
8-bit
RISC
Microcontroller

Application
Note

Rev. 1981B–AVR–09/05
AVR155: Accessing an I2C LCD Display using the
AVR® 2-wire Serial Interface

Features
• Compatible with Philips' I2C protocol
• 2-wire Serial Interface Master Driver for Easy Transmit and Receive Function
• Initialization and Use of a 2 x 16 I2C LCD Display
• “C” Source Code
• Matches the Most Common I2C LCD Drivers

1. Introduction
The need for a cost effective inter-IC bus for use in consumer, telecommunications
and industrial electronics, led to the development of the Philips’ I2C bus. Today the I2C
bus is implemented in a large number of peripherals and microcontrollers, making it a
good choice for low speed applications.

To meet the large amount of ICs with I2C interface, the AVR TWI family has included
the 2-wire Serial Interface (TWI) to it’s perperihals. The TWI bus can communicate
with any I2C compatible device both as slave and master. More information about I2C
and details about TWI can be found in the Philips I2C specification and the AVR
datasheet.

This application note includes a TWI driver for bus handling and describes how to
access a Philips I2C LCD driver on a Batron LCD display.

Figure 1-1. Hardware Connections

100N

VContrast
(5.0V)

LCD MODULE

SCL PORSDAVCC GNDVLCD

10K

10K

10K

AVR

PC0/SCL

PC1/SDA

Vcc

GND

2. Theory of Operation
The Batron LCDs is a 2 x 16 alphanumeric display with an I2C user interface and an imple-
mented ASCII table. The LCD is configured and controlled with I2C serial communication from
the AVR and it’s TWI hardware module.

AVR’s TWI is a fully I2C compatible and can access any I2C device following the I2C specifica-
tion from Philips. This makes it easy to configure and use the Philips I2C LCD driver.

The AVR software is written in C and divided into two main parts. Part one, LCD control, handles
the necessary control and data bytes for the LCD while part two, TWI driver, takes care of the
I2C bus handling.

The AVR TWI module is basically controlled by the TWINT flag. The flag is used to start all
actions to the bus and to flag when an action is done. When the TWINT flag is set, the TWSR
contains a status value according to the last action and if it was successful or not. When sending
a message to the I2C bus through TWI, the code will pretty much look like a state machine and
the next step in the state machine should always be based on the result of the last step, read
from the TWSR. See Figure 2-1.

The TWI is very close to the I2C’s signaling and data flow which makes it a very powerful module
but also fairly complex to use. To ease the use of TWI, this application note is divided into two
sections, a LCD control and a TWI master driver, both written in C.

The TWI master is a communication driver handling all the signaling and data transmission
through the TWI module to the I2C bus. It is a general driver and can be used to any master I2C
access and will only need a minimum information from the calling function. The driver is realized
in its own C file and can be included in any C program requiring a TWI driver.

The LCD control takes care of the LCD specific setup and sends data and control bytes through
the TWI master driver to the LCD. It configures the LCD to a dual-line display and display the
string “AVR ATmega163 with TWI interface to I2C” as a scrolling text.
2
1981B–AVR–09/05

AVR155

AVR155
Figure 2-1. Basic TWI Handling

2.1 TWI Master Driver
The TWI master driver handles the TWI modules signaling and data flow to and from the I2C
bus. It only requires a minimum input from the calling function and will return a state according to
the result of the action. The driver is released as a polling function which monitor the TWINT flag
but can easily be changed to be interrupt driven. (See “Implementation” on page 5.)

The driver needs information about the slaves address and the bytes to send or receive. This is
passed on to the function as a table of structs ended by the masters own addressee. See Figure
2-2.

Apply START Condition

TWINT = 1?

yes

No

TWSR = Code for
START Sent Correct?

No

Send Slave Address + W

Yes

TWINT = 1?

Yes

TWSR = Code for
Address ACK Received?

No

Send Data Byte

TWINT = 1?

TWSR = Code for Data
Byte ACK Received?

Apply STOP Condition ERROR!

No

Yes

Yes

Yes

No

No
3
1981B–AVR–09/05

Figure 2-2. Table of Structs for Sending to One Slave

Figure 2-2 shows a table for sending data to a slave. SLA+W is the slaves address and is setting
it into slave receiver mode. Number of bytes indicates how many bytes the function will send to
the slave and the pointer shows were to find the bytes. The function can handle a table with a
infinite number of structs but will always be ended if it finds its own address as the slave
address. If the table contains more than one package plus the one with it’s own address, it will
use repeated start between the packages. If a table as Figure 2-3 is used, it will send a START,
SLA+W, nDATA bytes, a repeated START, SLA+W, nDATA bytes and a STOP.

Figure 2-3. Table for Sending to One or Two Slaves

The function can also handle master receive. The pointer in the struct will then be a pointer to a
temporarily buffer for the received bytes. See Figure 2-4.

Figure 2-4. Table for Receiving from One Slave

SLA+W

Number of Bytes to Send

Pointer to the Bytes to Send

Own Address

Don't Care

Don't Care

0

1

SLA+W

Number of Bytes to Send

Pointer to the Bytes to Send

0

SLA+W

Number of Bytes to Send

Pointer to the Bytes to Send

Own Address

Don't Care

Don't Care

1

2

SLA+R

Number of Bytes to Receive

Pointer to a Temporarily Buffer

Own Address

Don't Care

Don't Care

0

1

4
1981B–AVR–09/05

AVR155

AVR155
The driver can also handle mixed master receive and transmit with repeated START in between.
After the driver is done with the communication, it will return to the calling function with a state
value. This value is the result of the transfer and will be 0xFF if success or TWSR if it failed. For
a complete list see Table 2-1.

2.2 LCD_control function
The LCD code gives an example on how to initialize the LCD, clear the display and make a scroll
text. For more specific details and all the features of the display, please see the Batron LCD
datasheet and Philips 2119 I2C LCD driver datasheet.

3. Implementation
The code is written to be as self explaining as possible and for more details about the program
please read the comments in the code.

The functions are not interrupt driven as a polled version is a less complex way of doing a TWI
driver. It is fairly easy to convert it to a interrupt driven version and could be done by moving the
entire TWI driver function into the TWINT interrupt routine. Change the function to be a state
machine and define a global variable to keep control of the state machine. You will also need a
global table for the data to send or as a buffer for receiving.

The code is written in C divided into two files, TWI_driver.c and LCD_control.c. Both files have
separate header files and are written for IAR C-compiler Version 1.50C/WIN. They are written in
ANSI C and it should be simple to change them for other compilers. I/O and linker files are
included in the code package added to the application note.

3.1 TWI Driver Functions
The TWI driver handles all the communication against the I2C bus for the calling function. For
more details about the function please see the comments in the code.

Table 2-1. Return Values from the TWI Master Driver Function

Return Value Description

0x00 Bus Error due to illegal START or STOP conditions

0x20 Slave address + W transmitted and NACK is received

0x30 Data byte transmitted and NACK is received

0x38 Arbitration Lost

0x48 Slave address +R transmitted and NACK is received

0x58 Data byte received and NACK is transmitted

0xFF Buffer transmit OK/ buffer receive OK
5
1981B–AVR–09/05

Figure 3-1. TWI Driver Flow Chart

3.1.1 char Init_TWI (void)
Setup for the AVR TWI module. Initialize the AVR slave address, sets the baudrate for the com-
munication and enable the module.

3.1.2 void Wait_TWI_int (void)
Loop until the TWI interrupt flag (TWINT) get set.

3.1.3 unsigned char Send_start (void)
Apply a START condition to the bus, waits until the condition is done and returns 0xFF if suc-
cess. If a error occur it will return TWSR.

3.1.4 void Send_stop (void)
Apply a STOP condition to the bus and return immediately.

3.1.5 unsigned char Send_to_TWI (unsigned char *tx_frame, unsigned char *rx_frame)
The main driver function which handles all the transfer activity and calls the other functions for
applying START/STOP conditions, transmit/receive data and transmit/receive address bytes.
Return 0xFF if success, TWSR if error.

3.1.6 unsigned char Send_byte (unsigned char data)
Send a data byte to the slave and wait for a ACK/NACK. Return 0xFF if ACK, TWSR if error.

Start

Send START
Send_start()

Send STOP
Send_stop()

Read data
Get_byte()

Last Byte ?

No

Send Slave adr
+ W/R

Send_adr()

Send data
Send_byte()

Read or Write
Data ?

Write

Read

Last Byte ?

No

Last Package ?

Yes

No

Return

Yes

Yes
6
1981B–AVR–09/05

AVR155

AVR155
3.1.7 unsigned char Send_adr (unsigned char adr)
Send a slave address to the bus and wait for a ACK/NACK. Return 0xFF if success, TWSR if
error.

3.1.8 unsigned char Get_byte (unsigned char *rx_frame)
Waits until you get a TWINT flag set and read out the TWI data registry. The read value is saved
in SRAM at “*rx_frame”. Return 0xFF if success, TWSR if error.

3.1.9 void Delay_mS (char mS)
A simple delay function. The delay is decided by the variable “mS” which decides number of mS
delay.

3.1.10 void Reset_TWI (void)
Reset the TWI module and release the bus. Used to free the bus if a error occur.

3.2 LCD Control Functions
The LCD control takes care of the LCD specific setup and sends data and control bytes through
the TWI master driver to the LCD. It configures the LCD to a dual-line display and display the
string “AVR ATmega163 with TWI interface to I2C” as a scrolling text on the top line.

3.2.1 char setup(void)
Setup function for the AVR.

3.2.2 unsigned char Init_DSP (void)
Setup function for the display. Configure it to two lines with 40 characters each.

3.2.3 unsigned char Clear_DSP (void)
The display has a internal clear display function which writes 0x20 to the entire memory area. At
this version of the driver 0x20 is not a blank character, this function will write blank characters to
the entire display instead of 0x20.
7
1981B–AVR–09/05

Figure 3-2. LCD Control Flow Chart

3.2.4 unsigned char Write_String1 (void)
Writes the string “AVR ATmega163 with TWI interface to I2C” to the display starting at line one,
position 0.

3.2.5 unsigned char Shift_left (void)
Shifts part of the display memory that is viewable once to the left and makes a scrolling effect.
Shifts one time every half second.

3.2.6 unsigned char Read_read_controlbyte (void)
Read out the displays read control byte including the busy flag and display address counter.
Used to check if the display is busy or ready for new commands.

Start

Initialize the LCD
Init_LCD()

Scroll Displayed Text
Once to the Left

Shift_left()

1 Second Delay
delay1S()

3 Second Delay
delay1S()

Write a String to the
LCD

Write_String1()

Clear the LCD
Clear_LCD()

LCD Busy?
Read_LCD_
controlreg()

LCD Busy?
Read_LCD_
controlreg()

LCD Busy?
Read_LCD_
controlreg()

LCD Busy?
Read_LCD_
controlreg()

Yes

Yes

Yes

Yes

Setup AVR
setup()

No

No

No

No
8
1981B–AVR–09/05

AVR155

AVR155
3.3 Hardware
The LCD is connected to the AVR through a I2C interface as shown in Figure 2-2.

4. References
Philips “The I2C-bus Specification Version 2.0” - (December 1998)

Philips “PCF2119x LCD controllers/drivers” datasheet - (March 1999)

Batron “BT21605V-SRE-I2C-COG” LCD module datasheet

Atmel “ATmega163” datasheet
9
1981B–AVR–09/05

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDI-
TIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-
TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT
OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided
otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use
as components in applications intended to support or sustain life.

Atmel Corporation Atmel Operations

2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

Regional Headquarters

Europe
Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
Tel: (41) 26-426-5555
Fax: (41) 26-426-5500

Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369

Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

Memory
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

Microcontrollers
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
Tel: (33) 2-40-18-18-18
Fax: (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards
Zone Industrielle
13106 Rousset Cedex, France
Tel: (33) 4-42-53-60-00
Fax: (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759

Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland
Tel: (44) 1355-803-000
Fax: (44) 1355-242-743

RF/Automotive
Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
Tel: (49) 71-31-67-0
Fax: (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom

Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
Tel: (33) 4-76-58-30-00
Fax: (33) 4-76-58-34-80

Literature Requests
www.atmel.com/literature

© Atmel Corporation 2005. All rights reserved. Atmel®, logo and combinations thereof, Everywhere You Are®, AVR®, AVR Studio®, and others,
are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.
 Printed on recycled paper.

1981B–AVR–09/05

	AVR155: Accessing an I2C LCD Display using the AVR® 2-wire Serial Interface
	Features
	1. Introduction
	2. Theory of Operation
	2.1 TWI Master Driver
	2.2 LCD_control function

	3. Implementation
	3.1 TWI Driver Functions
	3.1.1 char Init_TWI (void)
	3.1.2 void Wait_TWI_int (void)
	3.1.3 unsigned char Send_start (void)
	3.1.4 void Send_stop (void)
	3.1.5 unsigned char Send_to_TWI (unsigned char *tx_frame, unsigned char *rx_frame)
	3.1.6 unsigned char Send_byte (unsigned char data)
	3.1.7 unsigned char Send_adr (unsigned char adr)
	3.1.8 unsigned char Get_byte (unsigned char *rx_frame)
	3.1.9 void Delay_mS (char mS)
	3.1.10 void Reset_TWI (void)

	3.2 LCD Control Functions
	3.2.1 char setup(void)
	3.2.2 unsigned char Init_DSP (void)
	3.2.3 unsigned char Clear_DSP (void)
	3.2.4 unsigned char Write_String1 (void)
	3.2.5 unsigned char Shift_left (void)
	3.2.6 unsigned char Read_read_controlbyte (void)

	3.3 Hardware

	4. References

