SKD204-634 Series 20 CHARACTERS X 4 LINES 1/32 DUTY RS232 & SPI
SCALE : 0.8X
130.0 £0.3
ote 1 3.00 (2) 124.0 £0.1 -
12 2.84 TYP - VIEWING AREA 102.0 £0.2 Q\
L T 4,83 TYP g IMAGE AREA 93.54 @b
4 + K
e} i
i |
N o O
777777 a1+ _ Sl+Hl+
ol < Sl o
IR e
] 8.3 JZ1 po54 X 6
$1.00 (7)
NOTE {1 117.6.40.3 ‘
T1 = 6.0 (NON-B/L) |
= 10.0 (LED-B/L)
) guil
T2 = 159 (NON-B/L) J J
= 19.9 (LED-B/L)
J1 INTERFACE
SIGNAL NAME FROM SIGNAL NAME FROM
PIN NO. FUNCTION N L PIN NO. FUNCTION B0 SERIAL PORT
l NC DCD 6 NC DSR
2 NC RxD 7 SRL PWR2 RTS
3 RS232 DATA IN TxD 3 NC CTS
4 SRL PWR1 DTR 9 NC RI
5 Vss SG
J2 INTERFACE " to be used only if SPI is selected
PIN NO. 1 2 3 4 5 * 6 * 7%
FUNCTION VSS VDD LED+ |DATA_IN | SPI_CS | SPI_CLK | SPI_BUSY
o Min. Typ. Max. . 3.90
tem Symbol | Condition N W N T w Unit 7 5 84
Operating Temperature | Top 0 |-20 50| 70 |°C - 0.72 TYP
Storage Temperature Tstqg -10]-30 60| 80 |°C T -
- 0.06 TYP
Supply for Logic Vec-Vss| Ta= 25°C 45 5.0 5.5 v *H<7
(if J2 is used)
, mn] [] (mnf | 1] [m(n|
Supply Current Drain lec Ta= 25C 6.0 mA UEO0OmOEO00000gd
Backlight Current Drain \fBL To= 25¢ 525 mA EE@EEEEEEEE@E@D f =
SPI CLK Frequency CLK Ta= 25C 18 kHz OEOCOmOEO00000 ~
A
RS232 Baud Rat 1 L
(vio DIP awitch. seesﬁmgs) 1200 | 2400 | 4800 | 9600 o o
000000000000 o
| 00000000000 ol =
FEATURE HIGHLIGHTS N EEEEE%E%%ED SI
e Built-in Software Control for Contrast and Backlighting N aEamm e
e Smooth Horizontal Scrolling EEEEEEEmgﬁ—

e Gapless Bar Graphing
e Big Character Formation

—

<

B
L

STATIC SENSITIVE DEVICE -- USE PROPER ESD PROCEDURES

Connecting Your Crystalfontz Intelligent Serial Display V2.0

Connection to Personal Computers
For non-backlight operation when the display is connected to a PC’s 9-pin serial port, all you need is a “straight

through” 9-pin female DB9 to 9-pin female DB9 cable. This cable is available from Crystalfontz as part number
WR232Y01, or from Radio Shack as Cat No 26- 152.

This is a view looking into the male DB9 connector (J1) on the Crystalfontz display:

Pin Number Crystalfontz Display Function Corresponding PC pin name
1 Not Connected DCD (Data Carrier Detect)

2 Not Connected Rx (Receive Data)

3 Data In Tx (Transmit Data)

4 Power A (9 volts to 15 volts) DTR (Data Terminal Ready)

5 Ground (Vss) Signal Ground

6 Connected to Power A if JPD is closed DSR (Data Set Ready)

7 Power B (9 volts to 15 volts) RTS (Request To Send)

8 Connected to Power B if JPC is closed CTS (Clear To Send)

9 Not Connected RI (Ring Indicator)

Most RS-232 ports will be able to power the display through their DTR and RTS lines. Just have the software
drive these lines high—most software already will.

To power the backlight, you must connect a regulated 5v supply capable of sourcing 600mA (for the 634) or 300mA
(for the 632) to the LED+ terminal of the LCD’s solder connector (J2). The supply’s ground should connect to the

VSS terminal of the LCD’s solder connector (J2):

Pin Number Pin Name Crystalfontz Display Function
% N o 1 Vss Ground (backlight and controller)
H T 0> 2 Vdd Controller and LCD power (+5volt only)
II:D |H 3 3_>' — 3 LED+ LED Backlight power (+5volt only)
COl_jl M< 4 DATA_IN SPI or RS-232 data in (input
LG YE s 5 ISPI_CS SPI Chip Select (active(|0F\)N ?nput)

6 SPI_CLK SPI Clock (input)

V4 @@@@@@@ 1 7 SPI_BUSY SPI Busy (output)

The easiest place on a PC to get 5v is from a disk drive power connector. The red wire is typically 5v, the black
wires are typically ground. Crystalfontz sells a cable that will connect from a spare power connector on your PC
to the display’s LED backlight. The cable is part number WR232Y02. If you make your own cable, be sure and
measure the output voltage before you connect the display. The colors are usually correct, but some computers
may have non-conventional colors.

WARNING: Do not use the yellow wire of the disk drive power cable. This wire is typically the 12 volt supply and
will ruin the display if it is connected instead of 5 volts.

Brent A Crosby

Connections in Embedded Systems

To connect the display in most embedded systems, you need only use the LCD’s solder connector (J2). This
connector has standard 0.1 inch spacing. Generally, you would connect a regulated 5v supply for the controller to
VDD, Ground to VSS, and RS-232 data to DATA_IN. DATA_IN will accept full +10v to —10v swing RS-232 signals
and will also accept Ov to 5v “CMOS” or “TTL” levels (see JPE on v1.3 displays). If your RS-232 data is inverted, you
can close JPB.

If you would like, you can connect an unregulated 9 volt to 15 volt supply to Power A or Power B of the DB9 connec-
tor instead of connecting a regulated +5 volt supply to VCC. Power A and Power B will only power the LCD itself, not
the backlight. Do not connect a supply greater than 5.25 volts to VDD or LED+. Damage to your LCD module will
result.

To use the backlight, connect a regulated 5v supply capable of sourcing 600mA (for the 634) or 300mA (for the 632)
to the LED+ terminal. This may be the same supply that is used for VDD. The backlight brightness is controlled by
PWM (Pulse Width Modulation). The PWM may cause noise on supplies that have high output impedance. If this
noise causes problems in your application, you may want to connect a filter capacitor from VDD to VSS close to the
display, or operate the backlight at full brightness, which disables the PWM.

To use the SPI interface, close JPA. Please refer to the SPI timing diagrams in the data sheet. In some situations,
the SPI interface can deliver data faster than the display can execute the commands. The host should check the
SPI_BUSY line and wait for it to go low before sending the next SPI data byte.

Handshaking

The display can generally execute commands faster than the RS-232 serial interface can deliver them, so no
handshaking is necessary from the display’s point of view, the few exceptions involve accessing the EEPROM, and
are listed in the command definitions of the data sheet.

Some host hardware or software may require the display to assert its DSR and/or CTS lines before it will send data
to the display. In that case, JPC and/or JPD may be closed. Closing JPC will connect DSR to DTR through a 1K
resistor. Closing JPD will connect CTS to RTS through a 1K resistor.

Crystalfontz Intelligent Serial Display Jumper Settings

Your v2.0 display has seven jumpers. The jumpers are normally open. The jumpers may be closed by melting a ball
of solder across their gap. You may re-open the jumpers by removing the solder (solder-wick works well for this). The
following table describes the jumper’s operation.

Jumper State Function Jumper State Function
JPA Open RS-232 interface selected JPE Open DATA_IN is RS-232
Closed SPI interface selected (-10v to +10v swing)

IPB Open RS-232 data is normal Closed DATA IN is Ov to 5v swing

Closed RS-232 data is inverted IPK Open Show splash screen

JPC Open DSR is open Closed Disable splash screen
Closed DTRis fed back on DSR JPL Open Frame Ground* is open
through 1K resistor Closed Grame Ground is connected to
JPD Open CTSis open Signal/Power supply GROUND

Closed RTS s fed bacl_< on CTS *Frame Ground is a trace connecting the mounting
through 1K resistor holes, the bezel and the shell of the DB-9 (J2)

Crystalfontz America, Incorporated
20x4 (634) and 16x2 (632) intelligent serial interface display command set

This document corresponds with hardware v2.0 and firmware v2.0.

The Crystalfontz intelligent serial displays will accept “plain ASCII” characters and display
them on the screen at the current cursor position. For instance, if you send “Hello World”,
the display shows “Hello World”. The display also supports a set of “Control” characters
that access other features of the display. Some of these commands require one or more
parameters. In general, the parameters are “Binary” characters.

In this manual. for "Binary" data the notation \xxx is used, where xxx is the decimal
representation of the number. \OOO to \255 cover all possible values for a character. This
same notation is supported by the free Crystalfontz WinTest utility software.

We recommend you use Crystalfontz WinTest utility to send the examples to the display.
You may highlight each line of the examples, copy them, and then past them into the
WinTest edit box with a right-click, "Paste". Be sure not to highlight the invisible carriage
return at the end of the line.

For RS-232, the baud rate is set with the “DIP” switches on the back of the display. Refer
to the legend silk-screened onto the back of the display for the settings.

"Inverted RS-232" and "Low-Speed SPI" may be selected by closing jumpers. See
Appendix A: Interface Options below and the “Connecting Your LCD” section above.

Display Control Codes

ASCII Keystrokes Function

\000 Control @ Null

\001 Control A Cursor Home

\002 Control B Hide Display

\003 Control C Restore Display

\004 Control D Hide Cursor

\005 Control E Show Underline Cursor
\006 Control F Show Block Cursor

\007 Control G Show Inverting Block Cursor
\008 Control H Backspace (destructive)
\009 Control | Control the Boot Screen
\010 Control J Line Feed

\011 Control K Delete in place

\012 Control L Form Feed (Clear Display)
\013 Control M Carriage Return

\014 Control N Backlight Control

\015 Control O Contrast Control

\016 Control P not used

\017 Control Q Set Cursor Position (Column and Row)

\018 Control R Horizontal Bar Graph

\019 Control S Scroll ON

\020 Control T Scroll OFF

\021 Control U Set Scrolling Marquee Characters
\022 Control V Enable Scrolling Marquee

\023 Control W Wrap ON

\024 Control X Wrap OFF

\025 Control Y Set Custom Character Bitmap
\026 Control Z Reboot

\027 Escape Escape Sequence Prefix

\028 Control Backslash ~ Large Block Number (3x4 or 4x4)
\029 Control Quote not used

\030 Control Equal Send Data Directly to the LCD Controller
\031 Control Minus Show Information Screen

\128 Custom Character 0

\129 Custom Character 1

\130 Custom Character 2

\131 Custom Character 3

\132 Custom Character 4

\133 Custom Character 5

\134 Custom Character 6

\135 Custom Character 7

Explanation of Control Functions

Cursor Home (\001, Control A)
Moves cursor to the top left character position. No data is changed. Identical to Control
Q,0,0.

Hide Display (\002 , Control B)
Display is blanked, no data is changed.

Restore Display (\003, Control C)
Restores blanked display; nothing else is changed.

Hide Cursor (\004 , Control D)
Cursor is not shown; nothing else is changed.

Show Underline Cursor (\005 ; Control E)
Shows a non-blinking underline cursor at the printing location.

Show Block Cursor (\006 ; Control F)
Shows a blinking block cursor at the printing location.

Show Inverting Block Cursor (\007 ; Control G)

Shows a blinking block cursor at the printing location. This cursor inverts the character
rather than replacing the character with a block. This cursor style is the default cursor at
power-up.

Backspace (\008 ; Control H)

Moves the cursor back one space and erases the character in that space. Will wrap from
the left-most column to the right-most column of the line above. Will wrap from the left-
most column of the first row to the right-most column of the last row.

Control the Boot Screen (\009 ; Control I)

This command allows the current state of the display to be stored in the display’s
EEPROM, recalling of the EEPROM contents to the display, and controlling the boot
behavior.

All features of the display are controlled: the characters displayed, the bitmaps of the
user-definable characters, the backlight setting, the contrast setting, the cursor position,
the cursor style, the “wrap” setting, the “scroll” setting, and even the scrolling marquee’s
data and state.

Since writing and reading the EEPROM takes quite a hit time, it is possible to overflow
the display’s input buffer if data is continuously sent while the display is busy executing
these commands. The display will still buffer data while these commands are being
executed. However, the buffer is 64 bytes long and can be overflowed. You must take
care to not overflow the input buffer while the EEPROM commands are executing.

Send "Control I" followed by the command.

\009 \000 Set boot to be backward Compatible with 1.3
(Execution time 5.1mS)

If JPK is open:
Crystalfontz boot screen is displayed. The boot screen will clear
automatically after about 5 seconds. If a character is received during
that 5 seconds, the boot screen will be cleared immediately, then that
character will be processed. This is also the v1.2 behavior.

If JPK is closed:
No logo is shown.

\009 \001 Set boot to show Crystalfontz logo until a character arrives
(Execution time 5.1mS)

The Crystalfontz boot screen is displayed. When a character is received, the boot
screen will be cleared immediately, then that character will be processed.

\009 \002 Set boot to show User Boot Screen for 5 seconds
(Execution time 5.1mS)

The User Boot Screen is recalled from the EEPROM and shown on the display.
The boot screen will clear automatically after about 5 seconds. If a character is
received during that 5 seconds, the boot screen will be cleared immediately, then
that character will be processed.

\009 \003 Set boot to show User Boot Screen until a character arrives
(Execution time 5.1mS)

The User Boot Screen is recalled from the EEPROM and shown on the display.
When a character is received, the boot screen will be cleared immediately, then
that character will be processed.

\009 \004 Set boot to show User Boot Screen and leave it displayed
(Execution time 5.1mS)

The User Boot Screen is recalled from the EEPROM and shown on the display.
Incoming characters are processed normally without the screen being cleared.
Settings for display blank, cursor style and position, WRAP, SCROLL are
maintained.

\009 \005 Save current display state to EEPROM
(Execution time 800mS)

The entire display state is saved to the EEPROM

\009 \006 Recall current display state from EEPROM
(Execution time 91mS)

The entire display state is recalled from the EEPROM

Line Feed (\010 ; Control J {also Control Enter on some keyboards})

Moves the cursor down one row. If SCROLL is on and the cursor is at the bottom row,
the display will scroll up one row and the bottom row will be cleared. If SCROLL is off,
and the cursor is at the bottom row, it will wrap up to the same character position on the
top row.

Erratum:

If SCROLL is set, the cursor is placed on the bottom line, several Line Feed characters
are sent (forcing the display to scroll), and these Line Feeds characters are immediately
followed by a burst of more than 64 additional characters, it is possible to overflow the
display’s input buffer. Don’'t do this. Contrary to design standards for internet server
software from our favorite software monopoly, the display will not start executing the input
buffer data as if it were code. The display will simply overwrite the oldest data in the input
buffer with the most recently received data.

Delete in place (\011 ; Control K)

Deletes the character at the current cursor position. Cursor is not moved.

Form Feed (\012 ; Control L)
Clears the display and returns cursor to Home position (upper left). All data is erased.

Carriage Return (\013 ; Control M)
Moves cursor to the left-most column of the current row.

Backlight Control (\014 ; Control N)

Send "Control-N", followed by a byte from 0100 for the backlight brightness. 0=OFF,
100=0N, intermediate values will vary the brightness. There are a total of 25 possible
brightness levels.

Examples:

\014\000
\014\050
\014\100

Contrast Control (\015 ; Control O)

Send "Control O", followed by a byte from 0-100 for the contrast setting of the displayed
characters. 0 = very light, 100 = very dark, 50 is typical. There are a total of 25 possible
contrast levels.

Examples:

\015\050
\015\060
\015\070

Set Cursor Position (Column and Row) (\017 ; Control Q)

Send "Control Q" followed by one byte for the column (0-19 for a 20x4 display, or 0-15 for
a 16x2 display), and a second byte for the row (0-3 for a 4x20 or 0-1 for a 2x16). The
upper-left position is 0,0. The lower-right position is 15,1 for a 16x2, and 19,3 for a 20x4.
Here is an example for moving the cursor to column 11 of the second line:

\ 017\ 010\ 001

Horizontal Bar Graph (\018 ; Control R)
Send "Control R" followed by the following bytes:

graph_index
style
start_column
end_column
length

row

graph_index determines which special characters are used:

graph_index custom characters used

\ 000 0,1
\ 001 2,3
\ 002 4,5
\ 003 6,7

style is the bit pattern to use in drawing the graph:

\'255 (11111111b) is a thick bar

\ 000 (00000000b) will not be visible (all pixels are off)

\ 085 (01010101b) is a striped bar

\ 060 (00111100b) is a medium width bar, centered

\' 015 (00001111b) is a medium width bar, low in the row
\'240 (11110000b) is a medium width bar, high in the row

any value is valid between \000 and \255, the msb is at the top of the row, the Isb is at the
bottom of the row.

start_column and end_column are the character X coordinates of the graph area. Each
must be between \000 and \019 for the 20x4 or between \000 and \015 for the 16x2.
start_column must be less than or equal to end_column.

length is the length in pixels of the graph. Positive values will graph from the left edge of
start_column, negative values will graph from the right edge of end_column. There are
six pixels per character, so the maximum value of length for a 20x4 display is 20*6=\120.
For a 16x2, the maximum value is 16*6=\096.

row is the character Y coordinate. \O00-\003 is valid for the 20x4, \000-\001 is valid for the
16x2.

Examples:

\018\000\255\000\014\010\001
\018\000\015\000\014\236\001

Notes:

The entire graph area is completely re-written by each graph command, so there is no
need to clear the area between successive updates of the same graph. If a length of \000
is written the entire graph area is cleared to spaces. Negative values can be calculated
as 256-value. For instance if you want a graph to extend 20 pixels towards the left, from
the rightmost column of the graph area, send 236 (256-20 = 236). No additional graph
"setup” command is needed.

The graphs use some of the custom characters, and so may goof up the display if there
are user-defined custom characters or large numbers shown.

Scroll ON (\019 ; Control S)
Turns Scroll feature ON. Then a Line Feed (Control J) command from the bottom row
will scroll the display up by one row, independent of Wrap. If Wrap is also on, a wrap

occurring on the bottom row will cause the display to scroll up one row. Scroll is on at
power up.

Scroll OFF (\020 ; Control T)

Turns Scroll feature OFF. Then a Line Feed (Control J) command from the bottom row
will move the cursor to the top row of the same column, independent of Wrap. If Wrap is
also on, a wrap occurring on the bottom row will also wrap vertically to the top row. Scroll
iS on at power up.

Set Scrolling Marguee Characters (\021 ; Control U)
Send "Control U" followed by the following bytes:

index
character

index determines which of the 20 scrolling marquee characters gets set, \000 to \019
are valid

character is the value that this position in the scrolling marquee wil be set to
Examples:

This will set the first 12 characters to "Crystalfontz", put another message on the display,
and enable the scrolling marquee. The second line of this example ends in a space:

\ 004\ 022\ 255\ 001\ 005\ 012\ 017\ 000\ 001Scrol I i ng Mar quee
\ 021\ 000C\ 021\ 001r\ 021\ 002y\ 021\ 003s\ 021\ 004t \ 021

\ 005a\ 021\ 006/ \ 021\ 007f\ 021\ 0080\ 021\ 009n\ 021\ 010t

\ 021\ 0112\ 021\ 012 \ 021\ 013 \ 021\ 014 \ 021\ 015 \ 021
\016 \021\017 \021\018 \ 021\ 019 \ 022\ 001\ 001\ 016

Notes:

There is a section of memory that holds 20 hidden characters. These 20 characters,
along with the contents of one line of the display can be rotated pixel by pixel across the
display in a circular fashion. Use this command multiple times to set the 20 hidden
characters. Use the normal display functions to set the other characters in the line you
want to rotate, and then enable rotation with Enable Scrolling Marguee command. The
hidden characters are set to blanks at power-up, or loaded from the User Boot Screen.

You will probably want to disable the scrolling marquee movement while you are setting
the scrolling marquee characters or modifying characters on the rotating line. You will
probably also want to move the cursor off the line or hide it.

WinTest, available at http://www.crystalfontz.com easily allows setting up the scrolling
marguee and adjusting the parameters, so you can find a setting that is to your taste in a
minimum amount of time.

Erratum:

If the first character of the line above the rotating line on a 20x4 display has any pixels on
its bottom row set, they will appear as "ghost" pixels in the upper right of last character of
the scrolling line. This will only happen on the first line or if the cursor or a custom
character with its bottom row of pixels set is in the leftmost position of the line directly
above the scrolling marquee line. These pixels are an artifact of the display controller
memory architecture.

Enable Scrolling Marquee (\022 ; Control V)

Send "Control V" followed by the folowing bytes:

line
scroll_step_size
update_speed

line determines which line will scroll with the scrolling marquee, or if the scrolling
marqguee is disabled.

line function

\ 000 enable scrolling marquee on line 1

\ 001 enable scrolling marquee on line 2

\ 002 enable scrolling marguee on line 3 (20x4 only)

\ 003 enable scrolling marguee on line 4 (20x4 only)

\ 255 disable scrolling marquee (valid values for scroll_step_size and
update_speed must still be sent)

scroll_step_size controls the number of pixels that the message is shifted by at each
update:

\ 001 shift by one pixel, smooth but slow

\ 002 shift by two pixels

\ 003 shift by three pixels

\ 004 shift by four pixels

\ 005 shift by five pixels

\ 006 shift by six pixels--equal to shifting by one character, fast

update_speed determines how often updates will happen. The units are 1/96 of a
second, or about 10mS. The valid range is \005 (52mS) to \100 (1.042S).

Notes:

Since the liquid crystal fluid in the display takes some time to react, the minimum usable
value is about 16 or 167mS. The command supports a large range of speed to
accomodate future displays and user preference.

The following equations will allow you to determine the speed at which the message
scrolls:

Update Frequency = update_speed/96 Hz
Update Period = 96/update_speed Seconds

New Character Frequency = (scroll_step_size * update_speed)/(96*6) Hz
New Character Period = (96*6)/(scroll_step_size * update_speed) Seconds

16x2 Message Repeat Period = (36*96*6)/(scroll_step_size * update_speed) Seconds
20x4 Message Repeat Period = (40*96*6)/(scroll_step_size * update_speed) Seconds

See the example in Set Scrolling Marguee Characters above. WinTest, available at
http://www.crystalfontz.com easily allows setting up the scrolling marquee and adjusting
the parameters, so you can find a setting that is to your taste in a minimum amount of
time.

Wrap ON (\023 ; Control W)

Turns Wrap feature ON. Then, a printable character received when the cursor is at the
right-most column will cause the cursor to move down one row, to the left-most column.
If the cursor is already at the right-most column of the bottom row, it will wrap to the top
row if Scroll is OFF, or the display will scroll up one row if Scroll is ON.

Wrap OFF (\024 ; Control X)

Turns Wrap feature OFF. Then, a printable character received when the cursor is at the
right-most column will cause the cursor to disappear (as it will be off the right edge of the
screen) and any subsequent characters will be ignored until some other command
moves the cursor back onto the display. This function is independent of Scroll.

Set Custom Character Bitmap (\025 ; Control Y)

The custom characters are mapped at \128 through \135 corresponding to character 0
to character 7. Send "Control Y" followed by the following bytes:

character
data0
datal
data2
data3
datad
datab
data6
data7

character determines which of the eight custom characters is modified. 0-7 is valid. The
custom characters are displayed by sending \128 to \135:

To display custom character 0, send \128
To display custom character 1, send \129
To display custom character 2, send \130
To display custom character 3, send \131
To display custom character 4, send \132
To display custom character 5, send \133
To display custom character 6, send \134
To display custom character 7, send \135

dataO-data7 are the bitmap information for this character. Any value is valid between 0
and 63, the msb is at the left of the character cell of the row, and the Isb is at the right of
the character cell. dataO is at the top of the cell, data7 is at the bottom of the cell.

Notes: The large digits use all of the custom characters, so if you modify the custom
characters when large digits are displayed, the display will probably become corrupted.
The bar graphs also use some of the custom characters.

Example:

\ 012\ 001\ 128\ 129\ 130\ 131\ 017\ 000\ 001\ 132\ 133\ 134\ 135
\ 025\ 000\ 000\ 000\ 001\ 003\ 000\ 031\ 031\ 031
\ 025\ 001\ 028\ 054\ 032\ 001\ 003\ 051\ 051\ 051
\ 025\ 002\ 014\ 027\ 049\ 032\ 032\ 047\ 032\ 047
\ 025\ 003\ 000\ 000\ 032\ 048\ 000\ 062\ 000\ 062
\ 025\ 004\ 031\ 031\ 031\ 000\ 003\ 001\ 000\ 000
\ 025\ 005\ 051\ 051\ 051\ 003\ 001\ 032\ 054\ 028
\ 025\ 006\ 047\ 032\ 047\ 032\ 032\ 049\ 027\ 014
\ 025\ 007\ 062\ 000\ 062\ 000\ 048\ 032\ 000\ 000

Reboot (\026 ; Control Z)

The firmware in your Crystalfontz Intelligent Display is very stable and robust, and it is not
likely that you will ever need a "reboot" command. In fact, if the firmware actually did
crash, the command processor would likely be inoperable and unable to detect the
reboot command anyway. However, there may be certain situations where it is nice to
have a command that will return the display to a known state. Perhaps the baud rate on
the host was set to an incorrect speed. Then the data is interpreted as all sorts of
meaningless garbage, which the display firmware tries to interpret. Some data may set
the contrast to an unusable value, some data may program the LCD controller to an
indeterminate state. Or perhaps you just always want the display to wake up in a given
state when your program starts, without going through all the commands that affect the
way the display interprets commands (like the state of Scroll or Wrap, for instance).

Send one "Control Z" followed by another "Control Z" to reboot the display. If you are not
sure of the display state, it may be necessary to send up to 9 characters to satisfy the
parameters of some previous command. As an example, say the Set Custom

Character Bitmap command has just been received by the display when your PC's
popular but unstable operating system crashes. The display will interpret the next 9 bytes
as the parameters to the command, then wait for more commands. So if you are not
sure what the status of the display is, send 9 blanks (\032) followed by two Control Zs
(\026).

If the display in your system is powered by the serial port's RTS and DTR lines, the
display can be rebooted by dropping those lines momentarily (say 500mS) and then
bringing them high again.

Escape Sequences

There are 4 Escape sequences currently supported. These correspond to the escape
sequences that are sent for the four arrows keys in HyperTerminal with an ANSI terminal
selected (and also WinTest). These sequences move the cursor only, and do not wrap.

ESC [A(equivalentto\ 027\ 091\ 065)
UP arrow

ESC [B (equivalentto\ 027\ 091\ 066)
DOWN arrow

ESC [C (equivalentto\ 027\ 091\ 067)
RIGHT arrow

ESC [D (equivalentto\ 027\ 091\ 068)
LEFT arrow

Large Block Number (\028 ; Control Backslash)

This command is only valid on the 20x4. On the 16x2 it is parsed and then discarded.
Send "Control Backslash" followed by the following bytes:

style
column
number

style determines if a 3x4 or a 4x4 large number is displayed:

style function
\ 000 3x4 large number
\ 001 4x4 large number

\ 002-\ 255 invalid

column is the starting column of the number. \O00-\017 are valid for a style of \000 (3x4),
\000-\016 are valid for a style of \O01 (4x4).

number is the number to display. \048 to \057 (‘0" to '9") are valid.

Notes:

The large numbers use all the custom characters. There will be some corruption if they
are used at the same time as the graphs or user defined custom characters. There is no
large number initialization command needed.

Examples:

\ 004\ 012\ 028\ 000\ 0010\ 028\ 000\ 0051\ 028\ 000\ 0092\ 028\ 000\ 0133\ 028
\ 000\ 0174
\ 004\ 012\ 028\ 000\ 0005\ 028\ 000\ 0046\ 028\ 000\ 0087\ 028\ 000\ 0128\ 028
\ 000\ 0169

\ 004\ 012\ 028\ 001\ 0000\ 028\ 001\ 0051\ 028\ 001\ 0102\ 028\ 001\ 0153
\ 004\ 012\ 028\ 001\ 0006\ 028\ 001\ 0057\ 028\ 001\ 0108\ 028\ 001\ 0159

Send Data Directly to the LCD Controller (\030 ; Control Equal)

Send "Control Equal” followed by the folowing bytes:

location
data

location is the destination register on the LCD controller:

location register

\ 000 Control Register, (RS=0, RE=0)
\ 001 Data Memory, (RS=1, RE=X)

\ 002 Control Register, (RS=0, RE=1)

data is the data to write to the controller

Notes:

This command executes a low level write directly to the controller. Use this command at
your own risk. Control Z, Control Z will reboot the display and recover from most
mistakes.

Example:

\ 030\ 002\ 031\ 030\ 002\ 130

Show Information Screen (\031 ; Control Minus)

This command will show the baud rate, version and model number.

Appendix A: Interface Options
"Inverted RS-232" or "Low-Speed SPI" may be selected by closing jumpers.

"Inverted RS-232" is useful when the display is used with an embedded micro controller’s
built-in UART. These UARTS typically output a logic level (0-5v) inverted version of the
RS-232 waveform, ready to be passed into an RS-232 driver. By setting the display to
accept inverted RS-232 data, you can connect this logic level signal directly to the display
and avoid having the RS-232 driver. The display will show a lowercase "i" before the baud
rate on the information screen if the jumper is closed ("i9600bd™).

"Low-Speed SPI" is intended to be used with low-end embedded microprocessors that
lack a hardware UART. The reason that it is "Low-Speed" is that the SPI is done in
firmware on the display. On the host microprocessor, any three general-purpose output
ports and a small "send byte" routine can be used to control the display. If the host
microprocessor has a hardware SPI port, that can be used, provided that the port's
speed can be set to satisfy the timing constraints. A software state-machine and a timer
interrupt could also be used, this would reduce the microprocessor's load while still
satisfying the timing requirements. Another useful feature of SPI is that additional displays
can be controlled with only one additional output port (SPI_CS) per display. All the other
lines (/SPI_CLK and SPI_DATA) are common. The display will show "SPI" instead of the
baud rate on the information screen.

The Crystalfontz intelligent serial display has a 64-character input buffer. For the RS-232
interface, it is nearly impossible to overflow this buffer since the display can process
commands more quickly than the 19200-baud RS-232 interface can deliver them, so
normally no flow control is needed. The exceptions are the routines that access the
EEPROM (the \0O09 series) and a very rare combination of commands that tale a long
time to execute, followed by a burst of characters that is larger than the input buffer.

If the your processor can deliver data through the Low-Speed SPI interface at a rate
faster than 1000 bytes/second, then the processor should make sure the SPI_BUSY line
is low before sending a new command. The SPI_BUSY line will be set high by the display
when there are 32 or more characters in the display's input buffer, and returned low when
there are less than 32 characters.

Appendix B: Character Generator ROM (CGROM)

The CGROM defines what characters are shown by the display for a given code received
through the serial port.

The v2.0 series of the Crystalfontz Intelligent Serial Displays have an enhanced CGROM
that includes many useful special characters (numeric superscripts, icons, mathematical
symbols, some fractions, a great variety of arrows, many currency symbols . . .).

Most of the characters can be accessed by sending the appropriate ASCII code to the
display. For instance, the letter ‘A’ can be shown by sending an ‘A’ (which is the same as
a “decimal 65", or a “hex 0x41") to the display.

Some characters do not have an obvious match, For instance, the code to display a
superscript ‘9" is a “decimal 137" or “hex 0x89”. The relationship between the codes and
the characters are shown on in the “CGROM” table on the next page.

To find the code for a given character add the two numbers that are shown in bold for its
row and column. As an example, the superscript ‘9" is in the column labeled “1284” and in
the row labeled “94”. So you would add 128 + 9 to get 137. When you send a byte with
the value of 137 to the display, then a superscript 9 will be shown at the current cursor
position.

In the 1.x series of these displays, the CGROM table had several columns that did not
have any characters assigned to the codes. The commands to control the display were
mapped to some of those unused codes. These codes are shown in red in the table.
Specifically, the first 32 codes (0 to 31) are reserved for the display’s special functions
(cursor positioning, contrast control, bar graphs . . .), and the codes from 128 to 135 are
used to access the “custom characters”.

So to access the characters shown in red, it is necessary to send some data directly to
the LCD controller. Command \030, “Send Data Directly to the LCD Controller”
allows any character in the CGROM to be displayed.

If you want to display an arrow that points to the upper left, you would look at the table and
note that it is in column “164”, and in row “64”, S0 its code is 22. The following sequence
would then display the arrow that points to the upper left:

\030\001\022

This sequence of three bytes must be used to display any of the characters shown in red
in the table. It can also be used to access any character in the table.

g &=

64. | 804| 964 1124128:144416041764192:20842244240.

ROM (CGROM) for Crystalfontz 634 and 632 v2.0

r+3 KAk 54) DesRa.
bt éledwadion]

W BHhss ozl 1

Oo | 6= | 65 | 8L | 5 | 6oL | S24 | 82 | S | 6= | 62 | &6, | B4 | S | S84 | s | &
-— S o S e Sl G S o= 3 bt o= G P i G it o= S

i ﬁ% _______________
SEH e e BEEETELTE
AT ACR S AAERL

Appendix C: Crystalfontz America Contact Information
Crystalfontz America, Incorporated

15611 East Washington Road

Valleyford, WA 99036-9747

Phone: (509) 291-3514
Fax: (509) 291-3345

Technical support e-mail: techinfo@crystalfontz.com

Sales e-mail: sales@crystalfontz.com

Web Site: http://www.crystalfontz.com

Brent A Crosby

"Low-Speed SPI" Timing Diagram

CPOL = T,

N ® 0 us min 50 us min. ~ 55us min
SPI CS T m
Vi VL/Z
® 5545 min.
SPI CLK
Vi Vi Vi VH
Vi A VL Vi
Vi Vi Vi VH
SPI - DATA VSE
Vi Vi Vi Vi
©
0 us min
- T ®
50us min.
NOTES

SPI_CS must be low before SPI_CLK falls
SPI_CS must stay low for the entire transfer

SPI_DATA must be correct before SPI_CLK falls

CPHA = 1 for most processors

Take SPI_CS high for a minimum of 55us

to guarantee bit synchronisation

1) Maximum throughput is ; W = 2020 bytes / second

X Hb

Vi
Vi

)
)
)

) SPI_DATA must be held for a minimum of 50us after SPI_CLK falls
E) The maximum clock rate is 1/55us or 18.182kHz
)
)
)

Data is transferred MSB first; two out of eight cycles are shown

Brent A Crosby

Brent A Crosby
"Low-Speed SPI" Timing Diagram

REVISIONS ARE INDICATED BY CIRCLED LETTERS ALL DIMENSIONS ARE IN MILLIMETRES

2.84 TYP -
P 124.00
note T 483 WP ||| VIEWING AREA 102.0
3.00 (2) | || IMAGE AREA 93.54 REF
66.00
= “ //r */\(
o\
E ® 120 X 8/ DOTS <
~ | | L m
| o 9| | T =
. ©2 WZOXSDOTS NER
,,,,,,,,,,,,,,,,,,,,, \,‘,,,,, — ,,,@ ———— i j,’,:,:,:,if i (S SN — R :l> N
g o @g ”””””””””””””””””””””””””””””” o= T,
ole 5@ 120 X 8 DOTS <R
o Y ~
F =~ N 1 e -
E ‘@' 120 X 8 DOTS o
ol " T
= [)\/w[1 Xﬁ/(
i ¢ i | &
3.90
8.3 |] 384
N 117.6 . 0.72 TYP
& | L2050 o
NOTE 1 D
2 130.0 +0.30
OONEECONEEEECOD
T1 = 6.0 (NON-B/L) ORCOOmOR0000000
= 10.0 (LED-B/L) = ORO0000R0000000 o
5 DECOnoomnoon & |
T2 = 159 (NON-B/L) S OMCOOEON000000 <
= 19.9 (LED-B/L) 3 | OOmmROORO0000 L
N ! £o0000000000 I
(e}
T 00000O000ooo oo
_. 00000000000 > |5
sk o8
THIS DRAWING IS APPLICABLE TO © T |-
THE FOLLOWING SUB—VARIANTS :— HHEEEEREE S
SKD204-634SS (NON—BACKLIT, GRAY STN DISPLAY) EEEEEEEM,
SKD204—-634SG—-LG (LED-BACKLIT, YEL—GREEN STN DISPLAY) %
DISKETTE CY9927
TITLE SCALE GEN. TOL. DRAWN BY : DWG NBR REV
< Crystalfontz MECHANICAL PRODUCT @] =1 %X =020 ALEXIS 9M634P01 B
= XXX = £0.10 :
SPECIFICATIONS PROJECT g3 | A% = £0:10 TaperoveD - DATE o1 JUNE 1999 |SHEET 1 OF 5

REVISIONS ARE INDICATED BY CIRCLED LETTERS

Please refer to silkscreen for jumper and switch settings.

JUMPER PADS

ALL DIMENSIONS ARE IN MILLIMETRES

BACK VIEW ‘ R . 6.25 DSUBY MALE CONNECTOR
S . JPA @p IPC
/ N / JB O SO
! \ ! L0, JPD
e 7 e [e e ﬁ ”””””””””””””””””””””””””””
RN N o2 PIN 1
PIN 6
J1
e = c zp1 2z = |
& a— @]
N
&)
(@]
J2 PIN—OUT DEFINITION J1_PIN=OUT DEFINTION ey e rom| | gy LD SWITCH SETTINGS || CONDITION
PIN' NO. NAME REMARKS / FUNCTION PIN NO. | FUNCTION PC SERIAL PORT RATE | PIN 1 PIN 2 PAD OPEN SHORT
1 VSS GROUND 1 NC DCD 1200 OFF OFF JPA RS232 SP
2 VDD 5V REG.SUPPLY 2 NC RxD 2400 ON OFF JPB NORMAL | INVERTED
3 LED+ 5V REG. LED B/L SUPPLY 3 RS232 DATA IN TxD 4800 OFF ON RS232 RS232
4 DATA_IN INPUT SIGNAL (RS232 OR SPI) 4 SRL PWRI DTR 9600 ON ON JPC
5 SPI_CS CHIP SELECT FOR SPI 5 VSS SG JPD
6 SPI_CLK | CLOCK FOR SPI 6 NC DSR N
7 SPI_BUSY | BUSY FLAG FOR SPI 7 SRL PWR2 RTS o
8 NC CTS % % o e gd o o
9 NC Rl T 5| OFF NN @ @
THIS DRAWING IS APPLICABLE TO ﬁ_f ﬁ_f JPC JPD
THE FOLLOWING SUB—VARIANTS :—
SKD204-634SS (NON—BACKLIT, GRAY STN DISPLAY)
SKD204—-634SG—-LG (LED-BACKLIT, YEL—GREEN STN DISPLAY)
DISKETTE CY9927
TITLE SCALE GEN. TOL DRAWN BY : DWG NBR REV
i" Crystalfontz MECHANICAL PRODUCT & L= 1 fxx =020 ALEXIS 9MB54P01 B
L SPECIFICATIONS PROJECT g3 XA&% - gggp APPROVED : DATE 34 JUNE 1999 |SHEET 5 OF 5

Brent A Crosby
Please refer to silkscreen for jumper and switch settings.

=l.=l .=l.=l

Tl

\ (b} Eﬁﬂ” -"“
45 umumu[ﬂ

'.'-z |

	Summary
	Connecting Your Display
	Connection to Personal Computers
	Connections in Embedded Systems

	Serial Interface Commands
	Display Control Codes
	Explanation of Control Functions
	Cursor Home
	Hide Display
	Restore Display
	Hide Cursor
	Show Underline Cursor
	Show Block Cursor
	Show Inverting Block Cursor
	Backspace
	Control the Boot Screen
	Line Feed
	Delete in place
	Form Feed
	Carriage Return
	Backlight Control
	Contrast Control
	Set Cursor Position
	Horizontal Bar Graph
	Scroll ON
	Scroll OFF
	Set Scrolling Marquee Characters
	Enable Scrolling Marquee
	Wrap ON
	Wrap OFF
	Set Custom Character Bitmap
	Reboot
	Up Arrow
	Down Arrow
	Right Arrow
	Left Arrow
	Large Block Number
	Send Data Directly to the LCD Controller
	Show Information Screen

	Appendix A: Interface Options
	Appendix B: CGROM
	Displaying Characters from the CGROM
	CGROM Table

	Appendix C: Crystalfontz America Contact Information

	SPI Timing Diagram
	Front Detail Drawing
	Rear Detail Drawing
	Front Photo
	Rear Photo

