Crystalfontz America, Inc.

SPECIFICATION

CUSTOMER:

MODULE NO.:

CFAH1602C-YYH-JPV

SALES BY	APPROVED BY	CHECKED BY	PREPARED BY
ISSUED DATE:			

Crystalfontz America, Inc.

12412 East Saltese Avenue
Spokane Valley, WA 99216-0357
Phone: (888) 206-9720
Fax: (509) 892-1203
Email: techinfo@crystalfontz.com
URL: www.crystalfontz.com

Contents

1.Module Classification Information
2.Precautions in use of LCD Modules
3.General Specification
4.Absolute Maximum Ratings
5.Electrical Characteristics
6.Optical Characteristics
7.Interface Pin Function
8.Contour Drawing \& Block Diagram
9.Function Description
10.Character Generator ROM Pattern
11.Instruction Table
12.Timing Characteristics
13.Initializing of LCM
14.Quality Assurance
15.Reliability
16.Backlight Information

1. Module Classification Information

CFA H	1602	$\underline{\mathrm{C}}-\underline{\mathrm{Y}} \underline{\mathrm{Y}} \underline{\mathrm{H}}-$	JPV
(1) (2)	(3)	(4) (5) (6) 7	(8)

(1)	Brand: CRYSTALFONTZ AMERICA, INCORPORATED		
(2)	Display Type: $\mathbf{H} \boldsymbol{\rightarrow}$ Character Type, $\mathrm{G} \boldsymbol{\rightarrow}$ Graphic Type, $\mathrm{X} \boldsymbol{\rightarrow}$ TAB		
(3)	Display's logical dimensions: 16 characters, 2 lines		
(4)	Model serials no.		
(5)	Backlight Type:	$\begin{aligned} & \mathrm{N} \rightarrow \text { Without backlight } \\ & \mathrm{B} \rightarrow \text { EL, Blue green } \\ & \mathrm{D} \rightarrow \text { EL, Green } \\ & \mathrm{W} \rightarrow \text { EL, White } \\ & \mathrm{F} \rightarrow \text { CCFL, White } \\ & \mathrm{Y} \rightarrow \text { LED, Yellow Green } \end{aligned}$	$\begin{aligned} & \mathrm{A} \rightarrow \text { LED, Amber } \\ & \mathrm{R} \rightarrow \text { LED, Red } \\ & \mathrm{O} \rightarrow \text { LED, Orange } \\ & \mathrm{G} \rightarrow \text { LED, Green } \end{aligned}$
(6)	LCD Mode:	$\begin{aligned} & \mathrm{B} \rightarrow \text { TN Positive, Gray } \\ & \mathrm{N} \rightarrow \text { TN Negative, } \\ & \mathrm{G} \rightarrow \text { STN Positive, Gray } \\ & \mathrm{Y} \rightarrow \text { STN Positive, Yellow } \\ & \mathrm{Green} \\ & \mathrm{M} \rightarrow \text { STN Negative, Blue } \\ & \mathrm{F} \rightarrow \text { FSTN Positive } \end{aligned}$	$\mathrm{T} \rightarrow$ FSTN Negative
(7)	LCD Polarizer Type/ Temperature range/ View direction	$\begin{aligned} & \mathrm{A} \rightarrow \text { Reflective, N.T, 6:00 } \\ & \mathrm{D} \rightarrow \text { Reflective, N.T, 12:00 } \\ & \mathrm{G} \rightarrow \text { Reflective, W. T, 6:00 } \\ & \mathrm{J} \rightarrow \text { Reflective, W. T, 12:00 } \\ & \mathrm{B} \rightarrow \text { Transflective, N.T,6:00 } \\ & \mathrm{E} \rightarrow \text { Transflective, N.T.12:00 } \end{aligned}$	$\left\lvert\, \begin{array}{lll} \mathrm{H} \rightarrow & \text { Transflective,W.T,6:00 } \\ \mathrm{K} \rightarrow & \text { Transflective,W.T, 12:00 } \\ \mathrm{C} \rightarrow & \text { Transmissive, N.T,6:00 } \\ \mathrm{F} \rightarrow & \text { Transmissive, N.T, 12:00 } \\ \mathrm{I} \rightarrow & \text { Transmissive, W. T, 6:00 } \\ \mathrm{L} \rightarrow & \text { Transmissive,W.T,12:00 } \end{array}\right.$
(8)	Special Code:	JP: English and Japanese st voltage	dard font; V: Negative

2.Precautions in use of LCD Modules

(1) Avoid applying excessive shocks to the module or making any alterations or modifications to it.
(2) Don't make extra holes on the printed circuit board, modify its shape or change the components of LCD module.
(3) Don't disassemble the LCM.
(4) Don't operate it above the absolute maximum rating.
(5) Don't drop, bend or twist LCM.
(6) Soldering: only to the I/O terminals.
(7) Storage: please storage in anti-static electricity container and clean environment.

3.General Specification

Item	Dimension	Unit
Number of Characters	16 characters $\times 2$ Lines	-
Module dimension	$85.0 \times 36.0 \times 13.2(\mathrm{MAX})$	mm
View area	66.0×16.0	mm
Active area	56.21×11.5	mm
Dot size	0.55×0.65	mm
Dot pitch	0.60×0.70	mm
Character size	2.95×5.55	Nmm
Character pitch	3.55×5.95	mm
LCD type	STN, Positive, Transflective, Yellow Green	
Duty	$1 / 16$	
View direction	6 o'clock	
Backlight Type	LED, Yellow Green	

4.Absolute Maximum Ratings

Item	Symbol	Min	Typ	Max	Unit
Operating Temperature	T_{OP}	-20	-	+70	${ }^{\circ} \mathrm{C}$
Storage Temperature	T_{ST}	-30	-	+80	${ }^{\circ} \mathrm{C}$
Input Voltage	V_{I}	V_{SS}	-	V_{DD}	V
Supply Voltage For Logic	$\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}$	-0.3	-	7	V
Supply Voltage For LCD	$\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{0}$	-0.3	-	13	V

5.Electrical Characteristics

Item	Symbol	Condition	Min	Typ	Max	Unit
Supply Voltage For Logic	$\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}$	-	4.5	-	5.5	V
Supply Voltage For LCD	$\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{0}$	$\begin{gathered} \mathrm{Ta}=-20^{\circ} \mathrm{C} \\ \mathrm{Ta}=25^{\circ} \mathrm{C} \\ \mathrm{Ta}=70^{\circ} \mathrm{C} \end{gathered}$	3.2	3.8	4.8	$\begin{aligned} & \text { V } \\ & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Input High Volt.	$\mathrm{V}_{\text {IH }}$	-	2.2	-	V_{DD}	V
Input Low Volt.	$\mathrm{V}_{\text {IL }}$	-	-	-	0.6	V
Output High Volt.	V_{OH}	-	2.4	-	-	V
Output Low Volt.	$\mathrm{V}_{\text {OL }}$	-	-	-	0.4	V
Supply Current	I_{DD}	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	-	1.2	-	mA

6.Optical Characteristics

Item	Symbol	Condition	Min	Typ	Max	Unit
View Angle	$(\mathrm{V}) \theta$	$\mathrm{CR} \geqq 2$	10	-	105	deg
	$(\mathrm{H}) \varphi$	$\mathrm{CR} \geqq 2$	-30	-	30	deg
	CR	-	-	3	-	-
Response Time	T rise	-	-	150	200	ms
	T fall	-	-	150	200	ms

Definition of Operation Voltage (Vop)

Conditions :

Operating Voltage: Vop \quad Viewing Angle $(\theta, \varphi): 0^{\circ}, \quad 0^{\circ}$
Frame Frequency: 64 HZ Driving Waveform: 1/N duty, 1/a bias

Definition of viewing angle($\mathrm{CR} \geqq 2$ 2)

7.Interface Pin Function

Pin No.	Symbol	Level	Description
1	$V_{S S}$	0 V	Ground
2	$\mathrm{~V}_{\mathrm{DD}}$	5.0 V	Supply Voltage for logic
3	VO	(Variable)	Operating voltage for LCD
4	RS	H/L	H: DATA, L: Instruction code
5	R/W	H/L	H: Read(MPU \rightarrow Module) L: Write(MPU \rightarrow Module)
6	E	H,H \rightarrow L	Chip enable signal
7	DB0	H/L	Data bit 0
8	DB1	H/L	Data bit 1
9	DB2	H/L	Data bit 2
10	DB3	H/L	Data bit 3
11	DB4	H/L	Data bit 4
12	DB5	H/L	Data bit 5
13	DB6	H/L	Data bit 6
14	DB7	H/L	Data bit 7
15	A/Vee	-	Negative Voltage (-5V)
16	K	-	LED -

8.Contour Drawing \&.Block Diagram

PINDETAIL

PINN0.	SYMBOL
1	Vss
2	Vdd
3	Vo
4	RS
5	R/ \bar{W}
6	E
7	DB0
8	DB1
9	DB2
10	DB3
11	DB4
12	DB5
13	DB6
14	DB7
15	AVee
16	K

Hl	13.2
H	8.6

The non-specified tolerance of dimension is $\pm 0.3 \mathrm{~mm}$

LEDB/LDrive Method 1.Dive from A, K

Character located 12234506781010111213141516 DDRAMaddress 000102030405060708 090AOBOCODOE OF DDRAMaddress 404142434445464748 494A4B4C4D4E4F

9.Function Description

The LCD display Module is built in a LSI controller, the controller has two 8-bit registers, an instruction register (IR) and a data register (DR).
The IR stores instruction codes, such as display clear and cursor shift, and address information for display data RAM (DDRAM) and character generator (CGRAM). The IR can only be written from the MPU. The DR temporarily stores data to be written or read from DDRAM or CGRAM. When address information is written into the IR, then data is stored into the DR from DDRAM or CGRAM. By the register selector (RS) signal, these two registers can be selected.

RS	R/W	Operation
0	0	IR write as an internal operation (display clear, etc.)
0	1	Read busy flag (DB7) and address counter (DB0 to DB7)
1	0	Write data to DDRAM or CGRAM (DR to DDRAM or CGRAM)
1	1	Read data from DDRAM or CGRAM (DDRAM or CGRAM to DR)

Busy Flag (BF)

When the busy flag is 1 , the controller LSI is in the internal operation mode, and the next instruction will not be accepted. When $\mathrm{RS}=0$ and $\mathrm{R} / \mathrm{W}=1$, the busy flag is output to DB7. The next instruction must be written after ensuring that the busy flag is 0 .

Address Counter (AC)

The address counter (AC) assigns addresses to both DDRAM and CGRAM

Display Data RAM (DDRAM)

This DDRAM is used to store the display data represented in 8 -bit character codes. Its extended capacity is 80×8 bits or 80 characters. Below figure demonstrates the relationships between DDRAM addresses and positions on the liquid crystal display.

High bits Low bits

AC
(hexadecimal)

Example: DDRAM addresses 4E

1	0	0	1	1	1	0

Display position DDRAM address

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16

00	01	02	03	04	05	06	07	08	09	$0 A$	$0 B$	$0 C$	$0 D$	0 E	0 F
40	41	42	43	44	45	46	47	48	49	4 A	4 B	4 C	4 D	4 E	4 F

2-Line by 16-Character Display

Character Generator ROM (CGROM)

The CGROM generate 5×8 dot or 5×10 dot character patterns from 8 -bit character codes. See Table 2.

Character Generator RAM (CGRAM)

In CGRAM, the user can rewrite character by program. For 5×8 dots, eight character patterns can be written, and for 5×10 dots, four character patterns can be written.

Write into DDRAM the character code at the addresses shown as the left column of table 1. To show the character patterns stored in CGRAM.

Relationship between CGRAM Addresses, Character Codes (DDRAM) and Character

 patterns
Table 1.

For 5 * 8 dot character patterns

Character pattern (1)

Cursor pattern

Character pattern (2)

Cursor pattern

For 5* 10 dot character patterns

	Character Codes (DDRAM data)	CGRAM Address	Character Patterns (CGRAM data)
	$\begin{array}{cccccccc} 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 \\ & \text { H ig h } & & & & \text { Lo ow } \end{array}$	$\begin{array}{ccccc} 5 & 4 & 3 & 2 & 1 \end{array} 0$	
0	$\begin{array}{llllllll}0 & 0 & 0 & * & 0 & 0 & 0\end{array}$	0 ${ }_{0}$	$\begin{array}{ccc\|ccccc} * & * & * & 0 & 0 & 0 & 0 & 0 \\ * & * & * & 0 & 0 & 0 & 0 & 0 \\ * & * & * & & 0 & & & 0 \\ * & * & * & & & 0 & 0 & \\ * & * & * & & 0 & 0 & 0 & \\ * & * & * & & 0 & 0 & 0 & \\ * & * & * & & & & & 0 \\ * & * & * & & 0 & 0 & 0 & 0 \\ * & * & * & & 0 & 0 & 0 & 0 \\ * & * & * & & 0 & 0 & 0 & 0 \\ * & * & * & 0 & 0 & 0 & 0 & 0 \end{array}$
		$\begin{array}{llll}1 & 1 & 1 & 1\end{array}$	* * * * * * * *

Character pattern

Cursor pattern

10.Character Generator ROM Pattern

Table. 2

	${ }_{\text {ıuı }}$		нLLн нLнL нLнн ннцL ннцннннL
LluL	$\xrightarrow[\substack{\text { cim } \\ \text { Ram } \\ \text { ald }}]{ }$	\%-\%	\% :\% :
цLL	(2)	¢	п
${ }^{\text {LLHL }}$	(3)		"- \because -
นเнн	(4)	A	..
${ }^{\text {LHLL }}$	(5)	-	-
LHLH	(6)		:
LHHL	(7)	\cdots	:ubay
${ }^{\text {Lннн }}$	(8)	:	...:
нlLL	(1)	\cdots	¢
нцL	(2)		\ldots
нLHL	(3)	\therefore - :	$\cdots \cdots$
нLнн	(4)	$\cdots \cdots$	
HHLL	(5)	: \because \#	-:
ннцн	(6)		
нннL	(1)	: \because :	:1:M
нннн	(8)	. $\because: \ldots$	

11.Instruction Table

Instruction	Instruction Code										Description	Execution time (fosc=270Khz)
	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0		
Clear Display	0	0	0	0	0	0	0	0	0	1	Write " 00 H " to DDRAM and set DDRAM address to " 00 H " from AC	1.53 ms
Return Home	0	0	0	0	0	0	0	0	1	-	Set DDRAM address to " 00 H " from AC and return cursor to its original position if shifted. The contents of DDRAM are not changed.	1.53 ms
Entry Mode Set	0	0	0	0	0	0	0	1	I/D	SH	Assign cursor move direction and enable the shift of entire display.	$39 \mu \mathrm{~s}$
	0	0	0	0	0	0	1	D	C	B	Set display (D), cursor (C), and blinking of cursor (B) on/off control bit.	$39 \mu \mathrm{~s}$
Cursor or Display Shift	0	0	0	0	0	1	S/C	R/L	-	-	Set cursor moving and display shift control bit, and the direction, without changing of DDRAM data.	$39 \mu \mathrm{~s}$
Function Set	0	0	0	0	1	DL	N	F	-	-	Set interface data length (DL:8-bit/4-bit), numbers of display line ($\mathrm{N}: 2$-line/1-line) and, display font type (F: 5×11 dots $/ 5 \times 8$ dots)	$39 \mu \mathrm{~s}$
Set CGRAM Address	0	0	0	1	AC5	AC4	AC3	AC2	AC1	AC0	Set CGRAM address in address counter.	$39 \mu \mathrm{~s}$
Set DDRAM Address	0	0	1	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Set DDRAM address in address counter.	$39 \mu \mathrm{~s}$
Read Busy Flag and Address	0	1	BF	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Whether during internal operation or not can be known by reading BF. The contents of address counter can also be read.	$0 \mu \mathrm{~s}$
Write Data to RAM	1	0	D7	D6	D5	D4	D3	D2	D1	D0	Write data into internal RAM (DDRAM/CGRAM).	$43 \mu \mathrm{~s}$
Read Data from RAM	1	1	D7	D6	D5	D4	D3	D2	D1	D0	Read data from internal RAM (DDRAM/CGRAM).	$43 \mu \mathrm{~s}$

* " - ": don’t care

12.Timing Characteristics

12.1 Write Operation

$\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{VDD}=5.0 \pm 0.5 \mathrm{~V}$

Item	Symbol	Min	Typ	Max	Unit
Enable cycle time	$\mathrm{t}_{\mathrm{cycE}}$	400	-	-	ns
Enable pulse width (high level)	$\mathrm{PW}_{\mathrm{EH}}$	150	-	-	ns
Enable rise/fall time	$\mathrm{t}_{\mathrm{Er}, \mathrm{t}_{\mathrm{Ef}}}$	-	-	25	ns
Address set-up time (RS, R/W to E)	t_{AS}	30	-	-	ns
Address hold time	t_{AH}	10	-	-	ns
Data set-up time	$\mathrm{t}_{\mathrm{DSW}}$	40	-	-	ns
Data hold time	t_{H}	10	-	-	ns

12.2 Read Operation

NOTE: *VOL1 is assumed to be 0.8 V at 2 MHZ operation.
$\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{VDD}=5.0 \pm 0.5 \mathrm{~V}$

Item	Symbol	Min	Typ	Max	Unit
Enable cycle time	$\mathrm{t}_{\mathrm{cycE}}$	400	-	-	ns
Enable pulse width (high level)	$\mathrm{PW}_{\mathrm{EH}}$	150	-	-	ns
Enable rise/fall time	$\mathrm{t}_{\mathrm{Er},} \mathrm{t}_{\mathrm{Ef}}$	-	-	25	ns
Address set-up time (RS, R/W to E)	t_{AS}	30	-	-	ns
Address hold time	t_{AH}	10	-	-	ns
Data delay time	$\mathrm{t}_{\mathrm{DDR}}$	-	-	100	ns
Data hold time	$\mathrm{t}_{\mathrm{DHR}}$	20	-	-	ns

13. Initializing of LCM

RS	R/ $\overline{\mathrm{W}}$	DB7	DB6	DB5	DB4
0	0	0	0	1	1

BF can not be checked before this instruction.
Function set (Interface is 8 bits long.)

Wait for more than 4.1 ms

RS	R/产	DB7	DB6	DB5	DB4
0	0	0	0	1	1

BF can not be checked before this instruction.
Function set (Interface is 8 bits long.)

Wait for more than $100 \mu \mathrm{~s}$

BF can not be checked before this instruction.
Function set (Interface is 8 bits long.)

BF can be checked after the following instructions. When BF is not checked, the waiting time between instructions is longer than execution instruction time.

- Function set (Set interface to be 4 bits long.) Interface is 8 bits in length.
- Function set (Interface is 4 bits long. Specify the number of display lines and character font.) The number of display lines and character font can not be changed after this point.
- Display off
- Display clear
- Entry mode set

1

Initialization ends

4-Bit Ineterface

14.Quality Assurance

Screen Cosmetic Criteria

Item	Defect	Judgment Criterion	Partition
1	Spots	A) Clear Note: Including pinholes and defective dots which must be within one pixel size. B) Unclear	Minor
2	Bubbles in Polarize	Size: d mm Acceptable Qty in active area $\leqq 0.3$ Disregard $0.3<\mathrm{d} \leqq 1.0$ 3 $1.0<\mathrm{d} \leqq 1.5$ 1 $1.5<\mathrm{d}$ 0	Minor
3	Scratch	In accordance with spots cosmetic criteria. When the light reflects on the panel surface, the scratches are not to be remarkable.	Minor
4	Allowable Density	Above defects should be separated more than 30 mm each other.	Minor
5	Coloration	Not to be noticeable coloration in the viewing area of the LCD panels. Backlight type should be judged with backlight on state only.	Minor

15.Reliability

Content of Reliability Test

Environmental Test			
Test Item	Content of Test	Test Condition	Applicable Standard
High Temperature storage	Endurance test applying the high storage temperature for a long time.	$\begin{aligned} & 80^{\circ} \mathrm{C} \\ & 200 \mathrm{hrs} \end{aligned}$	-
Low Temperature storage	Endurance test applying the high storage temperature for a long time.	$\begin{aligned} & -30^{\circ} \mathrm{C} \\ & 200 \mathrm{hrs} \end{aligned}$	-
High Temperature Operation	Endurance test applying the electric stress (Voltage \& Current) and the thermal stress to the element for a long time.	$\begin{aligned} & 70^{\circ} \mathrm{C} \\ & 200 \mathrm{hrs} \end{aligned}$	-
Low Temperature Operation	Endurance test applying the electric stress under low temperature for a long time.	$\begin{aligned} & -20^{\circ} \mathrm{C} \\ & 200 \mathrm{hrs} \end{aligned}$	-
High Temperature/ Humidity Storage	Endurance test applying the high temperature and high humidity storage for a long time.	$80^{\circ} \mathrm{C}, 90 \% \mathrm{RH}$ 96hrs	-
High Temperature/ Humidity Operation	Endurance test applying the electric stress (Voltage \& Current) and temperature / humidity stress to the element for a long time.	$70^{\circ} \mathrm{C}, 90 \% \mathrm{RH}$ 96hrs	-
Temperature Cycle	Endurance test applying the low and high temperature cycle.	$\begin{aligned} & -30^{\circ} \mathrm{C} / 80^{\circ} \mathrm{C} \\ & 10 \text { cycles } \end{aligned}$	-
Mechanical Test			
Vibration test	Endurance test applying the vibration during transportation and using.	$\begin{aligned} & 10 \sim 22 \mathrm{~Hz} \rightarrow 1.5 \mathrm{mmp}-\mathrm{p} \\ & 22 \sim 500 \mathrm{~Hz} \rightarrow 1.5 \mathrm{G} \\ & \text { Total } 0.5 \mathrm{hrs} \end{aligned}$	-
Shock test	Constructional and mechanical endurance test applying the shock during transportation.	50G Half sin wave 11 msec 3 times of each direction	-
Atmospheric pressure test	Endurance test applying the atmospheric pressure during transportation by air.	115 mbar 40hrs	-
Others			
Static electricity test	Endurance test applying the electric stress to the terminal.	$\begin{aligned} & \mathrm{VS}=800 \mathrm{~V}, \mathrm{RS}=1.5 \mathrm{k} \Omega \\ & \mathrm{CS}=100 \mathrm{pF} \\ & 1 \text { time } \end{aligned}$	-

$* * *$ Supply voltage for logic system $=5 \mathrm{~V}$. Supply voltage for LCD system $=$ Operating voltage at $25^{\circ} \mathrm{C}$

16.Backlight Information

Specification

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT	TEST CONDITION
Supply Current	ILED	-	130	260	$\mathbf{m A}$	V=4.2V
Supply Voltage	V	-	4.2	4.6	V	-
Reverse Voltage	VR	-	-	8	V	-
Luminous Intensity	IV	-	60	-	CD/M	
Wave Length	λ p	-	571	-	nm	ILED=130mA
Life Time	-	-	$\mathbf{1 0 0 0 0 0}$	-	Hr.	V§ 4.6V
Color	Yellow Green					

