Crystalfontz America, Inc.

MODULE	NO.:	CFAP1602A-Y	/-JCS
SALES BY	APPROVED BY	CHECKED BY	PREPARED BY

Crystalfontz America, Inc.

12412 East Saltese Avenue Spokane Valley, WA 99216-0357

Phone: (888) 206-9720 Fax: (509) 892-1203

Email: techinfo@crystalfontz.com
URL: www.crystalfontz.com

Contents

- 1. Module Classification Information
- 2. Precautions in use of LCD Modules
- 3. General Specification
- 4. Absolute Maximum Ratings
- 5. Electrical Characteristics
- 6. Optical Characteristics
- 7.Interface Pin Function
- 8. Counter Drawing & Block Diagram
- 9. Function Description
- 10. Character Generator ROM Pattern
- 11.Instruction Table
- 12. Timing Characteristics
- 13.Initializing of LCM
- 14. Quality Assurance
- 15.Lifetime
- 16.Reliability

1.Module Classification Information

①	Brand: CRYSTALFONTZ AMERICA, INCORPORATED							
2	Display Type: H→	Display Type: H→ Character Type, G→ Graphic Type, P→ PLED						
3	Display's Logical D	imensions: 16 columns by 2 lines						
4	Model serials no.							
(5)	Backlight Type:	Y → Yellow Green						
Q 6	Special Code	CS: English and Japanese standard font						

2.Precautions in use of PLED Modules

- (1)Avoid applying excessive shocks to the module or making any alterations or modifications to it.
- (2)Don't make extra holes on the printed circuit board, modify its shape or change the components of PLED module.
- (3)Don't disassemble the PLEDM.
- (4)Don't operate it above the absolute maximum rating.
- (5)Don't drop, bend or twist PLEDM.
- (6) Soldering: only to the I/O terminals.
- (7)Storage: please storage in anti-static electricity container and clean environment.

3.General Specification

Item	Dimension	Unit
Number of Characters	16 characters x 2 Lines	-
Module dimension	84.0 x 44.0 x 9.5(MAX)	mm
View area	66.0 x 16.0	mm
Active area	50.67 x 10.36	mm
Dot size	0.51 x 0.60	mm
Dot pitch	0.54 x 0.63	mm
Character size	2.67 x 5.01	mm
Character pitch	3.20 x 5.35	mm
LCD type	PLED, Green	
Duty	1/16	

4. Absolute Maximum Ratings

Item	Symbol	Min	Тур	Max	Unit
Operating Temperature	T_{OP}	-20	25	+50	°C
Storage Temperature	T_{ST}	-30	-	+70	°C
Input Voltage	V_{I}	-0.3	-	V_{DD}	V
Supply Voltage For Logic	V_{DD} - V_{SS}	-0.3	-	7	V
Supply Voltage For LCD	$ m V_{BT ext{-}} m V_{SS}$	-0.3	-	5.0	V

5.Electrical Characteristics

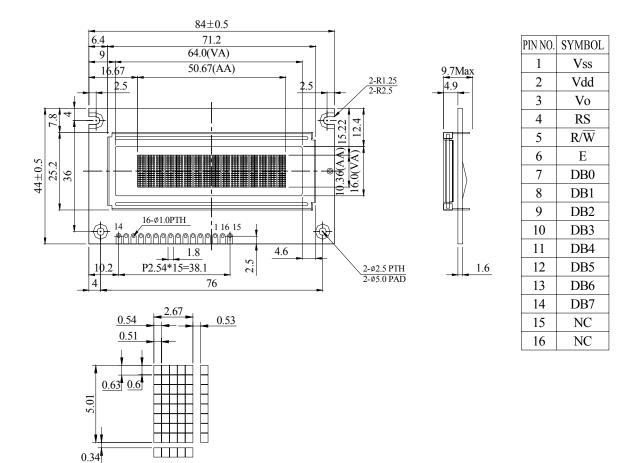
Item	Symbol	Condition	Min	Тур	Max	Unit
Supply Voltage For Logic	V_{DD} - V_{SS}	-	4.5	5.0	5.5	V
Supply Voltage For LCD	V_{BT}	Ta=25°C	2.0	2.5	5.0	V
Input High Volt.	V_{IH}	-	$0.7~\mathrm{V_{DD}}$	-	$V_{ m DD}$	V
Input Low Volt.	$V_{\rm IL}$	-	-0.3	-	0.55	V
Output High Volt.	V_{OH}	-	2.4	-	-	V
Output Low Volt.	V_{OL}	-	-	-	0.4	V
Supply Current	I_{DD}	V _{DD} =5V	-	0.35	0.6	mA

6.Optical Characteristics

Item	Symbol	Condition	Min	Тур	Max	Unit
View Angle	(V)θ			80		deg
view ringie	(Н)ф			80		deg
Contrast Ratio	CR	100 lux	-	100	-	-
Response Time	T rise	-		10		us
response rime	T fall	-		10		us
Brightnes	With polarizer		40		nits	

7.Interface Pin Function

Pin No.	Symbol	Level	Description
1	V_{SS}	0V	Ground
2	$V_{ m DD}$	5.0V	Supply Voltage for logic
3	$\Box V_{BT}$	(Variable)	Operating voltage for PLED Brightness adjhstment
4	RS	H/L	H: DATA, L: Instruction code
5	R/W	H/L	H: Read(MPU→Module) L: Write(MPU→Module)
6	Е	H,H→L	Chip enable signal
7	DB0	H/L	Data bit 0
8	DB1	H/L	Data bit 1
9	DB2	H/L	Data bit 2
10	DB3	H/L	Data bit 3
11	DB4	H/L	Data bit 4
12	DB5	H/L	Data bit 5
13	DB6	H/L	Data bit 6
14	DB7	H/L	Data bit 7
15	NC	-	
16	NC	-	


Brightness Control

VBT	Brightness(nits)	Power consumption(measured with random texts)
2.5V	20(typical)	50mW
3.0V	45(typical)	63mW

 $Note: 1. When \ random \ texts \ pattern \ is \ running \ averagely, at \ any \ instance, \ about \ 1/4 \ of \ pixels \ will \ be \ on.$

- 2.If VBT is not operated within 2V and 3V,non-uniformity display may occur.
- 3. You have to use the saving mode by VBT 2.5V in order to make long life.

8.Counter Drawing & Block Diagram

DOT SIZES

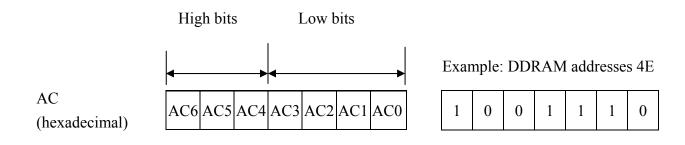
9.Function Description

The LCD display Module is built in a LSI controller, the controller has two 8-bit registers, an instruction register (IR) and a data register (DR).

The IR stores instruction codes, such as display clear and cursor shift, and address information for display data RAM (DDRAM) and character generator (CGRAM). The IR can only be written from the MPU. The DR temporarily stores data to be written or read from DDRAM or CGRAM. When address information is written into the IR, then data is stored into the DR from DDRAM or CGRAM. By the register selector (RS) signal, these two registers can be selected.

RS	R/W	Operation
0	0	IR write as an internal operation (display clear, etc.)
0	1	Read busy flag (DB7) and address counter (DB0 to DB7)
1	0	Write data to DDRAM or CGRAM (DR to DDRAM or CGRAM)
1	1	Read data from DDRAM or CGRAM (DDRAM or CGRAM to DR)

Busy Flag (BF)


When the busy flag is 1, the controller LSI is in the internal operation mode, and the next instruction will not be accepted. When RS=0 and R/W=1, the busy flag is output to DB7. The next instruction must be written after ensuring that the busy flag is 0.

Address Counter (AC)

The address counter (AC) assigns addresses to both DDRAM and CGRAM

Display Data RAM (DDRAM)

This DDRAM is used to store the display data represented in 8-bit character codes. Its extended capacity is 80×8 bits or 80 characters. Below figure is the relationships between DDRAM addresses and positions on the liquid crystal display.

Display position DDRAM address

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

00	01	02	03	04	05	06	07	08	09	0A	0B	0C	0D	0E	0F
40	41	42	43	44	45	46	47	48	49	4A	4B	4C	4D	4E	4F

2-Line by 16-Character Display

Character Generator ROM (CGROM)

The CGROM generate 5×8 dot or 5×10 dot character patterns from 8-bit character codes. See Table 2.

Character Generator RAM (CGRAM)

In CGRAM, the user can rewrite character by program. For 5×8 dots, eight character patterns can be written, and for 5×10 dots, four character patterns can be written.

Write into DDRAM the character code at the addresses shown as the left column of table 1. To show the character patterns stored in CGRAM.

Relationship between CGRAM Addresses, Character Codes (DDRAM) and Character patterns

Table 1.

For 5 * 8 dot character patterns

Character Codes (DDRAM data)	CGRAM Address	Character Patterns (CGRAM data)	
7 6 5 4 3 2 1 0	5 4 3 2 1 0	7 6 5 4 3 2 1 0	
High Low	High Low	High Low	
0 0 0 0 * 0 0 0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	* * * * * * * * * * * * * * * * * * *	Character pattern(1)
0 0 0 0 * 0 0 1	0 0 0 0 0 1 0 1 0 0 1 1 0 0 1 1 0 0 1 0 1 1 1 0 1 1 1 1	* * * * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	C haracter pattern(2)
	$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$		
0 0 0 0 * 1 1 1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	* * *	

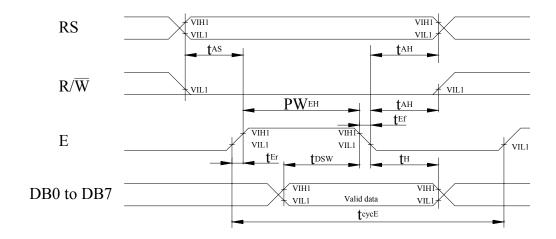
For 5 * 10 dot character patterns

Character Codes (DDRAM data)	CGRAM Address	Character Patterns (CGRAM data)	
7 6 5 4 3 2 1 0	5 4 3 2 1 0	7 6 5 4 3 2 1 0	
High Low	High Low	High Low	
	0 0 0 0	* * * 0 0 0 0 0	<u> </u>
	0 0 0 1	* * * 0 0 0 0 0	
	0 0 1 0	* * * 0	
	0 0 1 1	* * * * 0 0	
	0 1 0 0	* * * 0 0 0	
0 0 0 0 * 0 0 0	0 0 0 1 0 1	* * * 0 0 0	
	0 1 1 0	* * *	Character
	0 1 1 1	* * * 0 0 0 0	pattern
	1 0 0 0	* * * * 0 0 0 0	
	1 0 0 1	* * * * 0 0 0 0	<u>+</u> _
	1 0 1 0	* * * 0 0 0 0 0	Cursor pattern
	1 1 1 1	* * * * * * * *	

■ : " High "

10.Character Generator ROM Pattern

Table.2

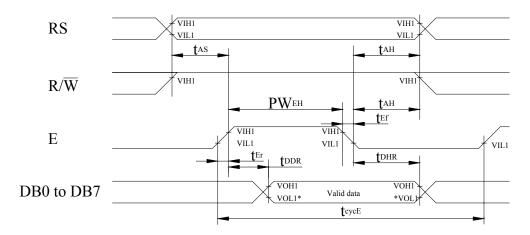

Upper																
4 bit Lower 4 bit	LLLL	LLLH	LLHL	LLHH	LHLL	LHLH	LHHL	LННН	HLLL	HLLH	HLHL	НГНН	HHLL	ннгн	нннг	нннн
LLLL	CG RAM (1)						===	====					-=::	***	17:1	!::::
LLLH	(2)						-:::	-:::{			:::			 	-5551	*****
LLHL	(3)		11	- " ;				:			= = =		! <u>!</u> !	.:-:		
LLHH	(4)					=====	====					: <u>.</u> :			===-	=:-:=
LHLL	(5)							·					i		I	572
LHLH	(6)		:: '::								==				1,15.	1
LHHL	(7)					II		I							 	=====
LННН	(8)		:=	=====			====	ii								.11.
HLLL	(1)		•	::				:-: <u>'</u>			<u>:</u> -	-=		!	I	
HLLH	(2)					•					::	-=-	-		1	
HLHL	(3)		:-[-:	==			:				:			i		
нгнн	(4)		[::			!	-				-1-1-	=====		1-1]=-;
HHLL	(5)		:					-			-1			==	=====	
HHLH	(6)						i : :									
нннг	(7)		==			"									I	
нннн	(8)						 :	-=:			= = =	÷	:	===	====	

11.Instruction Table

Instruction				Ins	struct	ion Co	ode				Description	Execution time
instruction	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description	(fosc=270Khz)
Clear Display	0	0	0	0	0	0	0	0	0	1	Write "00H" to DDRAM and set DDRAM address to "00H" from AC	1.52ms
Return Home	0	0	0	0	0	0	0	0	1	-	Set DDRAM address to "00H" from AC and return cursor to its original position if shifted. The contents of DDRAM are not changed.	1.52ms
Entry Mode Set	0	0	0	0	0	0	0	1	I/D	SH	Assign cursor moving direction and enable the shift of entire display. I/D=1:Increment; 0: Decrement SH=1:Display shift on	37µ s
Display ON/OFF Control	0	0	0	0	0	0	1	D	С	В	Set display (D), cursor (C), and blinking of cursor (B) on/off control bit. D=1:Display on C=1:Cursor display on B=1:Cursor blink on	37µ s
Cursor or Display Shift	0	0	0	0	0	1	S/C	R/L	-	-	Set cursor moving and display shift control bit, and the direction, without changing of DDRAM data. S/C=1:Shift display; 0:Move cursor R/L=1:Shift right; 0:Shift leftf	37µ s
Function Set	0	0	0	0	1	DL	N	F	-	-	Set interface data length (DL) DL=1:8-bit; 0:4-bit Set numbers of display lines(N) N=1:Dual line; 0:Single line Set display font type (F) F=1:5x10 dots; 0:5x8dots	37µ s
Set CGRAM Address	0	0	0	1	AC5	AC4	AC3	AC2	AC1	AC0	Set CGRAM address in address counter.	37µ s
Set DDRAM Address	0	0	1	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Set DDRAM address in address counter.	37µ s
Read Busy Flag and Address	0	1	BF	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Whether during internal operation or not can be known by reading BF. The contents of address counter can also be read. BF=1:Internal operation BF=0:Ready for instruction	0µ s
Write Data to RAM	1	0	D7	D6	D5	D4	D3	D2	D1	D0	Write data into internal RAM (DDRAM/CGRAM).	37µ s
Read Data from RAM	1	1	D7	D6	D5	D4	D3	D2	D1	D0	Read data from internal RAM (DDRAM/CGRAM).	37µ s

* " - " : don't care

12.Timing Characteristics

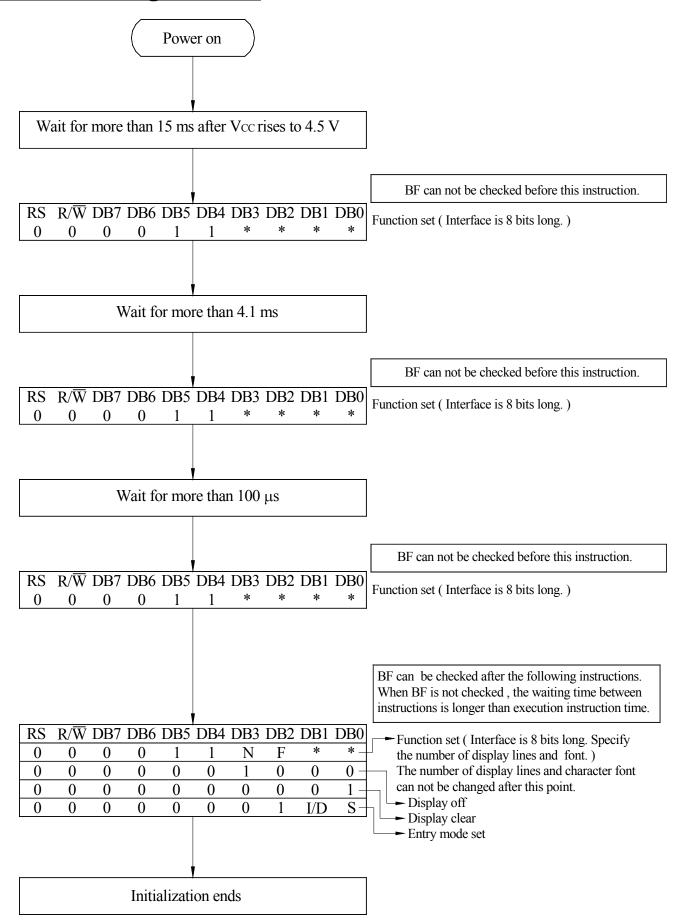


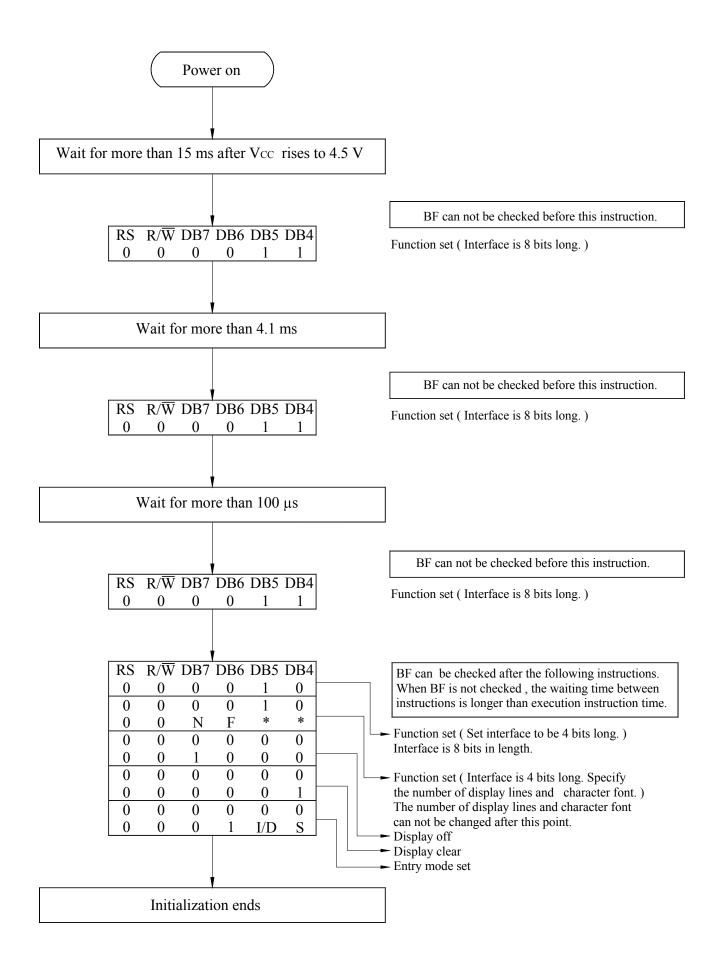
12.1 Write Operation

Ta=25°C, VDD= 5.0 ± 0.5 V

Item	Symbol	Min	Тур	Max	Unit
Enable cycle time	$t_{ m cycE}$	500	-	1	ns
Enable pulse width (high level)	PW_{EH}	230	-	-	ns
Enable rise/fall time	$t_{\rm Er}, t_{\rm Ef}$	-	-	20	ns
Address set-up time (RS, R/W to E)	t_{AS}	40	-	-	ns
Address hold time	t_{AH}	10	-	-	ns
Data set-up time	$t_{ m DSW}$	80	-	-	ns
Data hold time	t_{H}	10	-	-	ns

12.2 Read Operation




NOTE: *VOL1 is assumed to be 0.8V at 2 MHZ operation.

Ta=25°C, $VDD=5.0\pm0.5V$

Item	Symbol	Min	Тур	Max	Unit
Enable cycle time	$t_{ m cycE}$	500	-	-	ns
Enable pulse width (high level)	PW_{EH}	230	-	-	ns
Enable rise/fall time	$t_{\rm Er}, t_{\rm Ef}$	-	-	20	ns
Address set-up time (RS, R/W to E)	t_{AS}	40	-	-	ns
Address hold time	$t_{ m AH}$	10	-	-	ns
Data delay time	$t_{ m DDR}$	-	-	160	ns
Data hold time	t _{DHR}	5	-	-	ns

13.Initializing of LCM

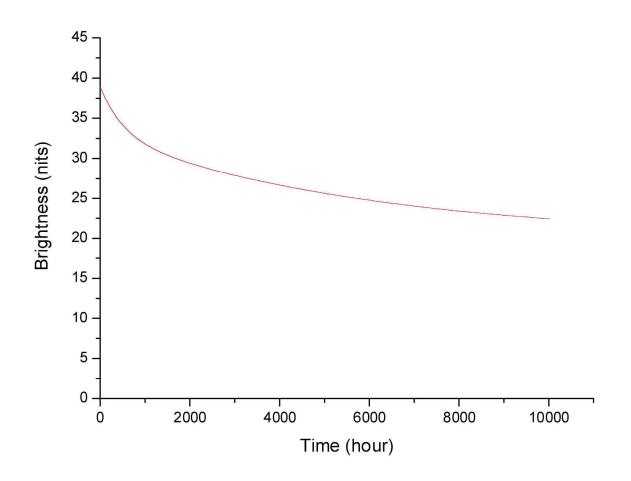
4-Bit Ineterface

14.Quality Assurance

Screen Cosmetic Criteria

Item	Defect	Judgmo	Partition	
			A)Clear Acceptable Qty in active area	
		d ≦ 0.1	Disregard	
		0.1 <d≦ 0.<="" td=""><td>.2 6</td><td></td></d≦>	.2 6	
		0.2 <d≦ 0.<="" td=""><td>.3 2</td><td></td></d≦>	.3 2	
1	Spots	0.3 <d b)="" be="" d="" holes="" including="" mm<="" note:="" pin="" size:="" td="" wi=""><td>Minor</td></d>	Minor	
		d ≤ 0.2	Disregard	
		0.2 <d≦ 0<="" td=""><td>0.5</td><td></td></d≦>	0.5	
		0.5 <d≦ 0<="" td=""><td>0.7 2</td><td></td></d≦>	0.7 2	
		0.7 <d< td=""><td>0</td><td></td></d<>	0	
			Acceptable Qty in active area	
		d≦ 0.3	Disregard	
2	Bubbles in Polarize	0.3 <d≦ 1.0<="" td=""><td>3</td><td>Minor</td></d≦>	3	Minor
		1.0 <d≦ 1.5<="" td=""><td>5 1</td><td></td></d≦>	5 1	
		1.5 <d< td=""><td>0</td><td></td></d<>	0	
3	Scratch	reflects on the panel surf	cosmetic criteria. When the light face, the scratches are not to be narkable.	Minor
4	Allowable Density		separated more than 30mm each other.	Minor
5	Coloration	LCI Back-light type should be	ration in the viewing area of the D panels. judged with back-light on state only.	Minor

15.PLED Lifetime


Conditions:

Temperature: 25°C

Brightness decay to 50% of original value

Panel lifetime is a function of the brightness as follows:

Average Brightness (nits)	Lifetime (Hours)
40	10,000
20	15,000
10	20,000

16.Reliability

Content of Reliability Test

Environmental Test							
Test Item	Content of Test	Test Condition	Applicable Standard				
High Temperature storage	Endurance test applying the high storage temperature for a long time.	70°C 200hrs					
Low Temperature storage	Endurance test applying the high storage temperature for a long time.	-30°C 200hrs					
High Temperature Operation	Endurance test applying the electric stress (Voltage & Current) and the thermal stress to the element for a long time.	50°C 200hrs					
Low Temperature Operation	Endurance test applying the electric stress under low temperature for a long time.	-20°C 200hrs					
High Temperature/ Humidity Storage	Endurance test applying the high temperature and high humidity storage for a long time.	70°C,90%RH 96hrs					
High Temperature/ Humidity Operation	Endurance test applying the electric stress (Voltage & Current) and temperature / humidity stress to the element for a long time.	50°C,90%RH 96hrs					
Temperature Cycle	Endurance test applying the low and high temperature cycle. -20° 50° 50° 50° 50° 50° 50° 50° 50° 50° 5	-20°C/50°C 10 cycles					
	Mechanical Tes	t					
Vibration test	Endurance test applying the vibration during transportation and using.	10~22Hz→ 1.5mmp-p 22~500Hz→ 1.5G Total 0.5hrs					
Shock test	Constructional and mechanical endurance test applying the shock during transportation.	50G Half sign wave 11 msedc 3 times of each direction					
Atmospheric pressure test	Endurance test applying the atmospheric pressure during transportation by air.	115mbar 40hrs					
	Others						
Static electricity test	Endurance test applying the electric stress to the terminal.	VS=800V,RS=1.5kΩ CS=100pF 1 time					

^{***}Supply voltage for logic system=5V. Supply voltage for LCD system =Operating voltage at 25°C