COM22 |  |  |
| 182 | SEG22 | 205 | NC | 228 | COM24 |  |  |
| 183 | SEG21 | 206 | NC | 229 | COM26 |  |  |

## Note:

Following is the details of pad connection in SH1101A-TCP06 (TCP Form).
■ "CLS" pad connects to "VDD1" pad, Internal oscillator circuit is enabled.
■ "Vref" pad connects to "Vpp" pad.
■ "VcL" \& "VsL" pad connects to "Vss" pad.
■ "C86" \& "P/S" pad options can be selected by user. So SH1101A-TCP06 (TCP Form) supports 8-bit 6800-series parallel interface, 8-bit 8080-series parallel interface or serial peripheral interface.
■ SH1101A-TCP06 (TCP Form) supports internal DC-DC converter function.

## External View of SH1101A-TCP06 TAB Pins



Appendix


## Cautions Concerning Storage:

1. When storing the product, it is recommended that it be left in its shipping package. After the seal of the packing bag has been broken, store the products in a nitrogen atmosphere
2. Storage conditions:

| Storage state | Storage conditions |
| :--- | :--- |
| unopened (less than 90 days) | Temperature: 5 to $30^{\circ} \mathrm{C}$; humidity: $80 \% \mathrm{RH}$ or less. |
| After seal of broken (less than $\mathbf{3 0}$ days) | Room temperature, dry nitrogen atmosphere |

3. Don't store in a location exposed to corrosive gas or excessive dust.
4. Don't store in a location exposed to direct sunlight of subject to sharp changes in temperature
5. Don't store the product such that it subjected to an excessive load weight, such as by stacking.
6. Deterioration of the plating may occur after long-term storage, so special care is required.

It is recommended that the products be inspected before use.

## SH1101A-TCP09 TCP Pin Layout


(Copper Side View)

SH1101A-TCP09 TCP Pin Assignment (Total: 211 pads)

| Pin No. | Designation |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | NC | 41 | COM49 | 81 | SEG120 | 121 | SEG80 |
| 2 | VPP | 42 | COM47 | 82 | SEG119 | 122 | SEG79 |
| 3 | Vсомн | 43 | COM45 | 83 | SEG118 | 123 | SEG78 |
| 4 | Iref | 44 | COM43 | 84 | SEG117 | 124 | SEG77 |
| 5 | D7 | 45 | COM41 | 85 | SEG116 | 125 | SEG76 |
| 6 | D6 | 46 | COM39 | 86 | SEG115 | 126 | SEG75 |
| 7 | D5 | 47 | COM37 | 87 | SEG114 | 127 | SEG74 |
| 8 | D4 | 48 | COM35 | 88 | SEG113 | 128 | SEG73 |
| 9 | D3 | 49 | COM33 | 89 | SEG112 | 129 | SEG72 |
| 10 | D2 | 50 | COM31 | 90 | SEG111 | 130 | SEG71 |
| 11 | D1 | 51 | COM29 | 91 | SEG110 | 131 | SEG70 |
| 12 | D0 | 52 | COM27 | 92 | SEG109 | 132 | SEG69 |
| 13 | $\overline{\mathrm{RD}}$ | 53 | COM25 | 93 | SEG108 | 133 | SEG68 |
| 14 | $\overline{\mathrm{WR}}$ | 54 | COM23 | 94 | SEG107 | 134 | SEG67 |
| 15 | A0 | 55 | COM21 | 95 | SEG106 | 135 | SEG66 |
| 16 | $\overline{\mathrm{RES}}$ | 56 | COM19 | 96 | SEG105 | 136 | SEG65 |
| 17 | $\overline{\mathrm{CS}}$ | 57 | COM17 | 97 | SEG104 | 137 | SEG64 |
| 18 | NC | 58 | COM15 | 98 | SEG103 | 139 | SEG63 |
| 19 | P/S | 59 | COM13 | 99 | SEG102 | 139 | SEG62 |
| 20 | C86 | 60 | COM11 | 100 | SEG101 | 140 | SEG61 |
| 21 | VdD1 | 61 | COM9 | 101 | SEG100 | 141 | SEG80 |
| 22 | NC | 62 | COM7 | 102 | SEG99 | 142 | SEG79 |
| 23 | NC | 63 | COM5 | 103 | SEG98 | 143 | SEG78 |
| 24 | NC | 64 | COM3 | 104 | SEG97 | 144 | SEG77 |
| 25 | Vbref | 65 | COM1 | 105 | SEG96 | 145 | SEG76 |
| 26 | SENSE | 66 | NC | 106 | SEG95 | 146 | SEG75 |
| 27 | FB | 67 | NC | 107 | SEG94 | 147 | SEG74 |
| 28 | VdD2 | 68 | NC | 108 | SEG93 | 148 | SEG73 |
| 29 | SW | 69 | NC | 109 | SEG92 | 149 | SEG72 |
| 30 | Vss | 70 | NC | 110 | SEG91 | 150 | SEG71 |
| 31 | NC | 71 | NC | 111 | SEG90 | 151 | SEG70 |
| 32 | NC | 72 | NC | 112 | SEG89 | 152 | SEG69 |
| 33 | NC | 73 | NC | 113 | SEG88 | 153 | SEG68 |
| 34 | COM63 | 74 | SEG127 | 114 | SEG87 | 154 | SEG67 |
| 35 | COM61 | 75 | SEG126 | 115 | SEG86 | 155 | SEG66 |
| 36 | COM59 | 76 | SEG125 | 116 | SEG85 | 156 | SEG65 |
| 37 | COM57 | 77 | SEG124 | 117 | SEG84 | 157 | SEG64 |
| 38 | COM55 | 78 | SEG123 | 118 | SEG83 | 158 | SEG63 |
| 39 | COM53 | 79 | SEG122 | 119 | SEG82 | 159 | SEG62 |
| 40 | COM51 | 80 | SEG121 | 120 | SEG81 | 160 | SEG61 |

SH1101A-TCP09 TCP Pin Assignment (continued)

| Pin No. | Designation |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 161 | SEG60 | 176 | NC | 191 | COM26 | 206 | COM56 |
| 162 | SEG59 | 177 | NC | 192 | COM28 | 207 | COM58 |
| 163 | SEG58 | 178 | COM0 | 193 | COM30 | 208 | COM60 |
| 164 | SEG57 | 179 | COM2 | 194 | COM32 | 209 | COM62 |
| 165 | SEG56 | 180 | COM4 | 195 | COM34 | 210 | NC |
| 166 | SEG55 | 181 | COM6 | 196 | COM36 | 211 | NC |
| 167 | SEG54 | 182 | COM8 | 197 | COM38 |  |  |
| 168 | SEG53 | 183 | COM10 | 198 | COM40 |  |  |
| 169 | SEG52 | 184 | COM12 | 199 | COM42 |  |  |
| 170 | SEG51 | 185 | COM14 | 200 | COM44 |  |  |
| 171 | SEG50 | 186 | COM16 | 201 | COM46 |  |  |
| 172 | SEG49 | 187 | COM18 | 202 | COM48 |  |  |
| 173 | SEG48 | 188 | COM20 | 203 | COM50 |  |  |
| 174 | SEG47 | 189 | COM22 | 204 | COM52 |  |  |
| 175 | SEG46 | 190 | COM24 | 205 | COM54 |  |  |

## Note:

Following is the details of pad connection in SH1101A-TCP09 (TCP Form).
■ "CLS" pad connects to "VDD1" pad, Internal oscillator circuit is enabled.
■ "Vref" pad connects to "Vpp" pad.
■ "Vcl" \& "Vsl" pad connects to "Vss" pad.
■ "C86" \& "P/S" pad options can be selected by user. So SH1101A-TCP09 (TCP Form) supports 8 -bit 6800 -series parallel interface, 8-bit 8080-series parallel interface or serial peripheral interface.
SH1101A-TCP09 (TCP Form) supports internal DC-DC converter function.

## External View of SH1101A-TCP09 TCP Pins




## Cautions Concerning Storage:

1. When storing the product, it is recommended that it be left in its shipping package.

After the seal of the packing bag has been broken, store the products in a nitrogen atmosphere.
2. Storage conditions:

| Storage State | Storage Conditions |
| :--- | :--- |
| unopened (less than 90 days) | Temperature: 5 to $30^{\circ} \mathrm{C}$; humidity: $80 \% \mathrm{RH}$ or less. |
| After seal of broken (less than $\mathbf{3 0}$ days) | Room temperature, dry nitrogen atmosphere |

3. Don't store in a location exposed to corrosive gas or excessive dust.
4. Don't store in a location exposed to direct sunlight of subject to sharp changes in temperature.
5. Don't store the product such that it subjected to an excessive load weight, such as by stacking.
6. Deterioration of the plating may occur after long-term storage, so special care is required.

It is recommended that the products be inspected before use.

## Ordering Information

| Part No. | Package |
| :---: | :---: |
| SH1101A-COG01 | Gold bump on chip tray |
| SH1101A-TCP03 | TCP Form |
| SH1101A-TCP06 | TCP Form |
| SH1101A-TCP09 | TCP Form |

Data Sheet Revision History

| Version | Content | Date |
| :---: | :--- | :---: |
| 2.2 | 1. Change operating voltage from 1.8~3.5V to $1.65 \sim 3.5 \mathrm{~V}$ in low <br> voltage mode | Nov. 2006 |
| 2.1 | 2. Add low voltage mode <br> 3. Add DC/AC Characteristics in low voltage mode | Aug. 2006 |
| 2.0 | 1. Add TCP09 Form information <br> 2. DC Characteristics change VBREF condition | Apr. 2006 |
| 1.0 | Original | Nov. 2005 |

