Crystalfontz America, Inc.

CUSTOMER		
MODEL	CFAX12864C-WGH-TS	
APPROVAL	BY:	

SALES BY	APPROVED BY	CHECKED BY	PREPARED BY

Crystalfontz America, Inc.
12412 East Saltese Avenue
Spokane Valley, WA 99216-0357
Phone: (888) 206-9720
Fax: (509) 892-1203
Email: techinfo@crystalfontz.com
URL: www.crystalfontz.com

Contents

1.Module Classification Information2.Precautions in use of LCD Modules
3.General Specification
4.Absolute Maximum Ratings
5.Electrical Characteristics
6.Optical Characteristics
7.Interface Description
8.Contour Drawing \& Block Diagram
9.Backlight Information
10.Touch Screen

1.Module Classification Information

CFAX $12864 \underline{C}-\underline{W} \underline{G} \underline{H}-\underline{T S}$
(1)
(2)
(3)
(4)
(5) (6) (7)
(8)

(1)	Brand: CRYSTALFONTZ AMERICA, INCORPORATED		
(2)	Display Type: $\mathrm{H} \rightarrow$ Character Type, G \rightarrow Graphic Type, $\mathbf{X} \rightarrow \mathbf{T A B}$		
(3)	Display's logical dimensions: $\mathbf{1 2 8}$ pixels by $\mathbf{6 4}$ pixels		
(4)	Model serials no.		
(5)	Backlight Type:	$\begin{aligned} & \mathrm{N} \rightarrow \text { Without backlight } \\ & \mathrm{B} \rightarrow \mathrm{EL}, \text { Blue green } \\ & \mathrm{D} \rightarrow \mathrm{EL}, \text { Green } \\ & \mathrm{W} \rightarrow \text { EL, White } \\ & \mathrm{F} \rightarrow \mathrm{CCFL}, \text { White } \\ & \mathrm{Y} \rightarrow \text { LED, Yellow Green } \end{aligned}$	$\mathrm{A} \rightarrow$ LED, Amber $\mathrm{R} \rightarrow$ LED, Red $\mathrm{O} \rightarrow$ LED, Orange $\mathrm{G} \rightarrow$ LED, Green
(6)	LCD Mode:	$\begin{aligned} & \mathrm{B} \rightarrow \text { TN Positive, Gray } \\ & \mathrm{N} \rightarrow \text { TN Negative, } \\ & \mathbf{G} \rightarrow \text { STN Positive, Gray } \\ & \mathrm{Y} \rightarrow \text { STN Positive, Yellow Green } \\ & \mathrm{M} \rightarrow \text { STN Negative, Blue } \\ & \mathrm{F} \rightarrow \mathrm{FSTN} \text { Positive } \end{aligned}$	T \rightarrow FSTN Negative
(7)	LCD Polarizer Type/ Temperature range/ View direction	$\mathrm{A} \rightarrow$ Reflective, N.T, 6:00 $\mathrm{D} \rightarrow$ Reflective, N.T, 12:00 $\mathrm{G} \rightarrow$ Reflective, W. T, 6:00 $\mathrm{J} \rightarrow$ Reflective, W. T, 12:00 $\mathrm{B} \rightarrow$ Transflective, N.T,6:00 $\mathrm{E} \rightarrow$ Transflective, N.T.12:00	$\begin{aligned} & \mathrm{H} \rightarrow \text { Transflective, W.T,6:00 } \\ & \mathrm{K} \rightarrow \text { Transflective, W.T,12:00 } \\ & \mathrm{C} \rightarrow \text { Transmissive, N.T,6:00 } \\ & \mathrm{F} \rightarrow \text { Transmissive, N.T, 12:00 } \\ & \mathrm{I} \rightarrow \text { Transmissive, W. T, 6:00 } \\ & \mathrm{L} \rightarrow \text { Transmissive, W.T, 12:00 } \end{aligned}$
(8)	Special Code:	TS \rightarrow Matrix touch screen	

2.Precautions in use of LCD Modules

(1) Avoid applying excessive shocks to the module or making any alterations or modifications to it.
(2) Don't make extra holes on the printed circuit board, modify its shape or change the components of LCD module.
(3) Don't disassemble the LCM.
(4) Don't operate it above the absolute maximum rating.
(5) Don't drop, bend or twist LCM.
(6) Soldering: only to the I/O terminals.
(7) Storage: please storage in anti-static electricity container and clean environment.

3.General Specification

Item	Dimension	Unit
Number of Characters	128 characters $\times 64$ Lines	-
Module dimension	$56.0 \times 42.5 \times 2.4(\mathrm{MAX})$	mm
View area	52.0×33.5	mm
Active area	47.76×30.29	mm
Dot size	0.37×0.42	mm
Dot pitch	0.35×0.4	mm
LCD type	STN, Positive, Transflective, Gray	
Duty	$1 / 64$	
View direction	6 o'clock	
Backlight Type	EL, White	

4.Absolute Maximum Ratings

Item	Symbol	Min	Typ	Max	Unit
Operating Temperature	T_{OP}	-20	-	+70	${ }^{\circ} \mathrm{C}$
Storage Temperature	T_{ST}	-30	-	+80	${ }^{\circ} \mathrm{C}$
Input Voltage	V_{I}	V_{SS}	-	V_{DD}	V
Supply Voltage For Logic	$\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}$	2.4	-	5.5	V
Supply Voltage For LCD	$\mathrm{VO}_{\mathrm{C}}-\mathrm{V}_{\mathrm{SS}}$	4.0	-	15.0	

5.Electrical Characteristics

Item	Symbol	Condition	Min	Typ	Max	Unit
Supply Voltage For	$\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}$	-	2.4	-	5.5	V
Logic						
Supply Voltage For LCD	$\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{0}$	$\mathrm{Ta}=-20^{\circ} \mathrm{C}$	-	-	9.2	V
		$\mathrm{Ta}=25^{\circ} \mathrm{C}$	-	8.2	.-	V
		$\mathrm{Ta}=+70^{\circ} \mathrm{C}$	7.2	-	-	V
Input High Volt.	V_{IH}	-	$0.8 \mathrm{~V}_{\mathrm{DD}}$	-	V_{DD}	V
Input Low Volt.	V_{IL}	-	-	-	$0.2 \mathrm{~V}_{\mathrm{DD}}$	V
Output High Volt.	V_{OH}	-	$\mathrm{V}_{\mathrm{DD}}-0.4$	-	-	V
Output Low Volt.	V_{OL}	-	-	-	0.4	V
Supply Current	I_{DD}	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	-	1.5	-	mA

6.Optical Characteristics

Item	Symbol	Condition	Min	Typ	Max	Unit
View Angle	$(\mathrm{V}) \theta$	$\mathrm{CR} \geqq 2$	10	-	40	deg
	$(\mathrm{H}) \varphi$	$\mathrm{CR} \geqq 2$	-30	-	30	deg
Contrast Ratio	CR	-	-	5	-	-
Response Time	T rise	-	-	110	220	ms
	T fall	-	-	260	520	ms

6.1 Definitions

■View Angles

$\mathrm{CR}=\frac{\text { Brightness at selected state }(\mathrm{BS})}{\text { Brightness at non-selected state }(\mathrm{Bns})}$

Operating voltage for LCD driving
_Contrast Ratio

- Response Time

7.Interface Description

Pin No.	Symbol	I/O	Description
1	NC	-	No connection
2	TEMPS	I	Selects temperature coefficient of the reference voltage $\text { TEMPS="'": -0.05 }{ }^{\circ}{ }^{\circ} \mathrm{C}, \text { TEMPS=" }{ }^{\prime} ":-0.2 \%{ }^{\circ} \mathrm{C}$
3	INTRS	I	Internal resistors select pin This pin selects the resistors for adjusting V0 voltage level. INTRS $=$ " H ": use the internal resistor. INTRS="L": use the external resistor. V0 voltage is controlled with VR pin and external resistive divider.
4	HPM	I	Power control pin of the power supply circuit for LCD driver. HPM="H": high power mode HPM="L": normal power mode This pin is valid in master operation.
5	DCDC5B	I	5 times boosting circuit enable input pin. When this pin is low in 4 times boosting circuit, the 5 -time boosting voltage appears at VOUT.
6	BSTS	I	Select input voltage of the built-in voltage converter. $$ When BSTS pin is "L", VDD must be higher than 4 V in our 4-time boosting.
7~11	V0~V4	I/O	LCD driver supply voltages. The voltage determined by LCD pixel is impedance-converted by an operational amplifier for application. Voltages should have the following relational; $\mathrm{V} 0 \geqq \mathrm{~V} 1 \geqq \mathrm{~V} 2 \geqq \mathrm{~V} 3 \geqq \mathrm{~V} 4 \geqq \mathrm{VSS}$
12	VR	I	V0 voltage adjustment pin. It is valid only when on-chip resistors are not used(INTRS="L")
13	C2-	O	Capacitor 2 negative connection pin for voltage converter.
14	C2+	O	Capacitor 2 positive connection pin for voltage converter.

Pin No.	Symbol	I/O	Description
15	C1-	O	Capacitor 1 negative connection pin for voltage converter.
16	C1+	O	Capacitor 1 positive connection pin for voltage converter.
17	C3-	O	Capacitor 1 negative connection pin for voltage converter.
18	C3+	O	Capacitor 1 positive connection pin for voltage converter.
19	VOUT	I/O	Voltage converter input/output pin.
20	VDD	-	Power supply pin for logic.
21	VSS	-	Ground pin, connected to 0V
22	PS	I	Parallel/Serial data input select pin. $\begin{array}{\|lccc} & \text { Interface } & \text { Data } & \text { Read/Write } \end{array} \text { Serial clock }$ In serial mode, it is impossible to read data from the on-chip RAM. And DB0 to DB5 are high impedance and E_RD and RW_WR must be fixed to either "H" or "L".
23	MI	I	Microprocessor interface selects pin. MI="H": 6800-series MPU interface MI="L": 8080-series MPU interface
24	CLS	I	Built-in oscillator circuit enable/disable select pin. CLS="H": enable CLS="L": disable(external display clock input from CL pin)
25	MS	I	Master or Slave mode operation select pin. MS="H" : master operation MS="L" : slave operation
$\begin{aligned} & 26 \\ & 27 \end{aligned}$	$\begin{aligned} & \text { DUTY1 } \\ & \text { DUTY0 } \end{aligned}$	I	The LCD driver duty ratio depends on the following table
28~35	DB7~DB0	I/O	8-bit bi-directional data bus that is connected to the standard 8-bit microprocessor data bus. When the serial interface selected(PS="L") DB0~DB5: high impedance DB6: serial input clock (SCLK) DB7: serial input data (SID) When chip select is not active, DB0~DB7 may be high impedance.

Pin No.	Symbol	I/O	Description
36	E_RD	I	When connected to 80 -family MPU: Read enable clock input pin. When /RD is "L", DB0~DB7 are in an output status When connected to 68 -family MPU: RW = " H ": When E is "H", DB0 \sim DB7 are in an output status $R W=$ "L": The data on DB0~DB7 are latched at the falling edge of the E signal
37	RW_WR	I	When connected to 80 -family MPU: Write enable clock input pin. The data ON DB0~DB7 are latched at the rising edge of the /WR signal. When connected to 68 -family MPU: RW = "H": read RW = "L": write
38	RS	I	Register select pin RS="H": DB0~DB7 are display data RS="L": DB0~DB7 are control data
39	RESETB	I	Reset input pin When RESETB is "L", initialization is executed.
40 41	$\begin{gathered} \mathrm{CS} 2 \\ \mathrm{CS} 1 \mathrm{~B} \end{gathered}$	I	Chip select input pins Data/instruction I/O enable only when CS1B is "L" and CS2 is "H". When chip select is non-active, $\mathrm{DB} 0 \sim \mathrm{DB} 7$ may be high impedance.
42	DISP	I/O	LCD display blanking control input /output When KS0713 is used in master/slave mode (multi-chip), the DISP pins must be connected each other. MS="H": output MS="L": input
43	CL	I/O	Display clock input/output pin When the KS0713 is used in master/slave mode (multi-chip), the CL pins must be connected each other.
44	M	I/O	LCD AC signal input/output pin When KS0713 is used in master/slave mode (multi-chip), the M pins must be connected each other. MS="H": output MS="L": input
45	FRS	O	Static driver segment output pin This pin is used together with the M pin.
46	NC	-	No connection.

8.Contour Drawing \& Block Diagram

42	DISP	21	Vss	PIN NO.	SYMBOL
43	CL	22	PS	1	NC
44	M	23	MI	2	TEMPS
45	FRS	24	CLS	3	INTRS
46	NC	25	MS	4	HPM
		26	DUTY1	5	DCDC5B
		27	DUTY0	6	BSTS
		28	DB7	7	V4
		29	DB6	8	V3
		30	DB5	9	V2
		31	DB4	10	V1
		32	DB3	11	V0
		33	DB2	12	VR
		34	DB1	13	C2-
		35	DB0	14	C2+
		36	E_RD	15	C1-
		37	RW_WR	16	C1+
		38	RS	17	C3-
		39	RESETB	18	C3+
		40	CS2	19	Vout
		41	CS1B	20	Vdd

$\frac{\text { DOT SIZE }}{\text { SCALE } 10 / 1}$
SCALE 10/1

Display Data RAM

Page Address $\mathrm{P} 3, \mathrm{P} 2, \mathrm{P} 1, \mathrm{P} 0$	Data	RAM address														$\begin{array}{c\|} \text { Com } \\ \text { Output } \end{array}$
0,0,0,0	DB0														00	COM1
	DB1														01	COM2
	DB2														02	COM3
	DB3														03	COM4
	DB4														04	COM5
	DB5														05	COM6
	DB6														06	COM7
	DB7														07	COM8
2															2	2
0,1,1,1	DB0														38	COM57
	DB1														39	COM58
	DB2														3A	COM59
	DB3														3B	COM60
	DB4														3 C	COM61
	DB5														3D	COM62
	DB6														3E	COM63
	DB7														3 F	COM64
0,1,1,1	DB0														40	COM65
Column	ADC=0	8382	8281	8071	7F 7E	7 D	7 C 7 B	7A	\sim	5	4	32		0		
Address	ADC=1	01	12	3	45	6	78	9	\sim	7 F	F	80				
Segment O	utput	13213	31130	O12912	12	1261	125124	2	\sim	6			2			

Boosting Circuit

The non-specified tolerance of dimension is ; 0.15 mm

9.Backlight Information

\(\left.$$
\begin{array}{|l|c|c|c|c|c|c|}\hline \text { PARAMETER } & \text { SYMBOL } & \text { MIN } & \text { TYP } & \text { MAX } & \text { UNIT } & \begin{array}{c}\text { TEST } \\
\text { CONDITION }\end{array}
$$

\hline Drive Voltage \& Vmax \& 78 \& - \& 85 \& Vrms \& 25 \mathrm{C}\end{array}\right]\)| Fmax |
| :--- |
| Drive Wave |
| Brightness |
| Power |
| Consumption |
| Chromatism |
| X |

10.Touch Screen

1. General

1.1 This document includes the specification of PN4-025F-01N touch screen.
1.2 This touch screen is 4 wires analog resistive type.
1.3 It is based on one ITO glass sheet with one layer of ITO PET on top.
1.4 The PET is coated with ITO and is separated with printed spacers.

1. It is designed to be activated by pressure of finger or stylus.
2.

2. Environment

2.1 Storing Environment

Temperature Range: $-20 \operatorname{deg} \mathrm{C} \sim 70 \operatorname{deg} \mathrm{C}$
Humidity Range: 10% RH $\sim 90 \%$ RH

2.2 Operating Environment
 Temperature Range: $0 \operatorname{deg} \mathrm{C} \sim 50 \operatorname{deg} \mathrm{C}$
 Humidity Range: 20% RH $\sim 80 \%$ RH

2. The above envionment is under normal pressure of the atmosphere.

3. Mechanical Specification

3.1 Touch panel style style:

Analog resistance
3.2 Dimension Specifications:

Dimension Outline
$63.5 \mathrm{~mm} \pm 0.3 \mathrm{~mm} \times 41.5 \mathrm{~mm} \pm 0.3 \mathrm{~mm}$
Viewable area
Active area
$56.70 \mathrm{~mm} \times 35.00 \mathrm{~mm}$
PET thickness
Glass thickness
$54.40 \mathrm{~mm} \times 32.40 \mathrm{~mm}$
max. $200 \mu \mathrm{~m}$
1.1 mm
3.3 Dot Spacer Specifications :
(1) Diameter:
(2) Height:
(3) Pitch:
(4) Pattern:
(5) Operative Force:
3.4 Surface Hardness PET:
3.5 Transparency

Non-Glare Panel: $\quad>=70 \%$, Wave length at $450 \sim 700 \mathrm{~nm}$

4. Electrical Specification

Film resistance between leads: $150 \Omega \sim 1300 \Omega$
Glass resistance between leads: $150 \Omega \sim 1300 \Omega$
Operative resistance: $<=2 \mathrm{~K} \Omega$
Linearity deviation: $<=2.0 \%$
Insulation resistance: $\quad>=20 \mathrm{M} \Omega / 25 \mathrm{~V}$.
(The ON Resistance is measured when the panel is pressed by R8, HS60 silicon rubber at 80 g force).

5. Quality Standard

5.1 Resistance against chemicals

The panel could be cleaned with cloth containing ethanol or neutral cleaner. It is no effects to the characteristics.
5.2 Dirt and Flaws on Panel Surface

The flaws and Impurities are allowed outside viewing area except those affecting electrical functions.
lnside the viewing area, it meets the following :
5.3 Within viewable area (PANEL) :
(1) Hair Flaws:
$\mathrm{W}<=0.05 \mathrm{~mm}, \mathrm{~L}<=12 \mathrm{~mm}$: OK
$0.05 \mathrm{~mm}<\mathrm{W}<=0.1 \mathrm{~mm}, \mathrm{~L}<=5 \mathrm{~mm}: 3$ or less are OK
$\mathrm{W}>0.1 \mathrm{~mm}, \mathrm{~L}>2 \mathrm{~mm}$: fail
($\mathrm{W}=$ width of flaws, $\mathrm{L}=$ length of flaws)
(2) Dot-shaped lmpurities :
$\mathrm{D}<=0.1 \mathrm{~mm}$: OK
$0.1 \mathrm{~mm}<\mathrm{D}<=0.3 \mathrm{~mm}: 5$ or less are OK
D $>0.3 \mathrm{~mm}$: fail
(D : average of diameter)
(3) Scratch :
$\mathrm{W}<=0.05 \mathrm{~mm}, \mathrm{~L}<=12 \mathrm{~mm}$: OK
$0.05 \mathrm{~mm}<\mathrm{W}<=0.1 \mathrm{~mm}, \mathrm{~L}<=12 \mathrm{~mm}$: 5 or less are OK $\mathrm{W}>0.1 \mathrm{~mm}, \mathrm{~L}>12 \mathrm{~mm}$: fail
(W : width of scratch , L : length of scratch)

5.4 Glass Sheet

(1) Glass Sheet Cracks and Chips: No Cracks and Chips on the Glass Sheet.
(2) The angle chips are smaller than $2.5 \mathrm{~mm} \times 2.5 \mathrm{~mm} \times 1.1 \mathrm{~mm}$ (X x Y x Z)
(3) The border chips are smaller than $5 \mathrm{~mm} \times 2 \mathrm{~mm} \times 1.1 \mathrm{~mm}$ (X x Y x Z)
X : Width direction against the edge line.
Y: Length direction against the edge line.
Z : Thickness direction against the edge line.

The chips are not supposed to affect any of the electrical functions.

6. Durability

Keystroke Durability
No damages or malfunctions should occur after 1,000,000 keystrokes as the following :

Keystroke element : R8, HS40 silicon rubber
Keystroke load: 150 g
Keystroke speed : $0.33 \mathrm{sec} /$ stroke
Keystroke position : Any position in active area
Temperature and humidity : Normal

7. Reliability

7.1 High temperature test

After putting panels at $60^{\circ} \mathrm{C}$ for 120 hours, they meet the electrical specification required in section 4 .
7.2 Low temperature test

After putting panels at $-20^{\circ} \mathrm{C}$ for 120 hours, they meet the electrical specification required in section 4.
7.3 Temperature and humidity test

After putting panels at $60^{\circ} \mathrm{C}, 90 \% \mathrm{RH}$ for 120 hours, they meet the electrical specification required in section 4.
7.4 Thermal shock test

1 Cycle : $-20^{\circ} \mathrm{C} \rightarrow 70^{\circ} \mathrm{C}$ (30 minutes period)
After putting panels for 10 cycles within 24 hours, they meet the electrical specification required in section 4.

8. Inspection Method

8.1 PET

(1) Linearity

Voltage (DC 5V) is applied to X 1 or Y 1 and GND to X 2 or Y 2
By using stylus to cross direct line for every 5 mm step within active area to detect the voltage at Y 1 or X 1
To measure the voltage difference between X 1 and X 2 or Y 1 and Y2
The voltage variance $=\Delta \mathrm{Ex}$ or $\Delta \mathrm{Ey}$
The linearity must meet the riquirement of section 4
(2) Appearance : The inspection shall be performed by using one

17 w fluorescent lamp as back or side light. The panel shall be placed at 30 cm away from eyes. The panel must meet the requirement of section 5 .
8.2 Glass
(1) Linearity : refer to 8.1-(1)
(2) Strength : By using a 9 mm diameter steel ball to fall on the panel with height of 30 cm , the panel will not be broken.
(3) Appearance : refer to 8.1-(2)
8.3 Tail Bending : By bending the tail 90° around a 2 mm cylinder for 3 times, the panels meet the requirement of section 4.

9.Cautions

9.1 The bezel which contacts with PET film should keep a distance at least 3 mm from the active area to avoid short.
9.2 The bezel which contacts with PET film should not place heavy pressure on the film and the surface of bezel should be kept smooth.
9.3 Please keep clean on the surface of PET film, Don't attach any tape on that.
9.4 Neither pull tail upward nor push downward with an angle of 90° It should keep an arch at least R5.
9.5 If there exist any high voltage power, please make an adequate protect.
9.6 To avoid the high voltage static power to damage panel , please don't operate touch panel without connecting controller.
9.7 Ronics retain the right of changing the materials with same grade and specification.

