GRAPHIC OLED MODULE SPECIFICATIONS

Crystalfontz Model Number	CFAL25664A-Y-B1
Hardware Version	Version A, April 2010
Data Sheet Version	Version 1.0, April 2010
Product Pages	http://www.crystalfontz.com/product/CFAL25664AYB1.html

Crystalfontz America, Incorporated

12412 East Saltese Avenue
Spokane Valley, WA 99216-0357
Phone: 888-206-9720
Fax: 509-892-1203
Email: techinfo@crystalfontz.com
URL: www.crystalfontz.com

Crystalfontz America, Inc. www.crystalfontz.com

REVISION HISTORY

HARDWARE	
$2009 / 04 / 07$	Current hardware version: vA New module.

DATA SHEET	
2010/04/09	Current Data Sheet version: 1.0 Since last Data Sheet (no version number, Preliminary): - Moved specifications into standard Graphic OLED template. - In Physical Characteristics (Pg. 8) (previously "General Specifications"): - Made distinction between overall height dimension with "FFC folded" and "FFC unfolded". Module height has not changed. - Made distinction between "Nominal Depth" and "Maximum Depth". Module depth has not changed. - Added specifications for "Diagonal", "FPC Bend Radius", "Module Connector Pitch", and "Weight". - In Absolute Maximum Ratings (Pg. 16), added Humidity specification. - Expanded "Precautions in use of OLED Modules" with important information on design and cleaning. See CARE AND HANDLING PRECAUTIONS (Pg. 22). - In Details of Interface Pin Function (Pg. 17), used Crystalfontz standard terms for signals and improved descriptions. - In illustrations: - Improved Module Outline Drawings (Pg. 9). - Improved System Block Diagram (Pg. 12). - Added circuit example using Micrel MIC2290 for VPANEL (see Circuit Example - VPANEL Externally Supplied for Display (Pg. 13). - Added circuit example Connection Diagram (Pg. 14). - Added illustration to explain Power Up and Power Down Sequencing (Pg. 15). - Added photo with pins labeled (see Photo Reference for Pin Functions (Pg. 19)). - Added definition of Viewing Angle in Optical Characteristics (Pg. 20).
ntinued on next	age.

DATA SHEET	
2010/04/09 Continued from the previous page	- New sections, include: - MAIN FEATURES (Pg. 6) - ESD (Electro-Static Discharge) (Pg. 19). - Sources for Sample Code (Pg. 21). - Module Reliability (Pg. 21). - APPENDIX A: QUALITY ASSURANCE STANDARDS (Pg. 24). - APPENDIX B: OLED MODULE TERMS AND SYMBOLS (Pg. 27) = APPENDIX C: STMICROELECTRONICS STV8105 CONTROLLER DATASHEET (Pg. 32) - Deleted information that is repeated in the appended controller specifications. - This module can be ordered as part of a CFA-10009 demonstration board kit. The CFA-10009 User Guide was added at the end of this Data Sheet.
2009/04/07	Data Sheet version: No version number (unmarked Preliminary) New Data Sheet.

The Fine Print

Certain applications using Crystalfontz America, Inc. products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications"). CRYSTALFONTZ AMERICA, INC. PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. Inclusion of Crystalfontz America, Inc. products in such applications is understood to be fully at the risk of the customer. In order to minimize risks associated with customer applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazard. Please contact us if you have any questions concerning potential risk applications.

Crystalfontz America, Inc. assumes no liability for applications assistance, customer product design, software performance, or infringements of patents or services described herein. Nor does Crystalfontz America, Inc. warrant or represent that any license, either express or implied, is granted under any patent right, copyright, or other intellectual property right of Crystalfontz America, Inc. covering or relating to any combination, machine, or process in which our products or services might be or are used.

The information in this publication is deemed accurate but is not guaranteed.

Company and product names mentioned in this publication are trademarks or registered trademarks of their respective owners.

Copyright © 2010 by Crystalfontz America, Inc., 12412 East Saltese Avenue, Spokane Valley, WA 99216-0357 U.S.A.

CONTENTS

MAIN FEATURES 6
Demonstration and Evaluation Platform -6
Comparison to LCD (Liquid Crystal Display) Module - 6
Features -6
Module Classification Information - 7
MECHANICAL SPECIFICATIONS 8
Physical Characteristics - 8
Module Outline Drawings -9
ELECTRICAL SPECIFICATIONS 12
System Block Diagram 12
Circuit Example - V ${ }_{\text {PANEL }}$ Externally Supplied for Display 13
Connection Diagram 14
Power Up and Power Down Sequencing 15
Absolute Maximum Ratings 16
DC Characteristics 16
Details of Interface Pin Function 17
Photo Reference for Pin Functions 19
ESD (Electro-Static Discharge) 19
OPTICAL SPECIFICATIONS 20
Optical Characteristics 20
OLED CONTROLLER INTERFACE 20
SAMPLE CODE 21
Sources For Driver Libraries 21
Sample Code 21
MODULE RELIABILITY AND LONGEVITY 21
Module Reliability 21
Module Longevity (EOL/Replacement Policy) 21
CARE AND HANDLING PRECAUTIONS 22
ESD (Electro-Static Discharge) 22
Design and Mounting 22
Avoid Shock, Impact, Torque, or Tension 22
Cleaning 23
Operation 23
Storage and Recycling 23
APPENDIX A: QUALITY ASSURANCE STANDARDS 24
APPENDIX B: OLED MODULE TERMS AND SYMBOLS 27
APPENDIX C: STMICROELECTRONICS STV8105 CONTROLLER DATASHEET 32

LIST OF FIGURES

Figure 3. Circuit Example - External Supply for Display----------------------------------13

Figure 5. Power Up and Power Down Sequencing ---15
Figure 6. Photo Reference for Pin Functions ---19 19

MAIN FEATURES

DEMONSTRATION AND EVALUATION PLATFORM

This module is available installed on a Crystalfontz CFA-10009 Demonstration PCB. The DMO-L25664AYB1 kit has everything you need to easily demonstrate and experiment with the module. The kit can also be used as a reference for your designs. The CFA-10009 User Guide can be found at the end of this Data Sheet.

COMPARISON TO LCD (LIQUID CRYSTAL DISPLAY) MODULE

The CFAL25664A-Y-B1 is a monochrome 256×64 dot matrix Organic Light-Emitting Diode (OLED) display module. The small size, and ultrathin form factor of the CFAL25664A-Y-B1 makes it possible to use this OLED module in applications where it would be difficult or impossible to fit a traditional monochrome LCD module. Because of the low power requirements, the CFAL25664A-Y-B1 is suitable in battery powered portable devices such as remote controls and scientific meters (for example, temperature, sound, and gas detection).

Compared to most LCD modules, this OLED module has a quicker response time and an extremely wide viewing angle. At the low end of an STN LCD's temperature range, a module's contrast will typically be poor and the response time will be very slow. Unlike an STN LCD module, contrast does not diminish and response time is good at the lower end of an OLED module's operating temperature range, allowing it to operate in cold environments without a heater.

FEATURES

. 256×64 module consists of an OLED panel, a COF (Chip On Flex) driver IC, and an FFC (Flat Flexible Cable) that mates with a ZIF connector.
[The FFC (Flat Flex Cable) mates with standard ZIF connectors such as $\underline{609-1244-1-N D}$ or $\underline{609-1882-1-N D}$ available from Digi-Key.

- Module Dimensions
- Active Area is 3.22 " diagonal, $79.33(\mathrm{~W}) \times 19.81(\mathrm{H}) \mathrm{mm}\left(3.12^{\prime \prime}(\mathrm{W}) \times 0.78{ }^{\prime \prime}(\mathrm{H})\right.$).
- Overall module dimension with FPC unfolded is $91.04(\mathrm{~W}) \times 55.44(\mathrm{H}) \times 2.50$ maximum (D) millimeters (3.58" (W) x $2.18^{\prime \prime}(H) \times 0.10 "$ maximum (D)).
- Overall module dimension with FPC folded is $91.04(\mathrm{~W}) \times 29.94(\mathrm{H}) \times 2.50$ maximum (D) millimeters (3.58 " (W) x 1.18 " (H) x 0.10 " maximum (D)).
\square Requires 3 v for logic and a separate supply for $\mathrm{V}_{\text {PANEL }}$.
- 8-bit parallel (8080) interface or 4-wire Serial Peripheral Interface (SPI).
- STMicroelectronics STV8105 or compatible controller.
] 16-level grayscale allows anti-aliased fonts.
Emissive monochrome display. Display yellow pixels on dark area or dark pixels on yellow area (if operating with display pixels reversed/inverted).
- Very high contrast ratio.
- Extremely wide viewing angle is $>160^{\circ}$.

Wide temperature range for operation is $-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.
RoHS compliant.

MODULE CLASSIFICATION INFORMATION

$\boldsymbol{(1)}$	Brand	Crystalfontz America, Inc.
$\boldsymbol{(2}$	Display Type	L - OLED
$\boldsymbol{3}$	Number of Pixels (Width)	256 pixels
$\boldsymbol{4}$	Number of Pixels (Height)	64 pixels
$\boldsymbol{5}$	Model Identifier	A
$\boldsymbol{6}$	Display Color	Y - Yellow
$\boldsymbol{7}$	Special Code	B1 - Manufacturer's code

MECHANICAL SPECIFICATIONS

PHYSICAL CHARACTERISTICS

Number of Pixels		
256×64 pixels $=16,384$ pixels		
Pixel Detail	Horizontal	Vertical
Pixel Size	0.28 mm	0.28 mm
Pixel Pitch	0.31 mm	0.31 mm

Module Depth		
	Maximum	Nominal
Millimeters	2.50	2.20
Inches	0.10 "	$0.09 "$

Viewing Area			
	Width	Height	
Millimeters	81.33	21.81	
Inches	3.20 "	0.86 "	

Active Area		
Diagonal	Inches: 3.22"	
	Width	Height
Millimeters	79.33	19.81
Inches	$3.12^{\prime \prime}$	$0.78{ }^{\prime \prime}$

Module Overall with FFC Unfolded		
	Width	Height
Millimeters	91.04	55.44
Inches	3.58 "	2.18 "

Module Overall with FFC Folded		
	Width	Height
Millimeters	91.04	29.94
Inches	3.58 "	1.18 "

General	
Module Connector Pitch*	0.50 mm
FFC Bend Radius	$>$ R5.00 mm
Weight	15 grams (typical)
*The module's 24-pin FFC mates with standard 0.50 mm ZIF connectors such as $609-$ 1875-1-ND and $\underline{609-1876-1-N D ~ a v a i l a b l e ~ f r o m ~ D i g i-K e y . ~}$	

MODULE OUTLINE DRAWINGS

Figure 1. Module Outline Drawings (3 pages) below.

Crystalfontz America, Inc. www.crystalfontz.com
April 2010

Note:

Crystalfontz America, Inc. www.crystalfontz.com/products/	Part No.(s):	CFAL25664A-Y-B1	Scale: Not to scale	Drawing Number: CFAL25664A_master	$\begin{gathered} \hline \text { Hardware Rev.: } \\ \text { vA } \end{gathered}$
			Units: Millimeters	Date: 2010/04/05	Sheet: $2 \text { of } 3$

Crystalfontz America, Inc. www.crystalfontz.com April 2010

ELECTRICAL SPECIFICATIONS

SYSTEM BLOCK DIAGRAM

Figure 2. System Block Diagram

CIRCUIT EXAMPLE - VPANEL EXTERNALLY SUPPLIED FOR DISPLAY

The Micrel MIC2290 is one of many possible $\mathrm{V}_{\text {PANEL }}$ supply solutions.

Figure 3. Circuit Example - External Supply for Display
Please refer to the Micrel MIC2290 datasheet for design details. See http://micrel.com/page.do?page=/product-info/ products/mic2290.shtml.

CONNECTION DIAGRAM

Figure 4. Connection Diagram

POWER UP AND POWER DOWN SEQUENCING

You must observe proper power sequencing for $\mathrm{V}_{\text {PANEL }}$.
Power Up - Display must be powered up and initialized before power is applied to $V_{\text {PANEL }}$.
Power Down - Power must be removed from $V_{\text {PANEL }}$ before the display is powered off.

Figure 5. Power Up and Power Down Sequencing

ABSOLUTE MAXIMUM RATINGS

ABSOLUTE MAXIMUM RATINGS	$\sum_{\text {¢ }}^{\substack{1}}$		
Operating Temperature*	T_{OP}	$-20^{\circ} \mathrm{C}$	$+70^{\circ} \mathrm{C}$
Storage Temperature*	$\mathrm{T}_{\text {ST }}$	$-30^{\circ} \mathrm{C}$	$+80^{\circ} \mathrm{C}$
Humidity	RH	0\%	90\%
Logic Supply Voltage	VLOGIC	+2.4v	+3.5v
Driver Supply Voltage	$V_{\text {PANEL }}$	Ov	+16.5v
*Prolonged exposure at temperatures outside of this range may cause permanent damage to the module or decrease product lifetime.			

DC CHARACTERISTICS

DC CHARACTERISTICS	$\begin{gathered} \text { TEST } \\ \text { CONDITION } \end{gathered}$	\sum_{ω}^{0}	$\sum_{\sum}^{\sum \sum}$	$\xrightarrow{\substack{\text { ¢ }}}$	
Logic Supply Voltage	$\mathrm{T}_{\text {OP }}=-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$\mathrm{V}_{\text {LOGIC }}$	+3.0v	+3.3v	$+3.5 \mathrm{v}^{1}$
OLED Driver Supply Voltage ${ }^{2}$	$\mathrm{T}_{\mathrm{OP}}=-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$V_{\text {panel }}$		+14v	+16.5v
Input High Voltage		V_{H}	$\begin{gathered} +0.8 \mathrm{v} \times \mathrm{V}_{\text {LOGIC }} \\ \text { For } \mathrm{v}_{\text {LOGIC }}=+3.3 \mathrm{v} \\ \mathrm{v}_{\mathrm{IH}}=+0.8 \mathrm{v} \times+3.3 \mathrm{v}=+2.64 \mathrm{v} \end{gathered}$		$\mathrm{V}_{\text {Logic }}$
Input Low Voltage		VIL	Ov (GND)		$\begin{gathered} +0.2 \mathrm{v} \times \mathrm{V}_{\text {LOGIC }} \\ \text { For } \mathrm{V}_{\text {LOGIC }}=+3.3 \mathrm{v} \\ \mathrm{v}_{\mathrm{IL}}=+0.2 \mathrm{v} \times+3.3 \mathrm{v}=+0.66 \mathrm{v} \end{gathered}$
Output High Voltage	$\mathrm{l}_{\text {OUT }}=<1 \mathrm{~mA}$	$\mathrm{V}_{\text {OH }}$	$\begin{gathered} +0.8 \mathrm{v} \times \mathrm{V}_{\text {LOGIC }} \\ \text { For } \mathrm{V}_{\text {LOGIC }}=+3.3 \mathrm{v} \\ \mathrm{v}_{\mathrm{IH}}=+0.8 \mathrm{v} \times+3.3 \mathrm{v}=+2.64 \mathrm{v} \end{gathered}$		$\mathrm{V}_{\text {Logic }}$
Output Low Voltage	$\mathrm{l}_{\text {OUt }}=<1 \mathrm{~mA}$	$V_{\text {OL }}$	Ov (GND)		$\begin{gathered} +0.2 \mathrm{v} \times \mathrm{V}_{\text {LOGIC }} \\ \text { For } \mathrm{V}_{\text {LOGIC }}=+3.3 \mathrm{v} \\ \mathrm{~V}_{\text {IL }}=+0.2 \mathrm{v} \times+3.3 \mathrm{v}=+0.66 \mathrm{v} \end{gathered}$
${ }^{1}$ Do not exceed $+3.5 v$ maximum. ${ }^{2}$ The $\vee_{\text {PANEL }}$ input must be a stable value with no ripple or noise. This is a summary of the module's major operating parameters. For detailed information see APPENDIX C: STMICROELECTRONICS STV8105 CONTROLLER DATASHEET (Pg. 32)					

Crystalfontz America, Inc.
CFAL25664A-Y-B1 Graphic OLED Module Data Sheet
www.crystalfontz.com
Hardware vA / Data Sheet v1.0
April 2010

DETAILS OF INTERFACE PIN FUNCTION

PIN	SIGNAL	岂		DESCRIPTION
1	NC			Make no connection.
2	$\overline{\mathrm{CS}}$	H/L	1	Chip select input. Low: Controller chip is selected. Communications with the host is possible. High: Controller chip is not selected. Host interface signals are ignored by the controller.
3	$\overline{W R}_{8080}$	H/L	1	Host interface input. 8080 Host: Active low. Signal on the databus is latched at the rising edge of $\overline{\mathrm{WR}}$ signal. SPI (serial) mode: Connect to ground.
4	D/C	H/L	1	Data/Command control. Determines whether data bits are data or command. 1 - High: Addresses the data register. 2 - Low: Addresses the command register.
5	DB0	H/L	I/O	Bidirectional databus connects to 8 -bit standard host databus. In SPI (serial) mode (IS1=0, IS2=0): DB6 serves as the serial clock input signal (SCL) and DB7 serves as the serial data input pin (SI). DB2-DB7 are high impedance. In serial mode, data can be written to the display but not read. Pin $3\left(\overline{W R}_{8080}\right)$ is unused and should be tied low. In 8080 Parallel mode: Pin 3 is used as $\overline{W R}_{8080 \text {. Data is input or output }}$ on DB0-DB7.
6	DB1	H/L	I/O	
7	DB2	H/L	I/O	
8	DB3	H/L	I/O	
9	DB4	H/L	I/O	
10	DB5	H/L	I/O	
11	DB6	H/L	I/O	
12	DB7	H/L	I/O	
13	$\overline{\mathrm{RST}}$	H/L	1	Reset signal. Low: Display controller is reset. The $\overline{\mathrm{RST}}$ pin should be pulsed low shortly after power is applied. High: The $\overline{\text { RST }}$ pin should be brought high for normal operation.

Crystalfontz America, Inc.
CFAL25664A-Y-B1 Graphic OLED Module Data Sheet
www.crystalfontz.com
Hardware vA / Data Sheet v1.0
April 2010

| PIN | SIGNAL | DESCRIPTION (Continued) |
| :--- | :---: | :---: | :---: | :---: | :---: |

PHOTO REFERENCE FOR PIN FUNCTIONS

Figure 6. Photo Reference for Pin Functions

ESD (ELECTRO-STATIC DISCHARGE)

The circuitry is industry standard CMOS logic and susceptible to ESD damage. Please use industry standard antistatic precautions as you would for any other static sensitive devices such as expansion cards, motherboards, or integrated circuits. Ground your body, work surfaces, and equipment.

OPTICAL SPECIFICATIONS

OPTICAL CHARACTERISTICS

ITEM	$\begin{aligned} & \text { ó } \\ & \sum_{i}^{m} \end{aligned}$		$\underset{\sum}{\sum \sum}$		
Viewing Angle				$\geq 160^{\circ}$	
Dark Room Contrast Ratio ${ }^{1}$	CR	$80 \mathrm{~cd} / \mathrm{m}^{2}$		$\geq 100: 1$	
Luminous Intensity	$L_{B R}$			$80 \mathrm{~cd} / \mathrm{m}^{2}$	
Duty	1/64				
${ }^{1}$ Contrast Ratio $=($ brightness with pixels light)/(brightness with pixels dark). ${ }^{2}$ Response Time: The amount of time it takes a pixel to change from active to inactive or back					

Definition of Viewing Angle

Figure 7. CFAL25664A-Y-B1 has a 160° Viewing Angle

OLED CONTROLLER INTERFACE

SAMPLE CODE

SOURCES FOR DRIVER LIBRARIES

Graphic driver libraries may save a lot of time and help you develop a more professional product. Possible library sources are easyGUI, en.radzio.dxp.pl, Gwentech, Micrium, RAMTEX, and Segger emWin.

SAMPLE CODE

You can download our sample code from here: http://www.crystalfontz.com/products/document/2088/CFAL25664A.zip.
Note: Please observe $V_{\text {PANEL }}$ sequencing as described in Details of Interface Pin Function (Pg. 17). See also Power Up and Power Down Sequencing (Pg. 15).

MODULE RELIABILITY AND LONGEVITY

MODULE RELIABILITY

AVERAGE BRIGHTNESS	SPECIFICATION
$80 \mathrm{~cd} / \mathrm{m}^{2}$	Brightness will be $>50 \%$ of a new module's initial brightness for at least 10,000 hours of operation.
$40 \mathrm{~cd} / \mathrm{m}^{2}$	20,000 hours.
Test Condition: $25^{\circ} \mathrm{C}$	

OLED displays are an emissive technology. Each pixel is susceptible to dimming based on its individual use (burn-in). Frequently used pixels will dim more quickly than pixels that are not used as often. Please avoid using a bright, static, high-contrast image for a long time. If you want to leave the display powered on, please use scrolling text or alternating images to "wear level" the pixels. To conserve power and display lifetime, turn off or dim the display when it is not in use.

MODULE LONGEVITY (EOL/REPLACEMENT POLICY)

Crystalfontz is committed to making all of our modules available for as long as possible. For each module we introduce, we intend to offer it indefinitely. We do not preplan a module's obsolescence. The majority of modules we have introduced are still available.

We recognize that discontinuing a module may cause problems for some customers. However, rapidly changing technologies, component availability, or low customer order levels may force us to discontinue ("End of Life", EOL) a module. For example, we must occasionally discontinue a module when a supplier discontinues a component or a manufacturing process becomes obsolete. When we discontinue a module, we will do our best to find an acceptable replacement module with the same fit, form, and function.

In most situations, you will not notice a difference when comparing a "fit, form, and function" replacement module to the discontinued module. However, sometimes a change in component or process for the replacement module results in a slight variation, perhaps an improvement, over the previous design.

Although the replacement module is still within the stated Data Sheet specifications and tolerances of the discontinued module, changes may require modification to your circuit and/or firmware. Possible changes include:

- Controller. A new controller may require minor changes in your code.
- Component tolerances. Module components have manufacturing tolerances. In extreme cases, the tolerance stack can change the visual or operating characteristics.

Please understand that we avoid changing a module whenever possible; we only discontinue a module if we have no other option. We will post Part Change Notices on the product's webpage as soon as possible. If interested, you can subscribe to future part change notifications.

CARE AND HANDLING PRECAUTIONS

For optimum operation of the module and to prolong its life, please follow the precautions below. Excessive voltage will shorten the life of the module. You must drive the display within the specified voltage limit. See Absolute Maximum Ratings (Pg. 16).

ESD (ELECTRO-STATIC DISCHARGE)

The circuitry is industry standard CMOS logic and susceptible to ESD damage. Please use industry standard antistatic precautions as you would for any other static sensitive devices such as expansion cards, motherboards, or integrated circuits. Ground your body, work surfaces, and equipment.

DESIGN AND MOUNTING

- The exposed surface of the "glass" is actually a polarizer laminated on top of the glass. To protect the soft plastic polarizer from damage, the module ships with a protective film over the polarizer. Please peel off the protective film slowly. Peeling off the protective film abruptly may generate static electricity.
- The polarizer is made out of soft plastic and is easily scratched or damaged. When handling the module, avoid touching the polarizer. Finger oils are difficult to remove.
- To protect the soft plastic polarizer from damage, place a transparent plate (for example, acrylic, polycarbonate, or glass) in front of the module, leaving a small gap between the plate and the display surface. We use GE HP92 Lexan, which is readily available and works well.
- Do not disassemble or modify the module.
- Do not reverse polarity to the power supply connections. Reversing polarity will immediately ruin the module.
- The FFC (Flat Flex Cable) mates with standard ZIF connectors such as 609-1244-1-ND or 609-1882-1-ND available from Digi-Key.
- Sharp bends can damage the FFC. Do not crease FFC. Do not bend FFC tightly against the edge of the OLED panel. Limit bend radius to $>$ R5.00 mm.
- Do not repeatedly bend the FFC beyond its elastic region.

AVOID SHOCK, IMPACT, TORQUE, OR TENSION

- Do not expose the module to strong mechanical shock, impact, torque, or tension.
- Do not drop, toss, bend, or twist the module.
- Do not place weight or pressure on the module.

CLEANING

- The polarizer (laminated to the glass) is soft plastic. The soft plastic is easily scratched or damaged. Be very careful when you clean the polarizer.
- Do not clean the polarizer with liquids. Do not wipe the polarizer with any type of cloth or swab (for example, Qtips).
- Use the removable protective film to remove smudges (for example, fingerprints) and any foreign matter. If you no longer have the protective film, use standard transparent office tape (for example, Scotch® brand "Crystal Clear Tape"). If the polarizer is dusty, you may carefully blow it off with clean, dry, oil-free compressed air.

OPERATION

- We do not recommend connecting this module to a PC's parallel port as an "end product." This module is not "user friendly" and connecting it to a PC's parallel port is often difficult, frustrating, and can result in a "dead" display due to mishandling. For more information, see our forum thread at http://www.crystalfontz.com/forum/ showthread.php?s=\&threadid=3257.
- Your circuit should be designed to protect the module from ESD and power supply transients.
- Observe the operating temperature limitations: from $-20^{\circ} \mathrm{C}$ minimum to $+70^{\circ} \mathrm{C}$ maximum with minimal fluctuations. Operation outside of these limits may shorten the life and/or harm the display.
- Operate away from dust, moisture, and direct sunlight.

STORAGE AND RECYCLING

- Store in an ESD-approved container away from dust, moisture, and direct sunlight, fluorescent lamps, or any ultraviolet ray.
- Observe the storage temperature limitations: from $-30^{\circ} \mathrm{C}$ minimum to $+80^{\circ} \mathrm{C}$ maximum with minimal fluctuations. Rapid temperature changes can cause moisture to form, resulting in permanent damage.
- Do not allow weight to be placed on the modules while they are in storage.
- Please recycle your outdated Crystalfontz modules at an approved facility.

APPENDIX A: QUALITY ASSURANCE STANDARDS

INSPECTION CONDITIONS

- Environment
- Temperature: $25 \pm 5^{\circ} \mathrm{C}$
- Humidity: $30 \sim 85 \%$ RH (noncondensing)
- For visual inspection of active display area
- Source lighting: two 20-Watt or one 40 -Watt fluorescent light
- Display adjusted for best contrast
- Viewing distance: $30 \pm 5 \mathrm{~cm}$ (about 12 inches)
- Viewing angle: inspect at 45° angle of vertical line right and left, top and bottom

COLOR DEFINITIONS

We try to describe the appearance of our modules as accurately as possible. For the photos, we adjust for optimal appearance. Actual display appearance may vary due to (1) different operating conditions, (2) small variations of component tolerances, (3) inaccuracies of our camera, (4) color interpretation of the photos on your monitor, and/or (5) personal differences in the perception of color.

DEFINITION OF ACTIVE AREA AND VIEWING AREA

ACCEPTANCE SAMPLING

DEFECT TYPE	AQL* $^{c \mid}$
Major	$\leq .65 \%$
Minor	$<1.0 \%$

* Acceptable Quality Level: maximum allowable error rate or variation from standard

DEFECTS CLASSIFICATION

Defects are defined as:

- Major Defect: results in failure or substantially reduces usability of unit for its intended purpose.
- Minor Defect: deviates from standards but is not likely to reduce usability for its intended purpose.

ACCEPTANCE STANDARDS

\#	DEFECT TYPE	CRITERIA			
1	Electrical defects	1. No display, display malfunctions, or shorted segments. 2. Current consumption exceeds specifications.			Major
2	Viewing area defect	Viewing area does not meet specifications.			Major
3	Blemishes or foreign matter on display segments		Defect Size	Acceptable Qty	Minor
			$\leq 0.30 \mathrm{~mm}$	3	
			≤ 2 defects within 10 mm of each other		
4	Dark lines or scratches in display area	Defect Width	Defect Length	Acceptable Qty	Minor
		$\leq 0.03 \mathrm{~mm}$	≤ 3.0 mm	3	
		0.03 to 0.05	≤ 2.0 mm	2	
		0.05 to 0.08	≤ 2.0 mm	1	
		0.08 to 0.10	≤ 3.0 mm	0	
		≥ 0.10	>3.0 mm	0	

ACCEPTANCE STANDARDS

\#	DEFECT TYPE	CRITERIA			
5	Bubbles between polarizer film and glass		Defect Size	Acceptable Qty	Minor
			$\leq 0.20 \mathrm{~mm}$	Ignore	
			0.20 to 0.40 mm	3	
			0.40 to 0.60 mm	2	
			$\geq 0.60 \mathrm{~mm}$	0	
6	Display pattern defect				Minor
		Pixel Size	Acceptable Qty		
		$((\mathrm{A}+\mathrm{B}) / 2) \leq 0.20 \mathrm{~mm}$	≤ 3 total defects ≤ 2 pinholes per digit		
		$\mathrm{C}>0 \mathrm{~mm}$			
		$((\mathrm{D}+\mathrm{E}) / 2) \leq 0.25 \mathrm{~mm}$			
		$((\mathrm{F}+\mathrm{G}) / 2) \leq 0.25 \mathrm{~mm}$			
7	PCB defects	1. Oxidation or contam 2. Wrong parts, missing 3. Jumpers set incorre 4. Solder (if any) on be pad is not smooth. *Minor if display functio	ation on connectors parts, or parts not in I, LED pad, zebra correctly. Major if th	pecification.* , or screw hole display fails.	Minor
8	Soldering defects	1. Unmelted solder pas 2. Cold solder joints, m 3. Solder bridges caus 4. Residue or solder ba 5. Solder flux is black *Minor if display functio	ing solder connect short circuits.* brown. correctly. Major if the	ns, or oxidation.* splay fails.	Minor

APPENDIX B: OLED MODULE TERMS AND SYMBOLS

Symbol	
C	Capacitor
cd/m nit	Candela meter squared is the standard unit of measurement for luminous intensity (photometric brightness).
CIE	A color model based on human perception developed by the CIE (Commission Internationale de l'Eclairage) committee.
CLS	Clock select pin.
COF COT TAB	Chip On Flex. Controller is on the FPC. Similar in appearance to "TAB." The flex circuit on COF is typically much thinner than the flex of a "flex tail."
COG	Chip On Glass. Controller is on the glass panel.
COM	Common driver. Common signal output for OLED display.
CR	Contrast Ratio = (brightness with pixels light)/(brightness with pixels dark).
CS CS\# CSB	Chip select input. Low: Controller chip is selected. Communications with host is possible. D
High: Controller chip is not selected. Host interface signals are ignored by the controller.	

Symbol	Description (Continued)
Q	Transistor, including FET and MOSFET.
R	Resistor
$\begin{gathered} \overline{\mathrm{RD}}_{8080}\left(\mathrm{E}_{6800}\right) \\ \mathrm{RD}(\mathrm{E}) \\ \mathrm{E}(\overline{\mathrm{RD}}) \\ \mathrm{E} \\ \mathrm{RDB} \end{gathered}$	Host interface input. 8080 Host: Active low. Signal on the databus is latched at the rising edge of $\overline{\mathrm{RD}}$. 6800 Host (if available): Enable control signal input active high. $\mathrm{E}=$ High: Read or Write operation is active. $\mathrm{E}=$ Low: No operation.
$\begin{aligned} & \mathrm{RH} \\ & \mathrm{Rh} \end{aligned}$	Relative Humidity.
RoHS	Restriction of Hazardous Substances Directive, an environmental standard.
$\begin{gathered} \overline{\text { RST }} \\ \overline{\text { RES }} \\ \text { RST\# } \\ \text { RES\# } \\ \text { RSTB } \\ \text { RESET } \end{gathered}$	Reset signal. Low: Display controller is reset. The $\overline{\mathrm{RST}}$ pin should be pulsed low shortly after power is applied. High: The $\overline{\text { RST }}$ pin should be brought high for normal operation.
$\begin{aligned} & \text { SCL } \\ & \text { SCK } \end{aligned}$	Serial Clock signal.
$\begin{aligned} & \text { SDO } \\ & \text { MISO } \end{aligned}$	Data output pin in serial interface. $\begin{aligned} & \text { SDO = Serial Data Out } \\ & \text { MISO = Master In, Slave Out } \end{aligned}$
SEG	Segment driver. Segment signal output for OLED display.
SENSE	Source current for external NMOS of booster circuit.
$\begin{gathered} \text { SI } \\ \text { SDI } \\ \text { MOSI } \end{gathered}$	Data input pin in serial interface. SDI = Serial Data In MOSI - Master Out, Slave In
SW	Switch output drives the gate of the external NMOS of the booster circuit.
$\begin{aligned} & \mathrm{Ta} \\ & \mathrm{TA} \end{aligned}$	"Ambient temperature" is the temperature of the air that surrounds a component.
T_{OP}	Operating temperature.
T_{ST} $\mathrm{T}_{\text {STG }}$	Storage Temperature.
$V_{\text {bref }}$	Internal voltage reference for booster circuit. A decoupling capacitor, typically $1 \mu \mathrm{~F}$, should be connected to GND.

Symbol	Description (Continued)
$\mathrm{V}_{\text {COL }}$	Column Supply Voltage. This is odd and even column supply voltage. It can be supplied externally or by connecting to $\mathrm{V}_{\text {PANEL }}$.
$\mathrm{V}_{\text {COMH }}$	High level voltage output for common signals. A low ESR capacitor should be connected between this pin and GND. Do not connect external power supply directly to this pin.
$\begin{aligned} & \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{ICH}} \end{aligned}$	High level input voltage.
$\begin{gathered} \mathrm{V}_{\mathrm{IL}} \\ \mathrm{~V}_{\mathrm{LCH}} \end{gathered}$	Low level input voltage.
V Logic	Power supply input. Must be connected to an external source.
```C```	Supply voltage for I/O signals.
$\begin{gathered} \mathrm{V}_{\mathrm{OH}} \\ \mathrm{~V}_{\mathrm{OHC}} \end{gathered}$	High level output voltage.
$V_{\text {OL }}$   $V_{\text {OLC }}$	Low level output voltage.
$V_{\text {PANEL }}$ $V_{P P}$ $V_{C C}$ (if no PCB)	Driver supply voltage. Only high voltage input on chip. Power must be supplied externally.   Note: You must observe power sequencing for this signal.   Power Up - Display must be powered up and initialized before power is applied to the signal.   Power Down - Power must be removed from this signal before the display is powered off.
$V_{\text {REF }}$	Voltage reference pin for pre-charge voltage in driving OLED device. Voltage should be set to match with the OLED driving voltage in current drive phase. It can either be supplied externally or by connecting to $\mathrm{V}_{\text {PANEL }}$.


Symbol	Description (Continued)
VRow	Row Driver Supply. This is odd and even row power supply. It can be supplied externally or by connecting to $\mathrm{V}_{\text {PANEL }}$.
$\mathrm{V}_{\text {SL }}$	Segment voltage reference pin. This pin should be left open.
$\begin{gathered} \overline{W R}_{8080}\left(R / \bar{W}_{6800}\right) \\ R / \bar{W}(\overline{W R}) \\ \overline{W R}(R / \bar{W}) \\ R / W \# \\ W R B \end{gathered}$	Host interface input.   8080 Host: Active low. Signal on the databus is latched at the rising edge of $\overline{\mathrm{WR}}$ signal.   6800 Host (if available): Read/Write control signal output. $\begin{aligned} & R \bar{W}=\text { High: Read (Host }<\text { Module }) \\ & R \bar{W}=\text { Low: Write (Host } \rightarrow \text { Module) } \end{aligned}$

## APPENDIX C: STMICROELECTRONICS STV8105 CONTROLLER DATASHEET

The complete STMicroelectronics STV8105 $256 \times 72 \times 4$-Bit OLED Passive Matrix Controller/Driver Preliminary Data revision 1.1, January 1995 ( 95 pages) follows.

## STV8105

## $256 \times 72 \times 4$-Bit OLED Passive Matrix Controller/Driver

## (Bumped Die)

ORDER CODE: STV8105

## Main Features

## ■ Supports Monochrome OLED Passive Matrices in different formats:

- $256 \times 72$ Black \& White
- $256 \times 72 \times 2$-bits $/ 4$ levels of gray
- $256 \times 72 \times 4$-bits $/ 16$ levels of gray
- $256 \times 36 \times 6$-bits/ 64 levels of gray
- $128 \times 72 \times 6$-bits/ 64 levels of gray

■ On-chip DC/DC Step-up Converter
■ Display Power Supply up to 25V
■ Device Power Supply: 3.0 to 3.6 V

- Low-power Consumption Suitable for Battery-operated Systems
■ Column Source Current capability: $800 \mu \mathrm{~A}$, max.
$\square$ Row Sink Current capability: 110 mA , max.
- On-chip Oscillator
- Programmable Gamma Correction

■ Programmable Display Multiplexing
■ Two Brightness Control registers of 128 steps each

■ 32 Step Dimmer Control

- One Time Programmable (OTP) fuse ROM for key configuration parameters

■ Dual Scan, Master/Slave Capability
■ Selectable 8-bit Parallel as well as Serial Peripheral Interfaces

## Description

The STV8105 is a low-power, controller/driver "combo" IC for OLED displays. The STV8105 supports 256 columns by 72 rows with 16 levels of gray for monochrome and $2 \times 128$ columns by 72 rows with 16 levels of gray for "two" color displays. It can control a display of 128 columns by 72 rows or 256 columns by 36 rows with 64 levels of gray in monochrome mode.

The STV8105 provides all necessary functions in a single chip, including on-chip supply control and bias current generators, resulting in a minimum of external components and in very low-power consumption.

The STV8105 communicates with the system via fully configurable interfaces (parallel or serial) to ease interfacing with the host microcontroller. The STV8105 has a set of command and control registers that can be addressed by these interfaces.


## Contents

Chapter 1 General Overview ..... 5
1.1 Bumped Die Pad Description ..... 7
1.2 Pad Signal Description ..... 12
1.3 Lead Pad Reference Chart ..... 14
1.4 Mechanical Dimensions ..... 15
1.5 Functional Description ..... 16
Chapter 2 Bus Interfaces ..... 17
2.1 Interface Sequence ..... 17
2.2 Parallel Interface ..... 18
2.3 Serial Interface ..... 20
2.4 Master/Slave Connection ..... 23
Chapter 3 Display RAM ..... 24
3.1 16 Level Gray Scale Mode Memory Map ..... 25
3.2 4 Level Gray Scale Mode Memory Map ..... 25
3.3 64 Level Gray Scale Mode 1 Memory Map ..... 27
3.4 64 Level Gray Scale Mode 2 Memory Map ..... 28
3.5 Monochrome Mode Memory Map ..... 29
3.6 Display RAM Loading ..... 31
Chapter 4 Dot-Matrix Display ..... 32
Chapter 5 Clock Generation ..... 34
Chapter 6 Master/Slave and Primary/Secondary Operation ..... 36
Chapter 7 Brightness Adjustment ..... 38
Chapter 8 DC/DC Step-up Converter with VF Detection ..... 40
8.1 General Description ..... 40
8.2 Detailed Description ..... 41
8.2.1 PWM Mode ..... 42
8.2.2 PFM Mode ..... 43
8.3 Compensation Network ..... 44
8.4 Soft Start ..... 45
8.5 Peak Current Detection ..... 46
Chapter 9 Column Drivers ..... 47
9.1 Color Selection Modes ..... 47
9.2 Dimmer Control ..... 48
9.3 Drive Control ..... 49
9.4 Setup Period ..... 50
9.5 Drive Period ..... 51
9.5.1 16 Level Gray Scale Mode ..... 53
9.5.2 4 Level Gray Scale Mode ..... 54
9.5.3 64 Level Gray Scale Mode ..... 55
9.5.4 Monochrome Mode ..... 57
Chapter 10 Row Driver Control ..... 58
10.1 Row Drivers ..... 58
10.2 Row Driver Scanning Modes ..... 58
10.2.1 Single Scanning Mode ..... 58
10.2.2 Dual Scanning Mode ..... 59
Chapter 11 OTP Memory ..... 61
11.1 Introduction ..... 61
11.2 OTP Memory Programming ..... 61
11.3 A Short Routine for Programming the OTP ..... 62
Chapter 12 STV8105 Configurations ..... 63
12.1 Reset Configuration ..... 63
12.2 Sleep Configuration ..... 63
Chapter 13 Command and Control Registers ..... 64
13.1 List of Commands Ordered by Command Code ..... 65
13.2 Command Details Ordered by Command Code ..... 67
Chapter 14 Electrical Characteristics ..... 90
14.1 Absolute Maximum Ratings ..... 90
14.2 Thermal Data ..... 90
14.3 Recommended Operating Conditions ..... 90
14.3.1 DC Characteristics ..... 90
14.3.2 Timing Generator ..... 91
14.3.3 Row Drivers ..... 92
14.3.4 Column Drivers ..... 92
14.3.5 Current Reference and Brightness Adjustment D/A Converter ..... 92
14.3.6 DC/DC Converter ..... 93
14.3.7 Voltage Generators ..... 93
14.3.8 Reset Input ..... 93
Chapter 15 Revision History ..... 94

## 1 General Overview

The STV8105 is a monochrome, low-power controller/driver combo from STMicroelectronics' family of controllers for OLED displays. It has been developed to bring a flexible solution to applications and systems based on OLED passive matrices.

The STV8105 can be used with many different host micro-controllers. It supports a serial bus and a parallel interface covering most of the possible application architectures. This provides easy access to a set of command and control registers to properly program the STV8105.

The STV8105 includes a dual port Display RAM of $256 \times 72 \times 4$-bits to support the full display capabilities of 256 column and 72 row drivers with several display functions.

The on-chip DC/DC step-up converter generates the necessary supply voltage (18V, typically) for all row and column drivers from the battery.

Processed in BCD technology, the STV8105 features a low-power digital core and output drivers that can source up to $800 \mu \mathrm{~A}$ for columns and sink up to 110 mA for rows with a display supply of up to 25 V . Thanks to the high level of integration, the number of required external components is drastically reduced.

Figure 1: STV8105 Input/Output Diagram


### 1.1 Bumped Die Pad Description

Figure 2: Die Mechanical Data (Bump-side View)


Figure 3: Alignment Mark Positions (Bump-side View)


Figure 4: Alignment Mark Mechanical Data


Figure 5: Pad Position (Bump-Side View)




### 1.2 Pad Signal Description

Table 1: STV8105 Pad Description (Sheet 1 of 2)

Ball Name	Input/Output	Description
C1-C256	0	Column Driver Outputs
R1-R72	0	Row Driver Outputs
CLKIN	1	External RC/Crystal connection or Clock input
CMODE	I	Mode Select:   "H": Dual color mode   "L": Single color mode
cosc	0	External RC oscillator, capacitor connection
$\overline{\text { CS1 }}$	I	Chip Select 1 Input (Master Device Chip Select)
$\overline{\mathrm{CS} 2}$	I	Chip Select 2 Input (Slave Device Chip Select)
$\overline{\text { CSOUT1 }}$	0	Chip Select 1 Output
$\overline{\text { CSOUT2 }}$	0	Chip Select 2 Output
DIN[5:0]	I	P/ $\overline{\mathrm{S}}=$ " $\mathrm{H}^{\prime}$ ": Parallel Data Input   $\mathrm{P} / \overline{\mathrm{S}}=$ "L": Not used. Fix to "H" or "L"
DIN[6] (SCLI)	I	P/S̄="H": Parallel Data Input   P/S="L": Serial Clock Input
DIN[7] (SIN)	I	P/S̄="H": Parallel Data Input $P / \bar{S}=" L^{\prime}$ ": Serial Data Input
DOUT[5:0]	0	$\mathrm{P} / \overline{\mathrm{S}}=" \mathrm{H}$ ": Parallel Data Output P/S="L": Non Connection
DOUT[6] (SCLO)	0	P/ $\bar{S}=" H$ ": Parallel Data Output P/S̄="L": Serial Clock Output
DOUT[7] (SOUT)	0	$\mathrm{P} / \overline{\mathrm{S}}=$ " H ": Parallel Data Output $\mathrm{P} / \overline{\mathrm{S}}=$ "L": Serial Data Output
GND	Supply	Analog and Digital ground
GNDL	Supply	Column and Row driver ground
GNDSENSE	Supply	Ground for DC/DC Converter
HSYNCIN	1	Horizontal SYNC Input
HSYNCOUT	0	Horizontal SYNC Output
ISENSE	I	Over current sense signal for external switching MOS transistor
MSEL[0]	I	Master /Slave Select:   " H ": Master   "L": Slave
MSEL[1]	1	Primary /Secondary Select:   " H ": Primary   "L": Secondary
P/'s	I	Parallel Interface or Serial Interface Select
RCTRLA	0	Reserved for Test
RCTRLB	0	Reserved for Test
ROSC	0	External RC oscillator, resistor connection or Crystal connection

Table 1: STV8105 Pad Description (Sheet 2 of 2)

Ball Name	Input/Output	Description
ROWDATA	0	Reserved for Test
$\overline{\mathrm{RST}}$	I	System Reset Input
SCLKOUT	0	System Clock Output
SD/C	I	Display Data or Command:   SD/C="H": Display Data   SD/C="L": Command
SD/COUT	0	SD/C Output
SELCLK	I	" H ": An internal oscillator (if MSEL[0]="1")   "L": External clock used
TEST[2:1]	I	Test Mode Select:   "H": Test Mode OFF (internal pull-up)   "L": Reserved modes
TEST[3]	I	Reserved (internal pull-up)
TON/F	I	DC/DC Converter Mode Select   "H": PFM constant ton mode   "L": PWM constant switching frequency mode
VCOL1	Supply	Odd column supply
VCOL2	Supply	Even column supply
VCOMP	I/O	Compensation pad for DC/DC converter, constant frequency PWM mode
VDC	Supply	Supply for gate drive output buffer
VDD	Supply	Analog/Digital low-voltage controller supply
VDRIVE	O	Gate drive for external switching MOS transistor
VHSENSE	I	VH sense input
VPP1	Supply	Odd column driver power supply
VPP2	Supply	Even column driver power supply
VPRG	Supply	Non-volatile OTP memory program power supply
VREF1	I/O	Reference Voltage 1
VREF2	I/O	Reference Voltage 2
VROW1	Supply	Odd row driver supply
VROW2	Supply	Even row driver supply
VSENSE	1	Feedback signal
VSYNCIN	I	Vertical SYNC Input
VSYNCOUT	0	Vertical SYNC Output
$\overline{\mathrm{WR}}$	I	Display Data and Command Write Pulse
WROUT	0	Write Pulse Output
DUMMY1,2,5,6	0	Reserved for Test
DUMMY3,4	I/O	Reserved for Test

### 1.3 Lead Pad Reference Chart

The reference for the following tables is the center of the die ( $\mathrm{X}=0.0, \mathrm{Y}=0.0$ )
Table 2: Top Side (from left to right)

Lead Pad Name	Pad Placements (center), $\mu \mathrm{m}$		Pad Dimensions, $\mu \mathrm{m}$	
	X	Y	X	Y
C256	TBD	TBD	TBD	TBD
-----	-------	-------	-------	-------
C2	TBD	TBD	TBD	TBD
C1	TBD	TBD	TBD	TBD

Table 3: Right Side (from top to bottom)

Lead Pad Name	Pad Placements		Pad Dimensions	
	$\mathbf{X}$	$\mathbf{Y}$	$\mathbf{X}$	$\mathbf{Y}$
R71	TBD	TBD	TBD	TBD
------	------	------	------	------
R37	TBD	TBD	TBD	TBD
R35	TBD	TBD	TBD	TBD

Table 4: Bottom Side (from right to left)

Lead Pad Name	Pad Placements		Pad Dimensions	
	X	Y	X	Y
R33	TBD	TBD	TBD	TBD
-------	-------	-------	-------	-------
R1	----	-----	-------	-------
VROW1	-------	-------	-------	-------
-------	-------	-------	-------	-------
-------	-------	-------	-------	-------
VROW2	-------	-------	-------	-------
R2	-------	-------	-------	-------
-------	-------	-------	-------	-------
R34	-------	-------	-------	-------

Table 5: Left Side (from bottom to top)

Lead Pad Name	Pad Placements		Pad Dimensions	
	X	Y	X	Y
R36	TBD	TBD	TBD	TBD
R38	TBD	TBD	TBD	TBD
-------	-------	-------	------	-------
R72	TBD	TBD	TBD	TBD

### 1.4 Mechanical Dimensions

Table 6: Mechanical Dimensions

Description	Dimension
Die Size $(\mathrm{mm} \times \mathrm{mm})$	$12.5 \times 1.72$
Pad Pitch $(\mu \mathrm{m})$	$45-80$
Pad Size $(\mu \mathrm{m})$	TBD
Pad Height $(\mu \mathrm{m})$	20
Wafer Thickness $(\mu \mathrm{m})$	450
Bump Size $(\mu \mathrm{m})$	$46 \times 66$ and13 $\times 66$
Bump Characteristics	gold, electrolytic
Bump Hardness	$30-80 \mathrm{Hv}$

### 1.5 Functional Description

The architecture of the STV8105 provides all of the functions required to drive OLED displays. The block diagram below gives an overview of the different on-chip components, embedded functions and their links.

Figure 6: STV8105 Block Diagram


The following rules are used in this datasheet to describe bit, bit-fields and registers:

- ROWDRVSEL is the name of a register,
- RDIR.ROWDRVSEL is the RDIR bit of register ROWDRVSEL,
- RMODE.ROWDRVSEL is the RMODE bit-field of register ROWDRVSEL.

Refer to Chapter 13: Command and Control Registers on page 64 for details of the various registers.

The various functions of the STV8105 are described in the following sections, starting with the bus interfaces.

## 2 Bus Interfaces

The parallel interface and serial interface are selected using a $P / \bar{S}$ pad.
The parallel interface is active when $\mathrm{P} / \overline{\mathrm{S}}=$ " H "; the serial interface when $\mathrm{P} / \overline{\mathrm{S}}=$ " "L".
The serial input pads SIN and SCLI are shared with DIN7 and DIN6, respectively.
Buffered versions of the serial signals, for cascading purposes, are output on pads SOUT and SCLO and shared with DOUT7 and DOUT6, respectively.
The parallel interface pads DIN[7:0], $\overline{\mathrm{CS} 1}, \overline{\mathrm{CS} 2}$ and $\overline{\mathrm{WR}}$ are buffered and sent out on DOUT[7:0], $\overline{\text { CSOUT1 }}, \overline{\text { CSOUT2 }}$, and WROUT.
$\overline{\mathrm{CS1}}$ and $\overline{\mathrm{CSOUT} 1}$ are chip select signals for the Primary-Master and Secondary-Master devices.
$\overline{\mathrm{CS} 2}$ and $\overline{\mathrm{CSOUT} 2}$ are chip select signals for the Primary-Slave and Secondary-Slave devices.
Figure 7: Buffering of Bus Interface Signals


### 2.1 Interface Sequence

After Reset or Power ON, an interface is in the state of waiting for a Command Address and Display RAM Data.

After receiving the Command Address, the interface is in the state of waiting for Command Data.
When Command Data is received while in the receive Command Data state, the interface returns to the receive Command Address state.

When Display RAM Data is received while in the receive Command Data state, the interface also returns to the receive Command Address state.

When the Serial Interface is selected, the output buffer for the interface signals is cleared when CS1 and $\overline{\mathrm{CS} 2}$ are both "High".

### 2.2 Parallel Interface

The parallel interface is active when pad $\mathrm{P} / \overline{\mathrm{S}}$ is "High".
When writing parallel data, the $\overline{W R}$ pad is asserted while $\overline{\mathrm{CS} 1}$ and $\overline{\mathrm{CS} 2}$ are both "Low".
Data is interpreted as a command if SD/ $\overline{\mathrm{C}}$ is "Low"; it is interpreted as Display RAM data if $\mathrm{SD} / \overline{\mathrm{C}}$ is "High".

When transmitting a command, the command address is sent first followed by command data.
A command is decided by a 2-byte access: a command code followed by a data byte.
When there is a Display RAM access with SD/C set "High" but without respecting the " 2 -byte nature" of a command, the STV8105 enters the state where it is waiting for a Command Address.

Figure 8: Parallel Interface


Figure 9: 8-bit Parallel Interface Timing Diagram


Table 7: 8-bit Parallel Interface Timing

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Units
Tah	Address Hold Time	$\overline{W R}$	10			ns
Taw	Address Setup Time	$\overline{\text { WR }}$	0			ns
Tcyc	System Cycle Time	$\overline{\mathrm{CS} 1}, \overline{\mathrm{CS} 2}$	200			ns
Tcclw	Write Pulse Width	$\overline{\mathrm{WR}}$	60			ns
Tds	Data Setup Time	DIN[7:0]	60			ns
Tdh	Data Hold Time	DIN7:0]	10			ns
Tdsdc	SD/C Output Delay	SD/C̄OUT			30	ns
Tdcs	CS Output Delay	$\overline{\text { CSOUT1, }} \overline{\text { CSOUT2 }}$			30	ns
Tdwr	WR Output Delay	WROUT			30	ns
Tdd	DATA Output	DOUT[7:0]			30	ns

### 2.3 Serial Interface

The serial interface is active when P/S is "Low".
Serial data is written in using DIN[7] (SIN) and DIN[6] (SCLI) while CS1 and CS2 are both "Low".
Data is interpreted as a command if SD/ $\overline{\mathrm{C}}$ is "Low"; it is interpreted as Display RAM data if SD/ $\overline{\mathrm{C}}$ is "High".

DIN[5:0] are not used; they should be tied either "High" or "Low".

Figure 10: Serial Interface


Figure 11: 4-wire Serial Interface Timing Diagram


Table 8: 4-wire Serial Interface Timing

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Units
Tscys	Serial Clock Cycle		200			ns
Tshw	Pulse Width (High)		90			ns
Tslw	Pulse Width (Low)		90			ns
Tsas	Address Setup Time		20			ns
Tsah	Address Hold Time		20			ns
Tsds	Data Setup Time	20			ns	
Tsdh	Data Hold Time		20			ns
Tcss	CS-SCL Time	20			ns	
Tcsh	CS-SCL Time	20			ns	

### 2.4 Master/Slave Connection

Figure 12 below shows an example connection between two STV8105 ICs for Master/Slave mode.
Figure 12: Master/Slave Mode


Figure 13: External IC Interface Timing Diagram


Table 9: External IC Interface Timing

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Units
Tdvso	VSYNCOUT Delay				20	
Tdhso	HSYNCOUT Delay				ns	

## 3 Display RAM

The STV8105 contains a Dual Port, $256 \times 72 \times 4$-bit Display RAM. As shown in Figure 14 below, Port A is for write only; Port B, read only.

It is possible to access any location thanks to $X$ and $Y$, programmable pointers with ranges corresponding to the selected display mode.

The X address is specified with the command RAMXSTART, the Y address with RAMYSTART.
The $X$ and $Y$ addresses can be automatically incremented with bits YINC and XINC of the GSADDINC command. The GSMODE bit-field of this command is also used to select the display mode and gray scale. See Section 13.2 for details.

Depending on the selected display mode, one, two or four pictures can be stored in the Display RAM, and one or two colors can be controlled:

16 level gray scale mode: $256 \times 72 \times 4$ bits -1 picture - one/two colors
4 level gray scale mode: $256 \times 72 \times 2$ bits -2 pictures - one/two colors
64 level gray scale mode 1: $128 \times 72 \times 6$ bits -1 picture - one color
64 level gray scale mode 2: $256 \times 36 \times 6$ bits -1 picture - one color
Black and White, monochrome mode: $256 \times 72 \times 1$ bit -4 pictures - one/two colors
Figure 14: Dual Port Display RAM Composition


### 3.1 16 Level Gray Scale Mode Memory Map

In this mode, the picture has $256 \times 72$ pixels, and the gray scale of each pixel is defined by the corresponding 4-bit value stored in Display RAM. This mode is selected using field GSMODE of the GSADDINC command. Only one picture can be stored in the Display RAM. The range of the address pointers is 00 h to 7 Fh for X and 00 h to 47 h for Y . One byte loaded in Display RAM contains data for two pixels.See Section 13.2 for details. The "two" color mode can be used; see Section 9.1: Color Selection Modes for details.

Figure 15: 16 Level Gray Scale Mode - Display RAM Organization


Row 1

Col ${ }^{*}$	Col $2^{*}$	Col 3*	Col 255*	Col 256*
Pixel 0	Pixel 1	Pixel 2	Pixel 254	Pixel 255
b3--bo, Byte ooh	b7---b4, Byte 00h	b3---b0, Byte 01h	b3---bo, Byte 7Fh	b7--b4, Byte 7Fh
Column to Pixel Mapping			* Default col	umn mapping

### 3.2 4 Level Gray Scale Mode Memory Map

In this mode, the picture has $256 \times 72$ pixels. The gray scale of each pixel is defined by the corresponding 2-bit value stored in Display RAM. This mode is selected using field GSMODE of the GSADDINC command. Two pictures can be stored in the Display RAM. The range of the address pointers is 00 h to 3 Fh for X and 00 h to 8 Fh for Y . One byte loaded in Display RAM contains data for 4 pixels. See Figure 16 for details. The "two" color mode can be used, see Section 9.1: Color Selection Modes for details.

Figure 16: 4 Level Gray Scale Mode - Display RAM Organization


### 3.3 64 Level Gray Scale Mode 1 Memory Map

In this mode, the picture has $128 \times 72$ pixels. The gray scale of each pixel is defined by the corresponding 6-bit value stored in Display RAM. This mode is selected using field GSMODE of the GSADDINC command. Only one picture can be stored in the Display RAM. The range of the address pointers is 00 h to 7 Fh for X and 00 h to 47 h for Y . One byte loaded in the Display RAM contains data for one pixel.
In this mode, column outputs $\mathrm{C}_{\mathrm{n}+1}$ and $\mathrm{C}_{\mathrm{n}}$, must be connected together. It is not possible to use the "two" color mode, see Section 9.1: Color Selection Modes for details. For more information on using this mode, refer to the description of command GSADDINC in Section 13.2.

Figure 17: 64 Level Gray Scale Mode 1 - Display RAM Organization


$\begin{gathered} \mathrm{Y} 00 \mathrm{~h}, \mathrm{X} 00 \mathrm{~h} \\ \mathrm{Pxl} 0 \end{gathered}$	$\underset{\substack{\mathrm{Y} 00 \mathrm{~h}, \times 01 \mathrm{~h} \\ \mathrm{P} \times 11}}{ }$	- - -	$\begin{gathered} \mathrm{Y} 00 \mathrm{~h}, \times 7 \mathrm{Dh} \\ \mathrm{Pxl} 125 \end{gathered}$	$\begin{gathered} \hline \text { Y 00h, } \times 7 \text { Eh } \\ \text { Px\| } 126 \end{gathered}$	$\begin{gathered} \hline \text { Y 00h, } \times \text { 7Fh } \\ \text { Pxl } 127 \end{gathered}$
Y 00h, X 00h		- - -			
		- - -			
- - - - - - Display RAM					
Y 46h, X ooh		- -			
Y 47h, X 00h		- -			Y 47h, X 7Fh

Row 1

Col 1*	Col 2*	Col 3*	Col 127*	Col 128*
Pixel 0	Pixel 1	Pixel 2	Pixel 126	Pixel 127
b5---b0, Byte 00h	b5---bo, Byte 01h	b5---b0, Byte 02h	b5---b0, Byte 7Eh	b5---bo, Byte 7Fh
Column to Pixel Mapping			* Default col	$u m n$ mapping

### 3.4 64 Level Gray Scale Mode 2 Memory Map

In this mode, the picture has $256 \times 36$ pixels, the gray scale of each pixel is defined by the corresponding 6-bit value stored in Display RAM. This mode is selected using field GSMODE of the GSADDINC command. Only one picture can be stored in the Display RAM. The range of the address pointers is 00 h to FFh for $\mathrm{X}, 00 \mathrm{~h}$ to 23 h for Y . One byte loaded in the Display RAM contains data for one pixel.
The "two" color mode cannot be used, see Section 9.1: Color Selection Modes for detail. For more information on using this mode, refer to the description of command GSADDINC in Section 13.2.

Figure 18: 64 Level Gray Scale Mode 2 - Display RAM Organization


### 3.5 Monochrome Mode Memory Map

In this mode, the picture has $256 \times 72$ pixels, and each pixel is black or white depending on the corresponding 1-bit value stored in Display RAM. This mode is selected using field GSMODE of the GSADDINC command. Four pictures can be stored in the Display RAM. The "two" color mode can be used, see Section 9.1: Color Selection Modes for details. The range of the address pointers is 00h to 3Fh for X , 00h to 8Fh for Y . One byte loaded in Display RAM contains data for eight pixels. See Section 13.2.

Figure 19: Monochrome Mode - Display RAM Organization


### 3.6 Display RAM Loading

Four increment modes can be selected using the XINC and YINC bit of the GSADDINC command as described below:

- If bits YINC and XINC of command GSADDINC are both "Low", there is no increment of the $X$ and Y Display RAM addresses.
- If YINC="High" and XINC="Low", then only the $Y$ address of the Display RAM is incremented as shown is Figure 20.

Figure 20: Automatic Increment of Display RAM Y Address


- Conversely, if YINC="Low" and XINC="High", then only the X address of the Display RAM is incremented, Figure 21.

Figure 21: Automatic Increment of Display RAM X Address


- If YINC and XINC are both "High", then both the $X$ and $Y$ addresses of the Display RAM are incremented. If the $X$ address reaches its limit of $F F h$, then only $Y$ address will be incremented, Figure 22.

Figure 22: Automatic Increment Both $X$ and $Y$ Display RAM Addresses


It is the software designer's responsibility to keep the $X$ and $Y$ address pointers consistent with the selected display mode by mainly using automatic incrementation to avoid writing data in areas that are not read.

## 4 Dot-Matrix Display

The STV8105 can display pictures of different resolutions with different shades or levels of gray as described below:

16 level grayscale mode: $256 \times 72 \times 4$ bits
4 level grayscale mode: $256 \times 72 \times 2$ bits
64 level grayscale mode 1: $128 \times 72 \times 6$ bits
64 levels grayscale mode 2: $256 \times 36 \times 6$ bits
Black and White, monochrome mode: $256 \times 72 \times 1$ bit
The selected picture in Display RAM can be displayed in four different ways thanks to bits VTUR and HTUR of the command DOTMTRXDIR (command code 11h):

- bit VTUR selects the vertical display direction versus Display RAM contents, Figure 23.
- bit HTUR selects the horizontal display direction versus Display RAM contents, Figure 24. Bit HTUR applies when writing data into the Display RAM. To get effective horizontal picture mirroring after changing the HTUR bit, the picture must be re-written into Display RAM.

The display is turned on when bit DISPON of command DCTRL (10h) is set; bit DISPON is cleared by default on reset or during power-on reset.

Figure 23: Invert Image - Vertical Direction


Figure 24: Invert Image - Horizontal Direction


The STV8105 can scan a reduced number of rows by programming the SCLN bit-field of command DOTMTRXSCAN (12h). See Section 13.2 for details regarding commands DCTRL, DOTMTRXDIR and DOTMTRXSCAN.

## 5 Clock Generation

The STV8105 has two on-chip oscillator circuits to generate the internal clock SCLK. One circuit is dedicated to an external crystal or RC network. It is also possible to source an external clock on pad CLKIN directly. A second RC oscillator is fully integrated. It does not require any external components and provides a reference clock of 4.8 MHz , typ. The clock source is selected using input pads SELCLK and MSEL[0].

The internal clock SCLK is buffered and sent to output pad SCLKOUT for slave devices.
The oscillator frequency can be divided by a factor of $2^{N}$, where integer $N$ can range from 0 to 7 , by programming the SDIV bit-field of command SCLKDIV. This sets up a "prescaler" ratio of from $1 / 1$ to 1/128; see Figure 25. For details regarding the SCLKDIV command, see Section 13.2: Command Details Ordered by Command Code.

Figure 25: Clock Generation


## 6 Master/Slave and Primary/Secondary Operation

Master/Slave operation of two STV8105s allows driving a panel of 512 columns by 72 rows with 16 levels of gray.
Master/Slave plus Primary/Secondary operation of four STV8105s (two along the top of the panel and two along the bottom, see Figure 26), allows driving 512 columns by 144 rows with 16 levels of gray.

The STV8105 sets up Primary/Secondary and Master/Slave assignments depending on the state of input pads MSEL[0] and MSEL[1] as described in Table 10.

Table 10: Master/Slave Operation

MSEL[1]	MSEL[0]	Test Mode
L	L	Secondary Slave (SS)   Interface signals from the Secondary Master are   received by the Secondary Slave.   The Secondary Slave operates synchronously with   Secondary Master.
L	H	Secondary Master (SM)   Interface signals from the Primary Master are received   by the Secondary Master.   A output synchronizing signal is sent to the Secondary   Slave.
H	L	Primary Slave (PS)   Interface signals from the Primary Master are received   by the Primary Slave.   The Primary Slave operates synchronously with   Primary Master.
H		Primary Master (PM)   Interface signals of VSYNCOUT, HSYNCOUT,   SD/COUT, etc. are activated   Operation of the Primary Slave and Secondary Master   are synchronous with the Primary Master.   Row Driver Control signals RCTRLA/RCTRLB are   activated.

Primary Master and Secondary Master operate by CS1.
Primary Slave and Secondary Slave operate by CS2.

Figure 26: Master/Slave and Primary/Secondary Operation


512 columns by 72 rows
two color display, 4-bit gray scale
2 column drivers
1 row driver
Primary Master/Slave operation


512 columns by 144 rows
two color display, 4-bit gray scale
4 column drivers
2 row drivers
Primary Master/Slave and
Secondary Master/Slave operation

## 7 Brightness Adjustment

In the STV8105, a brightness (luminance) adjustment changes the current of the column drivers. The column current is a copy of a reference current which is defined by the ratio of a reference voltage on pad VREFx to the value of a precision resistor connected between pad VREFx and ground.

This reference voltage can range from 0.64 to 2.77 V . Using a 20 K precision resistor, for example, leads to a reference current of from 32 to $138.5 \mu \mathrm{~A}$. The maximum possible value of this reference current is $400 \mu \mathrm{~A}$; it can be set with either $(\mathrm{VREF}) /($ Rfef $)=(0.64 \mathrm{~V}) /(0.6 \mathrm{~K})$ or $(\mathrm{VREF}) /($ Rref $)=(2.77 \mathrm{~V}) /(6.925 \mathrm{~K})$.

The reference voltage is generated by an internal 7-bit DAC.
Input data to this DAC can come from an "initial brightness adjustment" register which is loaded by a BRIGHTx command or from data stored in an on-chip, one-time-programmable, non-volatile memory (Anti-Fuse OTP Memory). Input data to the DAC is selected with bit RSELx of command BRIGHTx. By default, the contents of OTP memory are selected as input to the DAC.

However, if the OTP memory is not already programmed, Section 11.2, the DAC will output an "undetermined" value between the minimum and the maximum possible for VREF. In this case, it is mandatory to program the DAC using the BRIGHTx command.
To support displays using "two" color pixels, the STV8105 has two independent brightness adjustments. Using bits RESLA and RSELB of commands BRIGHTA and BRIGHTB, DAC A and $D A C B$ are loaded, respectively, with the contents of initial "brightness" registers $A$ and $B$, or with the contents of two on-chip non-volatile memories $A$ and $B$ (Anti-Fuse OTP Memory), as shown in Figure 27.

See Section 13.2 regarding programming "brightness" register A using command BRIGHTA and "brightness" register B with command BRIGHTB.

As shown in Figure 27, the overall brightness of the display can also be adjusted by a dimmer control function - with the command DIMMERCTRL. For details regarding this function, refer to Section 9.2: Dimmer Control.

Figure 27: Control of Initial Brightness Adjustments


## 8 DC/DC Step-up Converter with VF Detection

### 8.1 General Description

The STV8105 contains a DC/DC converter controller capable of driving an external, 150 mA , switching power MOS transistor with $90 \%$ efficiency. With just few external components a step-up converter can be realized capable of generating up to 25 V from a 3 to 12 V battery. The switching frequency can be set in the range of 150 to 300 KHz which allows reducing inductor size. Normal protections such as under voltage lock-out (UVLO), detection against open loop operation and current overload are also included.

In general, a step-up converter design based on the DC/DC power controller of the STV8105 is capable of:

- operating from a 3 to 12 V battery
- operating from a gate buffer supply (VDC) of 3 to 10 V
- producing an adjustable output, $\mathrm{V}_{\mathrm{H}}$, ranging from 6 to 25 V
- sourcing up to 150 mA at 18 V
- requiring only $10 \mu \mathrm{~A}$ in standby
- operating at efficiencies of up to $90 \%$
- operating at switching frequencies of 100, 200, 250 and 300 KHz
- protecting against overload, under voltage or open loop conditions

A block diagram of the converter is shown in Figure 28. The output of the converter is $\mathrm{V}_{\mathrm{H}}$. This output can be used to supply the row drivers with VROW1/VROW2 and the column drivers with VPP1/VPP2 and VCOL1/VCOL2.

The VF detection feature of the DC/DC controller monitors the voltage on column outputs C1 and C256 during constant current drive and stores an average of the two voltages on a capacitor connected to pad VF, see $\mathrm{C}_{\mathrm{VF}}$ in Figure 28. This "detected" voltage is sampled and used by the control block in determining $\mathrm{V}_{\mathrm{H}}$. In addition, the VFOP bit-field of command VFDETVAL can be used to program a 3-bit DAC to output an adjustment to $\mathrm{V}_{\mathrm{H}}$ according to

$$
\mathrm{V}_{\mathrm{H}}=\mathrm{VF}+\mathrm{V}_{\mathrm{FOP}}
$$

where $\mathrm{V}_{\mathrm{FOP}}$ can range from 1.5 to 3.5 V and one $\mathrm{LSB}=286 \mathrm{mV}$.

Figure 28: DC/DC Step-up Converter - Block Diagram


Output $\mathrm{V}_{\mathrm{H}}$ is "clamped" to $\mathrm{V}_{\mathrm{H}}$ Max. which equals a constant $\times \mathrm{VBG}$ at the time of VF detection. If $\mathrm{V}_{\mathrm{H}}$ Max. is exceeded, then pad RCTRLB is pulled "High" to VDD by the STV8105 indicating a voltage fault.

### 8.2 Detailed Description

The converter combines the advantages of two control schemes, pulse width modulation (PWM) or constant switching frequency mode and pulse frequency modulation (PFM) also called constant $\mathrm{t}_{\mathrm{ON}}$ mode, which together provide high efficiency over a wide range of output load current. Selection between the two modes is done with pad TON $/ \bar{F}$.

Output $\mathrm{V}_{\mathrm{H}}$ can be adjusted from 6 to 25 V by means of two independent closed loops; one is through the VSENSE pad, the other through VHSENSE. The VSENSE-loop is enabled during power-on where $\mathrm{V}_{\mathrm{H}}$ increases in proportion to the ramp-up characteristics of an internal bandgap source. The VHSENSE-loop is enabled when $\mathrm{V}_{\mathrm{H}}$ is determined to have reached steady-state. Here, $\mathrm{V}_{\mathrm{H}}$ tracks the voltage present on pad $V F$.

The DC/DC power controller also includes several protections designed to prevent damage to the STV8105 or external components. Under voltage lock-out (UVLO) shuts the gate drive buffer down if VDC becomes too low. The power-off threshold is 2.54 V ; the power-on threshold, 2.77 V . VDC is internally filtered by the STV8105 so that the power controller does not react to glitches that might be present on this supply.

Over current protection on pad ISENSE senses the source current of the external switching MOS transistor and disables the gate drive buffer if this current exceeds $250 \mathrm{mV} / \mathrm{R}_{\text {SENSE }}$. If this condition persists for 16 "internal" cycles, the buffer remains off until either VDC is removed or a reset such as pad RST going "Low" occurs.
Detection of an open-loop condition, either on VSENSE or VHSENSE, causes the STV8105 to also shut down the gate drive buffer. If an open-loop condition occurs with VHSENSE, then $\mathrm{V}_{\mathrm{H}}$ rises to a value fixed by the external feedback resistor divider.

### 8.2.1 PWM Mode

When pad TON/F is connected "Low" to GND, the DC/DC converter operates in PWM or constant switching frequency mode.

The PWM circuit consists of a fixed frequency sawtooth generator, an error amplifier and a PWM comparator. The frequency of the generator can range from 150 to 300 KHz . The default is 150 KHz ; the other values are programmed, see Section 13.2, with field FDCDC of command DCDCCTRL. Referring to Figure 29, the error amplifier is a transconductance operational amplifier (OTA) that compares an internal bandgap voltage with the voltage on pad VSENSE. The output of the OTA, pad VCOMP, is available for frequency compensation. The feedback signal on VSENSE is obtained using an external resister divider across the converter output $\mathrm{V}_{\mathrm{H}}$.

The output of the error amplifier, VCOMP, is compared with the sawtooth waveform. If it is greater, the external switching MOS transistor is kept ON. If it is less, the MOS transistor is switched OFF.

Suppose $\mathrm{V}_{\mathrm{H}}$ exceeds its steady state value by a small amount, then the output of the error amplifier goes "Low" causing the duty cycle to decrease. As a consequence $V_{H}$ decreases. Thus the feedback is negative and can maintain $V_{H}$ at its desired value.

Figure 29: PWM or Constant Switching Frequency Mode


### 8.2.2 PFM Mode

When pad TON/F is connected "High" to VDD, the DC/DC converter operates in PFM or constant $t_{\text {ON }}$ mode.

Referring to Figure 30, the PFM circuit consists of a $\mathrm{t}_{\mathrm{ON}} / \mathrm{t}_{\text {OFF }}$ oscillator that can be locked in the $\mathrm{t}_{\text {OFF }}$ state by the output of the VSENSE error amplifier. During $\mathrm{t}_{\mathrm{ON}}$ the external MOS transistor is kept ON. It is switched OFF when a current limit or a $\mathrm{t}_{\text {OFF }}$ period occurs.
If output $\mathrm{V}_{\mathrm{H}}$ becomes less than its steady state value, the output of the error amplifier remains "High" and a $\mathrm{t}_{\mathrm{ON}} / \mathrm{t}_{\mathrm{OFF}}$ period starts. The external MOS transistor is switched ON and OFF, repeatedly, until $\mathrm{V}_{\mathrm{H}}$ exceeds the steady state value. Then the output of the error amp goes "Low", and the clock is disabled. If a current limit is detected during a $\mathrm{t}_{\mathrm{ON}}$ period, the oscillator is locked OFF until a another $t_{\text {ON }}$ occurs. In this way, the switching frequency is varied until regulation is obtained.

In PFM mode the switching frequency scales roughly in proportion to the load current. Thus, this mode of operation enables high efficiency with light loads and is ideal to control the converter in standby mode. The PFM control technique does not need any frequency compensation. It is inherently stable.

Figure 30: PFM or Constant ton Mode


### 8.3 Compensation Network

The LC output filter in Figure 28 has a two-pole transfer function. So to guarantee stability in PWM mode, it is necessary to frequency compensate the closed loop response of the converter.

The error amplifier plays a fundamental role in regulating the loop of the converter. This amplifier is an operational transconductance amplifier (OTA). Since the output of an OTA is high impedance, it is easy to compensate the converter by connecting an RC network between this node and ground. Thus the output of the OTA is bought out to a pad, VCOMP, where an external RC can be connected between it and ground, GND. See $R_{C}$ and $C_{C}$ in Figure 31 below.

The external RC introduces a dominant low-frequency pole in the response of the control loop. It also introduces a zero that can be placed to cancel the pole of the LC output filter.

Operation in PFM mode does not require frequency compensation.
Figure 31: DC/DC Converter - Application Circuit


### 8.4 Soft Start

Soft start is an essential feature for correct power-up of the DC/DC converter without overstressing the external switching MOS transistor. Soft start operates during start up of the converter when bit DCDCON of command DCDCCTRL becomes " 1 ". The soft start function is realized with the same capacitor, $\mathrm{C}_{\mathrm{C}}$, that is used for frequency compensation. The soft start ramp-up time can be calculated by simply taking into account the output sourcing current of the OTA which is $40 \mu \mathrm{~A}$ in PWM mode and $8 \mu \mathrm{~A}$ in PFM.

During power-up, the external MOS transistor starts switching with a duty cycle that gradually increases at the same rate as the voltage on pad VCOMP. In PFM mode, pad VCOMP is used only for soft start, and the voltage on this pad ramps-up to VDD.

### 8.5 Peak Current Detection

The drain-source voltage of the external switching MOS transistor is sensed by R RENSE, Figure 31, and as soon as a comparator detects that this voltage has exceeded 250 mV , the gate drive of the external MOS transistor is switched OFF.

When the comparator senses an over-current condition, a flip-flop is set, and the external MOS transistor is switched OFF. The flip-flop remains set while the over-current condition persists. If this condition persists for 16 continuous "internal" cycles, a master latch turns the DC/DC converter off, and the converter can not be restarted with DCDCON.DCDCCTRL = "1" until after a new power-up or hardware reset ( $\overline{\mathrm{RST}}=$ " 0 ") is issued.

An internal low-pass filter in series with pad ISENSE with an inherent delay of 500 ns rejects voltage glitches caused by the external switching MOS transistor during its operation.
Refer to Section 13.2: Command Details Ordered by Command Code for details regarding registers DCDCCTRL and VFDETVAL which control operation of the DC/DC converter.

## 9 Column Drivers

The column drivers of STV8105 are described in Figure 32.
Together, the column driver outputs C1 to C256 can be connected to three different sources or placed in Hi-Z. The three different source types are: a constant current supplied on pads VPP ${ }_{\mathrm{X}}$, a constant voltage supplied on pads $\mathrm{VCOL}_{x}$, or switched to GNDL.

Supply pads VPP1 and VCOL1 are for the odd numbered outputs.
Supply pads VPP2 and VCOL2 are for the even numbered outputs.
The GNDL pad is common to all columns pads.
A dedicated command register (COLCTRL 1Ah) provides 4 control bits to override the column output signals:

- the CLLM bit, when set to "1" (with CLLZ = "0"), forces all column outputs to VCOL1 and VCOL2. It overrides all other column commands. The inactive default value is " 0 ".
- bit CLLZ, when set, forces all column outputs in Hi-Z state and overrides all other commands. Inactive default value is " 0 ".
- bit HSLZ, when set, forces output HSYNCOUT to Hi-Z. HSYNCOUT is grounded to pad GNDL when HSLZ is " 0 ", the inactive default value.
- bit OFLZ, when set (with CLLM and CLLZ = " 0 " and after the PWM current sourcing period), forces all column outputs to Hi-Z, otherwise the outputs are grounded to GNDL when OFLZ is " 0 ", the inactive default value.


### 9.1 Color Selection Modes

The STV8105 can drive dual or "two" color displays: one color appears on the odd columns, the other on even columns. Supplies VPPx and VCOLx as well as the column current generators can be set to different levels to fit the driving characteristics of the two colors. Two reference currents are defined by the selected "brightness" DAC (DAC A or DAC B) and by two precision resistors connected on pads VREF1 and VREF2. These resistors can have the same or different values. The dual current reference mode is selected by pulling pad CMODE "High" to VDD.

Note:

- In the dual color mode, the same dimmer control applies to the two colors.
- When using the 64 level gray scale modes (resolutions of $128 \times 72$ and $256 \times 36$ ), the dual mode cannot be used, supplies VPP1 and VPP2 as well as VCOL1 and VCOL2 must be connected together, and only DAC A (VREF1) can be used.
- When pad CMODE is pulled "Low" to GND, only one current reference is used. It is defined by the resistor on pad VREF1 and controlled by DAC A along with the dimmer command. See Figure 32.

Figure 32: Column Drivers


Bit HTUR of the command DOTMTRXDIR can be used to reverse the horizontal display direction versus column pinout. Note that the picture must be reloaded because HTUR can only change the Display RAM write direction. Refer to Section 13.2 for details.

### 9.2 Dimmer Control

The brightness of the whole display panel can be changed with the DIMM bit-field of command DIMMERCTRL. DIMM selects what fraction of $\mathrm{I}_{\text {ref }}$ to use in establishing the column output current ${ }^{\text {I Cout }}$ which is given by

$$
\left.\mathrm{I}_{\text {COUT }}=\operatorname{Iref} \times \text { fract[DIMM }\right]
$$

where fract[DIMM] is a fraction depending on the value of field DIMM according to Table 11 below. For more info on command DIMMERCTRL see Section 13.2.

Table 11: Dimmer command

DIMM.DIMMERCTRL	fract[DIMM]	Ratio of Iref [\%]
b4 b3 b2 b1 b0		
00000	1/16	6.25
00001	2/16	12.5
----	----	----
00011	4/16	25
----	----	----
00111	8/16	50
----	----	----
01011	12/16	75
----	----	----
01111	16/16	100
----	----	----
10011	20/16	125
----	----	----
10111	24/16	150
--	--	----
11011	28/16	175
----	----	----
11111	32/16	200

Note: $\quad$ Note: A "Dimmer" adjustment is performed synchronous with VSYNC when bit DISPON of register DCTRL is " 1 ". Otherwise, when DISPON.DCTRL is " 0 ", this adjustment is performed immediately after the command DIMMERCTRL is issued.

### 9.3 Drive Control

The STV8105 outputs a constant current on each column pad depending on the "Brightness" and "Dimmer" levels selected by the user. During the row period, the column current is PWM modulated according to the gray scale value of each pixel. A row (or scan line) period is divided into an OLED Setup Period for reset and precharge followed by a Drive Period (constant current gradation display).

Figure 33: Setup and Drive Periods


### 9.4 Setup Period

The Setup Period is composed of four programmable sub-periods. Each sub-period is programmed using a corresponding OELPERIOD1, 2, 3 or 4 (1Bh, 1Ch, 1Dh or 1Eh) command.

The duration of each sub-period can be programmed to be 1 to 64 SCLK clock periods long using the ExCL bit-field of the corresponding OELPERIODx command, $x=1,2,3$ or 4 . This leads to a total Setup Period of between 4 and 256 SCLK clock periods as shown in Figure 34.

The column output signal of a column pad can be programmed independently during the four subperiods using the ExST bit-field of the corresponding OELPERIODx command, $x=1,2,3$ or 4 , as explained below. The selected column driver output can:

1. source a constant current determined by the brightness and dimmer adjustments, Figure 32,
2. be forced to VCOLx,
3. be pulled down to ground GNDL or
4. be placed in a Hi-Z state.

If the pixel value to be displayed is 00 h (i.e., black), then independent of whether the selected column output is programmed to be at VPPx, VCOLx or in Hi-Z during the setup period, the column output is pulled down to ground GNDL during the whole of the setup period and during the whole of the drive period as well.

Note: before the first setup period, 1 SCLK clock period is inserted in a row period sequence. During this time, the output HSYNCOUT can be pulled to ground GNDL or put in Hi-Z using bit OFLZ of the command COLCTRL (1Ah).

Figure 34: Setup Period Timing


### 9.5 Drive Period

The active duration of a row period (or scan line period) is named the drive period. The drive period is 256 SCLK clock periods long.

During the drive period, the column drivers are sourcing constant current defined by the brightness and dimmer levels selected by the user. The time the column current is sourced is proportional to the gray scale level of the pixel to be displayed, leading to a PWM modulation. This "sourcing" time can have 256 different values. After the "sourcing" time elapses, column current is turned off, and the column pad is switched to ground GNDL until the next setup period.
The STV8105 has a 30 byte lookup table to define the current sourcing duration of the drive sequence.

There are 15 bytes dedicated to the odd columns and 15 bytes dedicated to the even columns. They can be loaded thanks to dedicated ODDx and EVENx commands (command codes 2Dh to 1Fh and 3Ch to 2Eh).

Separate ODDx and EVENx lookup tables can be used in case of "two" color modes. For a given level of gray, the odd and even bytes can be loaded with different values to fit each color brightness response. The STV8105 uses ODD and EVEN (or ODD only) lookup tables depending on the input level at pad CMODE. When CMODE is "High", the ODD lookup table applies to the odd columns, and the EVEN lookup table applies to the even columns. When CMODE is "Low", only the ODDx lookup table is used for both even and odd columns.
For some gray scale modes the lookup tables are not user accessible; see next sections. For details regarding the ODDx and EVENx commands, refer to Section 13.2: Command Details Ordered by Command Code.

### 9.5.1 16 Level Gray Scale Mode

In this mode the gray level of each pixel is defined by a 4-bit value stored in the Display RAM, leading to 16 levels of gray.

Figure 35: 16 Level Gray Scale Mode - Drive Timing


This mode uses the ODDx and EVENx, or ODDx only, lookup tables to define the column current sourcing time. There are 15 bytes corresponding to the 15 different, possible values of pixel data in Display RAM. When the pixel value is 0 h , the column current source is off (to GNDL) for the entire drive period.

Each byte of the lookup table holds a value between 0 to 256 ( 00 h to FFh ). This value corresponds to the number of elementary SCLK clock periods. Each byte of the lookup table is loaded using the corresponding ODDx or EVENx command. These bytes must be loaded during the power-on/reset sequence.

### 9.5.2 4 Level Gray Scale Mode

In this mode the gray level of each pixel is defined by a 2-bit value stored in the Display RAM, leading to 4 levels of gray.

Figure 36: 4 Level Gray Scale Mode - Drive Timing


Because only 4 gray levels are used in this mode, only 3 or 6 from among the 15 or 30 lookup tables are needed:

ODD3, ODD2, ODD1 and EVEN3, EVEN2, EVEN1 when pad CMODE is "High" and ODD3, ODD2, ODD1 when CMODE is "Low".
The lookup table bytes must be loaded during the power-on/reset sequence.

### 9.5.3 64 Level Gray Scale Mode

Figure 37: 64 Level Gray Scale Mode - Drive Timing


In this mode the lookup table is not user programmable. It is shown below in Table 12 which lists the number of SCLK clock pulses generated for each of the 64 possible values of a 6 -bit pixel.

Table 12: Lookup Table for 64 Level Gray Scale Mode

Pixel value	Lookup byte
binary	number of SCLK pulses
111111	256
111110	240
111101	224
111100	208
111011	200
111010	192
111001	184
111000	176
110111	168
110110	160
110101	152
110100	144
100011	136
110010	128
110001	120
110000	112
101111	108
101110	104
101101	100
101100	96
101011	92
101010	88
101001	84
101000	80
100111	76
100110	72
100101	68
100100	64
100011	60
100010	56
100001	52
100000	48
011111	46


Pixel value	Lookup byte
binary	number of SCLK pulses
011110	44
011101	42
011100	40
011011	38
011010	36
011001	34
011000	32
010111	30
010110	28
010101	26
010100	24
010011	22
010010	20
010001	18
010000	16
001111	15
001110	14
001101	13
001100	12
001011	11
001010	10
001001	9
001000	8
000111	7
000110	6
000101	5
000100	4
000011	3
000010	2
000001	1
000000	0

Note: odd and even columns have the same value, so there is NO "two" color mode in the 64 level gray scale modes.

### 9.5.4 Monochrome Mode

In this mode a pixel is ON or OFF depending on the value of the bit in Display RAM. The column current sourcing time is 0 when the pixel is OFF. It is equal, in terms of SCLK clock pulses, to the value of the byte loaded by the corresponding ODD1 or EVEN1 command (CMODE "High") or by the ODD1 command (CMODE "Low") when the pixel is ON. The lookup table byte(s) must be loaded during the power-on/reset sequence.

Figure 38: Monochrome Mode - Drive Timing


## 10 Row Driver Control

### 10.1 Row Drivers

The row driver of STV8105 is the 2-transistor structure shown below in Figure 39.
When activated, the row output pad is switched to GNDL. When not active, the row output pad is pulled-up to the voltage supplied on pads VROW1 and VROW2. The $\mathrm{R}_{\mathrm{ON}}$ of the MOS transistor to GNDL is 10 ohms, max.

Figure 39: Row Drivers


Bit VTUR of command DOTMTRXDIR can be used to select the vertical display direction versus Display RAM contents. Refer to Section 13.2 for details.

The ROWDRVSEL command allows selecting the scanning direction as well as whether single or dual scanning mode is used.

### 10.2 Row Driver Scanning Modes

### 10.2.1 Single Scanning Mode

The single scanning mode is selected when the RMODE bit-field of command ROWDRVSEL is programmed to " 10 b ".

In single scanning mode when the RDIR bit of command ROWDRVSEL is " 0 ", the Row Drivers are scanned in increasing order from R1 to R72.

When RDIR.ROWDRVSEL is " 1 ", the rows are scanned in reverse order starting from R72.

Figure 40: Single Scanning


### 10.2.2 Dual Scanning Mode

The dual scanning mode is selected when the RMODE bit-field of command ROWDRVSEL is programmed to " 11 b ".
In dual scanning mode the odd and even row driver scans are simultaneous.
A maximum of 36 lines can be scanned at once, and the 2 row pads can sink with an effective $R_{\mathrm{ON}}$ of 5 ohms, max.

The scanning direction is changed, again, with bit RDIR of command ROWDRVSEL.

Figure 41: Dual Scanning


## 11 OTP Memory

### 11.1 Introduction

The OTP (One Time Programmable) Memory consists of a Volatile Memory (VM) made of an array of flipflops and a Non-Volatile Memory (NVM) made of an array of anti-fuses. Every time the STV8105 is poweredon or exits from reset, the OTP is automatically initialized. The NVM is powered on. Calibration and configuration parameters that are already stored in the NVM are read and latched into VM, then the NVM is powered off to avoid extra current consumption.

### 11.2 OTP Memory Programming

In order to store the calibration and configuration parameters permanently, the contents of VM has to be transferred to the NVM.

Below are details of the commands that allow permanently storing calibration and configuration data into the NVM.

Comman   d	Function	Addr	Command Data										Default
		Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0				
SHORT	VPRG internally   shorted to GNDL,   ON/OFF	F3	0	0	0	0	0	0	0	SHORT   ON	01h		
PRGOTP	OTP   Programming	F5	0	0	0	0	0	0	0	1	-		
CKMM	if SEAL bit = "1",   SW Reset, else   NOP	F7	-	-	-	-	-	-	-	-	-		

First of all, care has to be taken when the programming voltage is applied to pad VPRG. Before powering-up VPRG, the internal switch between VPRG and ground (GND) has to be opened by making sure bit SHORTON of command SHORT is " 0 ".

The OTP programming procedure is activated with the PRGOTP command. This procedure, which last about 50 ms , autonomously involves blowing the anti-fuses. This procedure also terminates autonomously.

With the CKMM command it is possible to check if OTP memory has been correctly programmed. When CKMM is executed, the STV8105 checks the state of an internal "SEAL" bit. If this bit is " 1 ", meaning the OTP memory has been correctly programmed, the STV8105 gets reset. If the "SEAL" bit is not " 1 ", the CKMM command is ignored.

The recommended conditions for "blowing" and achieving a reliable short circuit of the anti-fuses are:

- Minimum programming current $\mathrm{I}_{\mathrm{PRG}}>250 \mathrm{~mA}$
- Programming voltage $\mathrm{V}_{\mathrm{PRG}}=16 \mathrm{~V}$, accepted range $14 \mathrm{~V}<\mathrm{V}_{\mathrm{PRG}}<18 \mathrm{~V}$
- Time to program all cells $\mathrm{Twr}>50 \mathrm{~ms}$


### 11.3 A Short Routine for Programming the OTP

Below, a short routine that can be used to program and check the OTP memory of the STV8105.

	\# Power on VDD.
01h	\# Issue BRIGHTA command, initial brightness "A" adjustment.
00h to 7Fh	\# Set desired default value for brightness "A".
02h	\# Issue BRIGHTB command, initial brightness "B" adjustment.
00h to 7Fh	\# Set desired default value for brightness "B".
F3h	\# Issue SHORT command
00h	\# with Bit0 of next word, SHORTON, equal to "0",
	\# i.e. short is off.
	\# Now power on VPRG.
F5h	\# Issue PRGOTP command
01h	\# with Bito of next word equal to "1".
	\# Wait 50 ms .
	\# Power down Vprg.
F2h	\# Issue SOFTRST command, i.e. issue a software reset.
	\# Power on OLED display supplies VPP1, VPP2, VCOL1, etc.
10h	\# Issue DCTRL, the dot-matrix display control command,
03h	\# with all pixels ON.
F7h	\# Issue the CKMM command to check OTP programming. If
	\# display goes blank, i.e. OFF, then OTP has been
	\# programmed correctly.

## 12 STV8105 Configurations

### 12.1 Reset Configuration

When pad RST is brought "Low", the state of the STV8105 is as follows:

- oscillator OFF
- DC/DC Converter OFF
- Column drivers at GNDL
- internal Row drivers at GNDL
- external IC controls SCLKOUT, VSYNCOUT, HSYNCOUT, RCTRLA, RCTRLB and ROWDATA are at GND
- all Registers are loaded with their default values (see Table 13)

After RST is released, i.e. brought "High", or after completion of a software reset, which is considered to be 200ns max after sending or issuing the command SOFTRST, the state of the STV8105 becomes:

- oscillator ON
- DC/DC Converter remains OFF but waiting for a command
- Column drivers at GNDL but also waiting for a command
- internal Row drivers at GNDL (waiting for a command)
- External Driver Control: SCLKOUT = SCLK Clock output
- external IC controls VSYNCOUT, HSYNCOUT, RCTRLA, RCTRLB and ROWDATA are at GND
- all Registers are at their default values (waiting for a command)

SOFTRST is a one byte command and is the only command that can perform a reset of the STV8105.

### 12.2 Sleep Configuration

The STV8105 can be placed into a sleep mode with command SLEEP (command code F1h). However, the STV8105 is forced out of sleep mode if either command DCDCCTRL (03h) or DCTRL (10h) is sent, irrespective of the data value that follows their command codes.

When placed IN sleep mode, the state of the STV8105 is as follows:

- oscillator ON
- DC/DC Converter OFF
- Column drivers at GNDL
- internal Row drivers at GNDL
- all analog circuits powered by VDD are OFF
- all registers as well as the SRAM retain their status
- bus interface active


## 13 Command and Control Registers

The STV8105 has a set of registers to command and control the display system. They are accessed via the interfaces described in Chapter 2: Bus Interfaces.

The following rules are used in this datasheet to describe bit, bit-fields and registers:

- ROWDRVSEL is the name of a register,
- RDIR.ROWDRVSEL is the RDIR bit of register ROWDRVSEL,
- RMODE.ROWDRVSEL is the RMODE bit-field of register ROWDRVSEL.

Unused bits are read as 0 and must be written as 0 .
Dummy or irrelevant bits are noted "D"; their value when read is undefined, they must be written with 0 for future compatibility.

### 13.1 List of Commands Ordered by Command Code

Table 13: Register List Ordered by Increasing Command Code

Register name	Comd code \& access	Reset	b7	b6	b5	b4	b3	b2	b1	b0	Comments
SCLKDIV	00h - W	00h	0	0	0	0	0	SDIV			SCLK lock ivide atid
BRIGHTA	01h - W	00h	RSELA	FDCA							Initial Brightness adj. A
BRIGHTB	02h - W	00h	RSELB	FDCB							Initial Brightness adj. B
DCDCCTRL	03h-W	00h	-	-	-	-	FDCDC			$\begin{gathered} \text { DCDC } \\ \text { ON } \end{gathered}$	DC/DC Converter Control
RESERVED	04h	--	----------								Do not use, reserved
RESERVED	05h	--	----------								Do not use, reserved
VFDETVAL	06h	- VDOh	-	-	-	-	-	VFOP			Selection of voltage to add to VF to produce VH
RESERVED	07h	--	----------								Do not use, reserved
--	----	--	----------								Do not use, reserved
RESERVED	09h	--	----------								Do not use, reserved
DCTRL	10h	- VOOh	-	-	-	-	-	DINV	DALI	$\begin{aligned} & \text { DISP } \\ & \text { ON } \end{aligned}$	Dot-Matrix Display Control
DOTMTRXDIR	11h-W	00h	-	-	DUMM		-	-	VTUR	HTUR	Dot-Matrix Direction select
$\begin{gathered} \text { DOTMTRXSC } \\ \text { AN } \end{gathered}$	12h-W	47h	-	SCLN							Dot-Matrix Scanning Line
RAMXSTART	13h	- W00h	X	X	X	X	X	X	X	X	Display RAM X Start Address
RAMYSTART	14h	- W00h	X	X	X	X	X	X	X	X	Display RAM Y Start Address
GSADDINC	15h-W	00h	GSMODE				-	-	YINC	XINC	Gray scale and Increment Mode Set
DIMMERCTRL	16h-W	OFh	-	-	-	DIMM					Dimmer Control
ROWDRVSEL	17h-W	02h	-	-	-	RDIR	-	-	RMODE		Row Driver Mode Select
RESERVED	18h	--	-----------								Do not use, reserved
RESERVED	19h	--	----------								Do not use, reserved
COLCTRL	1Ah W	- 00h	-	-	-	-	CLLM	CLLZ	HSLZ	OFLZ	Column utput Co@trol
OELPERIOD1	1Bh-W	OFh	E1ST		E1CL						Setup Period 1
OELPERIOD2	1Ch - W	00h	E1ST		E1CL						Setup Period 2
OELPERIOD3	1Dh - W	00h	E2ST		E2CL						Setup Period 3
OELPERIOD4	1Eh - W	00h	E3ST		E3CL						Setup Period 4
ODD15	1Fh - W	FFh	ODFT								Odd 15 Level of Grayscale
ODD14	20h - W	AFh	ODET								Odd 14 Level of Grayscale
ODD13	21n-W	79h	ODDT								Odd 13 Level of Grayscale
ODD12	22h-W	53h	ODCT								Odd 12 Level of Grayscale
ODD11	23h-W	39h	ODBT								Odd 11 Level of Grayscale
ODD10	24h-W	27h	ODAT								Odd 10 Level of Grayscale
ODD9	25h - W	1Ah	OD9T								Odd 9 Level of Grayscale
ODD8	26h - W	12h	OD8T								Odd 8 Level of Grayscale

65/

Register name	Comd code \& access	Reset	b7	b6	b5	b4	b3	b2	b1	b0	Comments
ODD7	27h-W	OCh	OD7T								Odd 7 Level of Grayscale
ODD6	28h-W	08h	OD6T								Odd 6 Level of Grayscale
ODD5	29h-W	05h	OD5T								Odd 5 Level of Grayscale
ODD4	2Ah - W	03h	OD4T								Odd 4 Level of Grayscale
ODD3	2Bh-W	02h	OD3T								Odd 3 Level of Grayscale
ODD2	2Ch - W	01h	OD2T								Odd 2 Level of Grayscale
ODD1	2Dh - W	00h	OD1T								Odd 1 Level of Grayscale
EVEN15	2Eh - W	FFh	EVFT								Even 15 Level of Grayscale
EVEN14	2Fh - W	AFh	EVET								Even 14 Level of Grayscale
EVEN13	30h - W	79h	EVDT								Even 13 Level of Grayscale
EVEN12	31- W	53h	EVCT								Even 12 Level of Grayscale
EVEN11	32h - W	39h	EVBT								Even 11 Level of Grayscale
EVEN10	33h-W	27h	EVAT								Even 10 Level of Grayscale
EVEN9	34h-W	1Ah	EV9T								Even 9 Level of Grayscale
EVEN8	35h - W	12h	EV8T								Even 8 Level of Grayscale
EVEN7	36h-W	0Ch	EV7T								Even 7 Level of Grayscale
EVEN6	37h-W	08h	EV6T								Even 6 Level of Grayscale
EVEN5	38h - W	05h	EV5T								Even 5 Level of Grayscale
EVEN4	39h-W	03h	EV4T								Even 4 Level of Grayscale
EVEN3	3Ah - W	02h	EV3T								Even 3 Level of Grayscale
EVEN2	3Bh - W	01h	EV2T								Even 2 Level of Grayscale
EVEN1	3Ch - W	00h	EV1T								Even 1 Level of Grayscale
RESERVED	3Dh	--	-----------								Do not use, reserved
----	--	--	-----------								Do not use, reserved
RESERVED	FOh	--	-----------								Do not use, reserved
SLEEP	F1h	- VOOh	-	-	-	-	-	-	-	SLEEP	Software Sleep IN/OUT
SOFTRST	F2h	- W-	--	-	-	-	-	-	-	-	Software eset r
SHRT	F3h	--	-----------								OTP programming
RESERVED	F4h	--	-----------								Do not use, reserved
PRGOTP	F5h		-----------								OTP programming
RESERVED	F6h	--	-----------								Do not use, reserved
CKMM	F8h		-----------								OTP programming
RESERVED	F8h	--	-----------								Do not use, reserved
RESERVED	----	--	-----------								Do not use, reserved
RESERVED	FFh	--									Do not use, reserved

Note: For information about commands F3h, F5h and F7h, see Section 11.2: OTP Memory Programming.

### 13.2 Command Details Ordered by Command Code

SCLKDIV - w - SCLK Clock Divider Ratio Select											Default value: 00h				
Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Command code								Data							
00h								0	0	0	0	0	SDIV		


Bit/Field Name	Reset		Function
SDIV	000 b	SCLK clock divider ratio selection	
		$000 \mathrm{~b}=1 / 1$	
		$001 \mathrm{~b}=1 / 2$	
		$010 \mathrm{~b}=1 / 4$	
$011 \mathrm{~b}=1 / 8$			
$100 \mathrm{~b}=1 / 16$			
		$101 \mathrm{~b}=1 / 32$	
		$110 \mathrm{~b}=1 / 64$	
		$11 \mathrm{~b}=1 / 128$	



BRIGHTB - W - Initial Brightness Adjustment B
Default value: 00h

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Command code								Data							
02h								RSELB	FDCB						


Bit/Field Name	Reset	Function
FDCB	000 0000b   $(00 \mathrm{~h})$	00h to 7Fh: data to be stored in initial adjustment Register B


Bit/Field Name	Reset	Function
RSELB	0	Selection of input data for B adjustment D/A converter - either OTP Memory B or Register B   $0=$ =anti-fuse OTP Memory B, default   $1=$ initial adjustment Register B

DCDCCTRL - W - DC/DC Step-up Converter Control
Default value: 00h

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Command code								Data							
03h								0	0	0	0	FDC	DC	VRSL	dCDCON


Bit/Field Name	Reset	Function
DCDCON	0	DC/DC converter enable   $0=$ disabled (default)   $1=$ enabled
VRSL	0	DC/DC converter control loop tracking selection   $0=$ tracking with VF voltage (default)   $1=$ tracking with internal bandgap voltage, $\mathrm{V}_{\mathrm{BG}}$ (see Figure 28)
FDCDC	00 b	DC/DC converter operating frequency in PWM mode   $00 \mathrm{~b}=150 \mathrm{KHz}$ (default)   $01 \mathrm{~b}=200 \mathrm{KHz}$   $10 \mathrm{~b}=250 \mathrm{KHz}$   $11 \mathrm{~b}=300 \mathrm{KHz}$

VFDETVAL - W - Selection of Voltage to Add as Adjustment to VH Default value: 00h $\begin{array}{llllllllllllllll}\text { Bit } 15 & \text { Bit } 14 & \text { Bit } 13 & \text { Bit } 12 & \text { Bit } 11 & \text { Bit } 10 & \text { Bit } 9 & \text { Bit } 8 & \text { Bit } 7 & \text { Bit } 6 & \text { Bit } 5 & \text { Bit } 4 & \text { Bit } 3 & \text { Bit } 2 & \text { Bit } 1 & \text { Bit } 0\end{array}$

Command code	Data					
06 h	0	0	0	0	0	VFOP


Bit/Field Name	Reset	Function
VFOP	000b	Selection of voltage to add to pad VF to produce VH, the output of DC/DC converter. In general, $\mathrm{VH}=\mathrm{VF}+\mathrm{V}_{\mathrm{FOP}}$ where according to field VFOP, $\mathrm{V}_{\mathrm{FOP}}$ is: $\begin{aligned} & 000 \mathrm{~b}=1.5 \mathrm{~V} \\ & 001 \mathrm{~b}=1.786 \mathrm{~V} \\ & 010 \mathrm{~b}=2.072 \mathrm{~V} \\ & \cdots \\ & 110 \mathrm{~b}=3.214 \mathrm{~V} \\ & 111 \mathrm{~b}=3.5 \mathrm{~V} \end{aligned}$   Note: 1 LSB of field VFOP is approximately 286 mV .

DCTRL - w - Dot-Matrix Display Control
Default value: 00 h
$\begin{array}{llllllllllllll}\text { Bit } 15 & \text { Bit } 14 & \text { Bit } 13 & \text { Bit } 12 & \text { Bit } 11 & \text { Bit } 10 & \text { Bit } 9 & \text { Bit } 8 & \text { Bit } 7 & \text { Bit } 6 & \text { Bit } 5 & \text { Bit } 4 & \text { Bit } 3 & \text { Bit } 2\end{array}$ Bit $1 \quad$ Bit 0

| Command code | Data |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 h | 0 | 0 | 0 | 0 | 0 | DINV | DALI | DISP <br> ON |


Bit/Field Name	Reset	$\quad$ Function
DISPON	0	Dot-Matrix display ON/OFF   = = Display OFF, DC/DC is ON or OFF according to bit DCDCON of register DCDCCTRL, Column   and Row outputs are set to GNDL, Scanning is OFF   $1=$ Display ON
DALI	0	Dot-Matrix all points or pixel lights ON/OFF (applies with bit DISPON = 1)   $0=$ all pixel lights OFF (command disabled)   $1=$ all pixel lights ON
DINV	0	"Reversal" of Dot-Matrix display contents   $0=$ display contents not "reversed" (command disabled)   $1=$   display contents "reversed" (reversal operation is applied on data in Display RAM which is in   read mode

DOTMTRXDIR - w - Dot-Matrix Display Direction
Default value: 00h
$\begin{array}{lllllllllllllll}\text { Bit } 15 & \text { Bit } 14 & \text { Bit } 13 & \text { Bit } 12 & \text { Bit } 11 & \text { Bit } 10 & \text { Bit } 9 & \text { Bit } 8 & \text { Bit } 7 & \text { Bit } 6 & \text { Bit } 5 & \text { Bit } 4 & \text { Bit } 3 & \text { Bit } 2 & \text { Bit } 1\end{array}$ Bit 0

| Command code | Data |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 11 h | 0 | 0 | DUMM | 0 | 0 | VTUR | HTUR |


Bit/Field Name	Reset	Function
HTUR	0	Invert image in horizontal direction (inversion is performed at the time of writing data)   $0=$ image inversion OFF   $1=$ image inversion ON (see Figure 24)
VTUR	0	Invert image in vertical direction   $0=$ image inversion OFF   $1=$ image inversion ON (see Figure 23)
DUMM	00b	Number of Dummy Lines to precede Scan line   $00 b=$ one dummy line to precede scan line   $01 \mathrm{~b}=$ two dummy lines to precede scan line   $10 \mathrm{~b}=$ four dummy lines ""   $11 \mathrm{~b}=$ e eight dummy lines ""

DOTMTRXSCAN - W - Dot-Matrix Scan Line Select
Default value: 47h

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0


Command code	Data	
12 h	0	SCLN


Bit/Field Name	Reset	Function
SCLN	$\begin{gathered} 1000111 \\ (47 \mathrm{~h}) \end{gathered}$	Scan line select   $0000000 \mathrm{~b}=$ Line 1 selected as Scan line $0000001 \mathrm{~b}=$ Line 2 selected as Scan line   $1000110 b=$ Line 71 selected as Scan line   100 0111b = Line 72 selected as Scan line (default)   100 1000b = Do not use   111 1110b = Do not use)   111 1111b = Do not use

RAMXSTART - W - Display RAM X Starting Address
Default value: 00h
$\begin{array}{lllllllllllllll}\text { Bit } 15 & \text { Bit } 14 & \text { Bit } 13 & \text { Bit } 12 & \text { Bit } 11 & \text { Bit } 10 & \text { Bit } 9 & \text { Bit } 8 & \text { Bit } 7 & \text { Bit } 6 & \text { Bit } 5 & \text { Bit } 4 & \text { Bit } 3 & \text { Bit } 2 & \text { Bit } 1\end{array}$ Bit 0

Command code	Data							
13 h	X	X	X	X	X	X	X	X


Data	Reset	
OOh to FFh	00h	Display RAM X Address starting value

RAMYSTART - W - Display RAM Y Starting Address
Default value: 00h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit $9 \quad$ Bit $8 \quad$ Bit $7 \quad$ Bit $6 \quad$ Bit $5 \quad$ Bit $4 \quad$ Bit $3 \quad$ Bit $2 \quad$ Bit $1 \quad$ Bit 0

Command code	Data							
14 h	x	x	x	x	x	x	x	x


Data	Reset	
OOh to FFh	00h	Display RAM Y Address starting value

GSADDINC - w - Grayscale Mode Sel. and Disp. RAM Addr. Increment Default value: 00h

| Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


Command code	Data				
15 h	GSMODE	0	0	YINC	XINC


Bit/Field Name	Reset	Function
XINC	0	Automatic increment of Display RAM X address   $0=$ increment OFF   $1=$ increment ON


Bit/Field Name	Reset	
YINC	0	Automatic increment of Display RAM Y address   $0=$ increment OFF   $1=$ increment ON
GSMODE	0000 b	Gray scale mode selection   $0000 \mathrm{~b}=16$ gray scale mode   $0001 \mathrm{~b}=$ do not use
$0010 \mathrm{~b}=4$ gray scale mode, picture 1		
$0011 \mathrm{~b}=4$ gray scale mode, picture 2		
$0100 \mathrm{~b}=64$ gray scale mode 1		
$0101 \mathrm{~b}=64$ gray scale mode 2		
$0110 \mathrm{~b}=$ do not use		
$0111 \mathrm{~b}=$ do not use		
$1000 \mathrm{~b}=$ monochrome mode, picture 1		
$1001 \mathrm{~b}=$ monochrome mode, picture 2		
$1010 \mathrm{~b}=$ monochrome mode, picture 3		
$1011 \mathrm{~b}=$ monochrome mode, picture 4		
$1100 \mathrm{~b}=$ do not use		
$1101 \mathrm{~b}=$ do not use		
$1110 \mathrm{~b}=$ do not use		
$111 \mathrm{~b}=$ do not use		

DIMMERCTRL - w - Dimmer Control
Default value: OFh
$\begin{array}{llllllllllllllll}\text { Bit } 15 & \text { Bit } 14 & \text { Bit } 13 & \text { Bit } 12 & \text { Bit } 11 & \text { Bit } 10 & \text { Bit } 9 & \text { Bit } 9 & \text { Bit } 7 & \text { Bit } 6 & \text { Bit } 5 & \text { Bit } 4 & \text { Bit } 3 & \text { Bit } 2 & \text { Bit } 1 & \text { Bit } 0\end{array}$

Command code	Data			
16 h	0	0	0	DIMM


Bit/Field Name	Reset	Function
DIMM	01111 (0Fh)	Dimmer select, i.e. fraction of reference current to mirror as output current for each column. In general, $I_{\text {COUTn }}=\operatorname{Irefn} \times$ fract[DIMM] where $n=1$ or 2 and fract[DIMM] is related to the value of field DIMM as follows: $\begin{aligned} & 00000 b=1 / 16 \\ & 00001 b=2 / 16 \\ & 00010 b=3 / 16 \\ & \ldots \\ & 01111 b=16 / 16 \text { (default) } \\ & 10000 b=17 / 16 \\ & \ldots \\ & 11101 b=30 / 16 \\ & 11110 b=31 / 16 \\ & 11111 b=32 / 16 \end{aligned}$   Note: A luminosity control adjustment is performed synchronous with VSYNCIN when bit DISPON of register DCTRL is " 1 ". Otherwise, i.e. when DISPON is " 0 ", it is performed immediately after the command DIMMERCTRL is issued.

ROWDRVSEL - W - Row Driver Mode Selection
Default value: 02h
$\begin{array}{llllllllllllll}\text { Bit } 15 & \text { Bit } 14 & \text { Bit } 13 & \text { Bit } 12 & \text { Bit } 11 & \text { Bit } 10 & \text { Bit } 9 & \text { Bit } 8 & \text { Bit } 7 \quad \text { Bit } 6 & \text { Bit } 5 & \text { Bit } 4 & \text { Bit } 3 & \text { Bit } 2 & \text { Bit } 1\end{array}$ Bit 0

Command code	Data						
17 h	0	0	0	RDIR	0	0	RMODE


Bit/Field Name	Reset	Function
RMODE	10 b	Row driver mode selection   $00 \mathrm{~b}=$ do not use, reserved   $01 \mathrm{~b}=$ do not use, reserved   $10 \mathrm{~b}=$ Internal Row driver, Single scanning 72 line mode (default)   $11 \mathrm{~b}=$ Internal Row driver, Dual scanning mode, max. 36 lines, even and odd Row outputs   driven simultaneously
RDIR	0	Row driver scanning direction   $0=$ R1 to R72 (64 lines), default   $1=$ R72 (64 lines) to R1

COLCTRL - W - Column Output Control
Default value: 00h
$\begin{array}{lllllllllllllll}\text { Bit } 15 & \text { Bit } 14 & \text { Bit } 13 & \text { Bit } 12 & \text { Bit } 11 & \text { Bit } 10 & \text { Bit } 9 & \text { Bit } 8 & \text { Bit } 7 & \text { Bit } 6 & \text { Bit } 5 & \text { Bit } 4 & \text { Bit } 3 & \text { Bit } 2 & \text { Bit } 1\end{array}$ Bit 0

Command code	Data							
1Ah					CLLM	CLLZ	HSLZ	OFLZ


Bit/Field Name	Reset	$\quad$ Function
OFLZ	0	Column output control: during the drive period, after the PWM current sourcing period, the column   output is forced to:   $0=$ GNDL   $1=$ Hi-Z (only if CLLM and CLLZ are " 0 ")
HSLZ	0	HSYNCOUT output control: during the HSYNC pulse, the HSYNCOUT output is forced to:   $0=$ GNDL   $1=$ Hi-Z (only if CLLM and CLLZ are " 0 ")
CLLZ	0	Column drivers all in Hi-Z.   All column outputs are set to Hi-Z during the setup and drive periods. (Scanning operation is as   usual. All outputs are in Hi-Z.)   $0=$ OFF (command disabled)   $1=$ All column outputs in Hi-Z (ON)
CLLM	0	Column outputs all at VCOL.   All column outputs are set to VCOL1 or VCOL2 in all periods. (Scanning operation is as usual. All   outputs are at VCOL1 or VCOL2.) This setup is effective at the time of CLLZ $=$ " 0 "   $0=$ OFF (command disabled)   $1=$ All column outputs at VCOL (ON)

OELPERIOD1 - W - Setup Period 1 command
Default value: 0Fh
$\begin{array}{llllllllllllll}\text { Bit } 15 & \text { Bit } 14 & \text { Bit } 13 & \text { Bit } 12 & \text { Bit } 11 & \text { Bit } 10 & \text { Bit } 9 & \text { Bit } 8 & \text { Bit } 7 & \text { Bit } 6 & \text { Bit } 5 & \text { Bit } 4 & \text { Bit } 3 & \text { Bit } 2\end{array}$ Bit $1 \quad$ Bit 0

Command code	Data	
1 Bh	E1ST	E1CL


Bit/Field Name	Reset	Function
E1CL	$\begin{array}{\|c\|} \hline 00 \text { 1111b } \\ \text { (OFh) } \end{array}$	Setup Period 1, number of clock pulses   The number of clocks in setup period 1 is:   11 1111b = 64 SCLK   11 1110b = 63 SCLK   00 1111b $=16$ SCLK (default)   ...   00 0001b $=2$ SCLK   00 0000b = 1 SCLK
E1ST	00b	Selection of column output level during Setup Period 1   $00=$ column outputs at GNDL   01 = outputs placed in $\mathrm{Hi}-\mathrm{Z}$   10 = outputs connected to VCOL   11 = column outputs source a constant current determined by the dimmer and brightness adjustments   This setup is effective at the time CLLM and CLLZ are " 0 "   When the level of gray scale data is 0 , Setup Period 1 is compulsorily set to GNDL even if VPP, VCOL or Hi-Z was chosen.

OELPERIOD2 - W - Setup Period 2 command
Default value: 00h
$\begin{array}{llllllllllllll}\text { Bit } 15 & \text { Bit } 14 & \text { Bit } 13 & \text { Bit } 12 & \text { Bit } 11 & \text { Bit } 10 & \text { Bit } 9 & \text { Bit } 8 & \text { Bit } 7 & \text { Bit } 6 & \text { Bit } 5 & \text { Bit } 4 & \text { Bit } 3 & \text { Bit } 2\end{array}$ Bit 1 Bit 0

Command code	Data	
1 Ch	E2ST	E2CL


Bit/Field Name	Reset	Function
E2CL	00 0000b	Setup Period 2, number of clock pulses   The number of clocks in setup period 2 is: $\begin{aligned} & 11 \text { 1111b = } 64 \text { SCLK } \\ & 11 \text { 1110b }=63 \text { SCLK } \end{aligned}$   00 0001b $=2$ SCLK   00 0000b $=1$ SCLK (default)
E2ST	00b	Selection of column output level during Setup Period 2   $00=$ column outputs at GNDL   01 = outputs placed in $\mathrm{Hi}-\mathrm{Z}$   10 = outputs connected to VCOL   11 = column outputs source a constant current determined by the dimmer and brightness adjustments   This setup is effective at the time CLLM and CLLZ are " 0 "   When the level of gray scale data is 0 , Setup Period 2 is compulsorily set to GNDL even if VPP, VCOL or Hi-Z was chosen.

OELPERIOD3 - W - Setup Period 3 command
Default value: 00h
$\begin{array}{llllllllllllll}\text { Bit } 15 & \text { Bit } 14 & \text { Bit } 13 & \text { Bit } 12 & \text { Bit } 11 & \text { Bit } 10 & \text { Bit } 9 & \text { Bit } 8 & \text { Bit } 7 \quad \text { Bit } 6 & \text { Bit } 5 & \text { Bit } 4 & \text { Bit } 3 & \text { Bit } 2 & \text { Bit } 1\end{array}$ Bit 0

Command code	Data	
1 Dh	E3ST	E3CL


Bit/Field Name	Reset	Function
E3CL	00 0000b	Setup Period 3, number of clock pulses   The number of clocks in setup period 3 is: $\begin{aligned} & 11 \text { 1111b = } 64 \text { SCLK } \\ & 11 \text { 1110b }=63 \text { SCLK } \end{aligned}$   00 0001b $=2$ SCLK   00 0000b = 1 SCLK (default)
E3ST	00b	Selection of column output level during Setup Period 3   $00=$ column outputs at GNDL   01 = outputs placed in $\mathrm{Hi}-\mathrm{Z}$   10 = outputs connected to VCOL   11 = column outputs source a constant current determined by the dimmer and brightness adjustments   This setup is effective at the time CLLM and CLLZ are " 0 "   When the level of gray scale data is 0 , Setup Period 3 is compulsorily set to GNDL even if VPP, VCOL or Hi-Z was chosen.

OELPERIOD4 - W - Setup Period 4 command
Default value: 00h
$\begin{array}{llllllllllllll}\text { Bit } 15 & \text { Bit } 14 & \text { Bit } 13 & \text { Bit } 12 & \text { Bit } 11 & \text { Bit } 10 & \text { Bit } 9 & \text { Bit } 8 & \text { Bit } 7 \quad \text { Bit } 6 & \text { Bit } 5 & \text { Bit } 4 & \text { Bit } 3 & \text { Bit } 2 & \text { Bit } 1\end{array}$ Bit 0

Command code	Data	
1 Eh	E4ST	E4CL


Bit/Field Name	Reset	Function
E4CL	000000 b	Setup Period 4, number of clock pulses   The number of clocks in setup period 4 is:   $111111 \mathrm{~b}=64 \mathrm{SCLK}$   $111110 \mathrm{~b}=63 \mathrm{SCLK}$   $\ldots$   $000001 \mathrm{~b}=2$ SCLK   00 0000b = 1 SCLK (default)
E4ST	00 b	Selection of column output level during Setup Period 4   $00=$ column outputs at GNDL   $01=$ outputs placed in Hi-Z   $10=$ outputs connected to VCOL   $11=$ column outputs source a constant current determined by the dimmer and brightness   adjustments
This setup is effective at the time CLLM and CLLZ are "0"		
When the level of gray scale data is 0, Setup Period 4 is compulsorily set to GNDL even if VPP,		
VCOL or Hi-Z was chosen.		


	ODD15-W - Loading byte 15 of the ODD gray scale lookup table										Default value: FFh				
Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Command code								Data							
1Fh								ODFT							


Bit/Field Name	Reset	$\quad$ Function
ODFT	FFh	Number of SCLK clock periods for the odd $15^{\text {th }}$ level of gray   $00000000 \mathrm{~b}=1$ SCLK
$\ldots$		
$01111111 \mathrm{~b}=128$ SCLK		
$\ldots$		
$11111111 \mathrm{~b}=256$ SCLK		
Note: this command is not to be sent in the following display modes: 4 level gray scale, 64 level		
gray scale and monochrome.		

ODD14-W - Loading byte 14 of the ODD gray scale lookup table
Default value: AFh

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Command code								Data							
20h								ODET							


Bit/Field Name	Reset	Function
ODET	AFh	Number of SCLK clock periods for the odd $14^{\text {th }}$ level of gray   0000 0000b $=1$ SCLK   $\ldots$   $01111111 \mathrm{~b}=128$ SCLK   $\ldots$   1111 1111b $=256$ SCLK   Note: this command is not to be sent in the following display modes: 4 level gray scale, 64 level   gray scale and monochrome.

ODD13 - W - Loading byte 13 of the ODD gray level lookup table
Default value: 79h


Bit/Field Name	Reset	Function
ODDT	79 h	Number of SCLK clock periods for the odd $13^{\text {th }}$ level of gray   0000 0000b $=1$ SCLK   $\ldots$   $01111111 \mathrm{~b}=128$ SCLK   $\ldots$   $11111111 \mathrm{~b}=256$ SCLK   Note: this command is not to be sent in the following display modes: 4 level gray scale, 64 level   gray scale and monochrome.

ODD12 - W - Loading byte 12 of the ODD gray scale lookup table
Default value: 53h
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit $9 \quad$ Bit $8 \quad$ Bit $7 \quad$ Bit $6 \quad$ Bit $5 \quad$ Bit $4 \quad$ Bit $3 \quad$ Bit $2 \quad$ Bit $1 \quad$ Bit 0

Command code	Data
22 h	ODCT


Bit/Field Name	Reset	$\quad$ Function
ODCT	53 h	Number of SCLK clock periods for the odd $12^{\text {th }}$ level of gray   0000 0000b $=1$ SCLK   $\cdots$   $01111111 \mathrm{~b}=128$ SCLK   $\cdots$   1111 1111b $=256$ SCLK   Note: this command is not to be sent in the following display modes: 4 level gray scale, 64 level   gray scale and monochrome.

ODD11 - W - Loading byte 11 of the ODD gray scale lookup table
Default value: 39h

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Command code								Data							
23h								ODBT							


Bit/Field Name	Reset	Function
ODBT	39 h	Number of SCLK clock periods for the odd $11^{\text {th }}$ level of gray   $00000000 \mathrm{~b}=1$ SCLK   $\ldots$   $01111111 \mathrm{~b}=128$ SCLK   $\ldots$   $11111111 \mathrm{~b}=256$ SCLK
		Note: this command is not to be sent in the following display modes: 4 level gray scale, 64 level   gray scale and monochrome.

ODD10 - W - Loading byte 10 of the ODD gray scale lookup table
Default value: 27h

| Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | Bit 0


Command code	Data
24 h	ODAT


Bit/Field Name	Reset	Function
ODAT	27 h	Number of SCLK clock periods for the odd $10^{\text {th }}$ level of gray   $00000000 \mathrm{~b}=1$ SCLK   $\ldots$   $01111111 \mathrm{~b}=128$ SCLK   $\ldots$   $11111111 \mathrm{~b}=256$ SCLK   Note: this command is not to be sent in the following display modes: 4 level gray scale, 64 level   gray scale and monochrome.

ODD9 - w - Loading byte 9 of the ODD gray scale lookup table
Default value: 1Ah

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Command code								Data							
25h								OD9T							


Bit/Field Name	Reset	Function
OD9T	1Ah	Number of SCLK clock periods for the odd 9   0 th   0000 level of gray   $\ldots$   $0111 ~ 1111 \mathrm{~b}=128$ SCLK $=1$ SCLK
$\ldots$		
1111 1111b = 256 SCLK		
Note: this command is not to be sent in the following display modes: 4 level gray scale, 64 level		
gray scale and monochrome.		

ODD8 - W - Loading byte 8 of the ODD gray scale lookup table
Default value: 12h

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Command code								Data							
26h								OD8T							


Bit/Field Name	Reset	$\quad$ Function
OD8T	12 h	Number of SCLK clock periods for the odd $8^{\text {th }}$ level of gray   $00000000 \mathrm{~b}=1$ SCLK   $\ldots$   $01111111 \mathrm{~b}=128$ SCLK   $\ldots$   $11111111 \mathrm{~b}=256$ SCLK
		Note: this command is not to be sent in the following display modes: 4 level gray scale, 64 level   gray scale and monochrome.

ODD7 - W - Loading byte 7 of the ODD gray scale lookup table
Default value: OCh

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit $9 \quad$ Bit $8 \quad$ Bit $7 \quad$ Bit $6 \quad$ Bit $5 \quad$ Bit $4 \quad$ Bit $3 \quad$ Bit $2 \quad$ Bit $1 \quad$ Bit 0

Command code	Data
27 h	OD7T

79/

Bit/Field Name	Reset	Function
OD7T	OCh	Number of SCLK clock periods for the odd $7^{\text {th }}$ level of gray   0000 0000b $=1$ SCLK   $\ldots$   $01111111 \mathrm{~b}=128$ SCLK   $\ldots$   1111 1111b $=256$ SCLK   Note: this command is not to be sent in the following display modes: 4 level gray scale, 64 level   gray scale and monochrome.

ODD6 - W - Loading byte 6 of the ODD gray level lookup table
Default value: 08h

| Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit $1 \quad$ Bit 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


Command code	Data
28 h	OD6T


Bit/Field Name	Reset	Function
OD6T	08h	Number of SCLK clock periods for the odd $6^{\text {th }}$ level of gray   0000 0000b $=1$ SCLK   $\ldots$   $01111111 \mathrm{~b}=128$ SCLK   $\ldots$   1111 1111b $=256$ SCLK   Note: this command is not to be sent in the following display modes: 4 level gray scale, 64 level   gray scale and monochrome.

ODD5 - W - Loading byte 5 of the ODD gray level lookup table
Default value: 05h

| Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | Bit 0


Command code	Data
29 h	OD5T


Bit/Field Name	Reset	Function
OD5T	05h	Number of SCLK clock periods for the odd5 ${ }^{\text {th }}$ level of gray $0000 \text { 0000b = } 1 \text { SCLK }$   0111 1111b = 128 SCLK $1111 \text { 1111b = } 256 \text { SCLK }$   Note: this command is not to be sent in the following display modes: 4 level gray scale, 64 level gray scale and monochrome.

ODD4 - W - Loading byte 4 of the ODD gray level lookup table
Default value: 03h

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Command code								Data							
2Ah								OD4T							


Bit/Field Name	Reset	Function
OD4T	03h	Number of SCLK clock periods for the odd $4^{\text {th }}$ level of gray   0000 0000b $=1$ SCLK   $\ldots$   $01111111 \mathrm{~b}=128$ SCLK   $\ldots$   1111 1111b $=256$ SCLK   Note: this command is not to be sent in the following display modes: 4 level gray scale, 64 level   gray scale and monochrome.

ODD3 - W - Loading byte 3 of the ODD gray level lookup table
Default value: 02h

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Command code								Data							
2Bh								OD3T							


Bit/Field Name	Reset	Function
OD3T	02 h	Number of SCLK clock periods for the odd $3^{\text {rd }}$ level of gray   $00000000 \mathrm{~b}=1$ SCLK   $\ldots$   $01111111 \mathrm{~b}=128$ SCLK   $\ldots$   $11111111 \mathrm{~b}=256$ SCLK   Note: this command is not to be sent in the following display modes: 64 level gray scale and   monochrome.

ODD2 - W - Loading byte 2 of the ODD gray level lookup table
Default value: 01h


Bit/Field Name	Reset	Function
OD2T	01 h	Number of SCLK clock periods for the odd 2   nd   0000 level of gray   $\ldots$   $0111111 \mathrm{~b}=128$ SCLK $=1$ SCLK
		$\ldots$   $11111111 \mathrm{~b}=256$ SCLK   Note: this command is not to be sent in the following display modes: 64 level gray scale and   monochrome.

ODD1 - W - Loading byte 1 of the ODD gray level lookup table
Default value: 00h

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0


Command code	Data
2 Dh	OD1T


Bit/Field Name	Reset	$\quad$ Function
OD1T	00 h	Number of SCLK clock periods for the odd $1^{\text {st }}$ level of gray   $00000000 \mathrm{~b}=1$ SCLK
		$\ldots$
		O111 $1111 \mathrm{~b}=128$ SCLK   $\ldots$   $11111111 \mathrm{~b}=256$ SCLK   Note: this command is not to be sent while display is in 64 level gray scale mode

EVEN15 - w - Loading byte 15 of the EVEN gray level lookup table Default value: FFh

| Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 9 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


Command code	Data
2Eh	EVFT


Bit/Field Name	Reset	Function
EVFT	FFh	Number of SCLK clock periods for the even $15^{\text {th }}$ level of gray   0000 0000b $=1$ SCLK   $\ldots$   $01111111 \mathrm{~b}=128$ SCLK   $\ldots$   $11111111 \mathrm{~b}=256$ SCLK   Note: this command is not to be sent in the following display modes: 4 level gray scale, 64 level   gray scale and monochrome.

EVEN14-W - Loading byte 14 of the EVEN gray level lookup table
Default value: AFh

Bit 15 Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Command code							Data							
2Fh							EVET							


Bit/Field Name	Reset	Function
EVET	AFh	Number of SCLK clock periods for the even $14^{\text {th }}$ level of gray   0000 0000b $=1$ SCLK   $\ldots$   $01111111 \mathrm{~b}=128$ SCLK   $\ldots$   1111 1111b $=256$ SCLK   Note: this command is not to be sent in the following display modes: 4 level gray scale, 64 level   gray scale and monochrome.

EVEN13 - W - Loading byte 13 of the EVEN gray level lookup table
Default value: 79h

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Command code								Data							
30h								EVDT							


Bit/Field Name	Reset	Function
EVDT	79 h	Number of SCLK clock periods for the even $13^{\text {th }}$ level of gray   $00000000 \mathrm{~b}=1$ SCLK   $\ldots$   $01111111 \mathrm{~b}=128$ SCLK   $\ldots$   $11111111 \mathrm{~b}=256$ SCLK
		Note: this command is not to be sent in the following display modes: 4 level gray scale, 64 level   gray scale and monochrome.

EVEN12 - W - Loading byte 12 of the EVEN gray level lookup table
Default value: 53h

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit $1 \quad$ Bit 0


Command code	Data
31 h	EVCT


Bit/Field Name	Reset	Function
EVCT	53h	Number of SCLK clock periods for the even $12^{\text {th }}$ level of gray $0000 \text { 0000b = } 1 \text { SCLK }$   0111 1111b = 128 SCLK   1111 1111b $=256$ SCLK   Note: this command is not to be sent in the following display modes: 4 level gray scale, 64 level gray scale and monochrome.

EVEN11-W - Loading byte 11 of the EVEN gray level lookup table
Default value: 39h

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Command code								Data							
32h								EVBT							


Bit/Field Name	Reset	Function
EVBT	39 h	Number of SCLK clock periods for the even $11^{\text {th }}$ level of gray   0000 0000b = 1 SCLK   $\ldots$   $01111111 \mathrm{~b}=128$ SCLK   $\cdots$   1111 1111b = 256 SCLK   Note: this command is not to be sent in the following display modes: 4 level gray scale, 64 level   gray scale and monochrome.

EVEN10 - W - Loading byte 10 of the EVEN gray level lookup table
Default value: 27h


Bit/Field Name	Reset	Function
EVAT	27 h	Number of SCLK clock periods for the even $10^{\text {th }}$ level of gray   0000 0000b $=1$ SCLK   $\ldots$   $0111 ~ 1111 \mathrm{~b}=128$ SCLK   $\ldots$   1111 1111b $=256$ SCLK   Note: this command is not to be sent in the following display modes: 4 level gray scale, 64 level   gray scale and monochrome.

EVEN9 - W - Loading byte 9 of the EVEN gray level lookup table
Default value: 1Ah

Bit 15 Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Command code							Data							
34h							EV9T							


Bit/Field Name	Reset	Function
EV9T	1Ah	Number of SCLK clock periods for the even $9^{\text {th }}$ level of gray   0000 0000b $=1$ SCLK   $\ldots$   $01111111 \mathrm{~b}=128$ SCLK   $\ldots$   1111 1111b $=256$ SCLK   Note: this command is not to be sent in the following display modes: 4 level gray scale, 64 level   gray scale and monochrome.

EVEN8 - W - Loading byte 8 of the EVEN gray level lookup table
Default value: 12h


Bit/Field Name	Reset	Function
EV8T	12 h	Number of SCLK clock periods for the even $8^{\text {th }}$ level of gray   $00000000 \mathrm{~b}=1$ SCLK   $\ldots$   $01111111 \mathrm{~b}=128$ SCLK   $\ldots$   $11111111 \mathrm{~b}=256$ SCLK
		Note: this command is not to be sent in the following display modes: 4 level gray scale, 64 level   gray scale and monochrome.

EVEN7 - W - Loading byte 7 of the EVEN gray level lookup table
Default value: OCh
$\begin{array}{lllllllllllllll}\text { Bit } 15 & \text { Bit } 14 & \text { Bit } 13 & \text { Bit } 12 & \text { Bit } 11 & \text { Bit } 10 & \text { Bit } 9 & \text { Bit } 8 & \text { Bit } 7 \quad \text { Bit } 6 & \text { Bit } 5 & \text { Bit } 4 & \text { Bit } 3 & \text { Bit } 2 & \text { Bit } 1 & \text { Bit } 0\end{array}$

Command code	Data
36 h	EV7T


Bit/Field Name	Reset	Function
EV7T	0Ch	Number of SCLK clock periods for the even $7^{\text {th }}$ level of gray   0000 0000b = 1 SCLK   $\ldots$   $01111111 \mathrm{~b}=128$ SCLK   $\ldots$   $11111111 \mathrm{~b}=256$ SCLK   Note: this command is not to be sent in the following display modes: 4 level gray scale, 64 level   gray scale and monochrome.

EVEN6 - W - Loading byte 6 of the EVEN gray level lookup table
Default value: 08h


Bit/Field Name	Reset	Function
EV6T	08h	Number of SCLK clock periods for the even 6   th   0000 level of gray   $\ldots$   $0000 \mathrm{~b}=1$ SCLK
$0111111 \mathrm{~b}=128$ SCLK		
$\ldots$		
1111 1111b $=256$ SCLK		
Note: this command is not to be sent in the following display modes: 4 level gray scale, 64 level		
gray scale and monochrome.		

EVEN5 - W - Loading byte 5 of the EVEN gray level lookup table
Default value: 05h

| Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | Bit 0


Command code	Data
38 h	EV5T


Bit/Field Name	Reset	Function
EV5T	05 h	Number of SCLK clock periods for the even 5 th      0000 level of gray   $\ldots$   $01111111 \mathrm{~b}=128$ SCLK $=1$ SCLK
		1111 1111b $=256$ SCLK   Note: this command is not to be sent in the following display modes: 4 level gray scale, 64 level   gray scale and monochrome.

EVEN4 - W - Loading byte 4 of the EVEN gray level lookup table
Default value: 03h

Bit 15 Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Command code							Data							
39h							EV4T							


Bit/Field Name	Reset	Function
EV4T	03 h	Number of SCLK clock periods for the even 4   th   0000 level of gray   $\ldots$   $0000 \mathrm{~b}=1$ SCLK
$\ldots 111 \mathrm{~b}=128$ SCLK		
$\ldots$		
1111 1111b $=256$ SCLK		
Note: this command is not to be sent in the following display modes: 4 level gray scale, 64 level		
gray scale and monochrome.		

EVEN3 - W - Loading byte 3 of the EVEN gray scale lookup table
Default value: 02h


Bit/Field Name	Reset	Function
EV3T	02 h	Number of SCLK clock periods for the even $3^{\text {rd }}$ level of gray   $00000000 \mathrm{~b}=1$ SCLK   $\ldots$   $01111111 \mathrm{~b}=128$ SCLK   $\ldots$   $11111111 \mathrm{~b}=256$ SCLK   Note: this command is not to be sent in the following display modes: 64 level gray scale and   monochrome.

EVEN2 - W - Loading byte 2 of the EVEN gray level lookup table
Default value: 01h


Bit/Field Name	Reset	Function
EV2T	01 h	Number of SCLK clock periods for the even $2^{\text {nd }}$ level of gray   $00000000 \mathrm{~b}=1$ SCLK   $\ldots$   $01111111 \mathrm{~b}=128$ SCLK   $\ldots$   $11111111 \mathrm{~b}=256$ SCLK   Note: this command is not to be sent in the following display modes: 64 level gray scale and   monochrome.

EVEN1 - W - Loading byte 1 of the EVEN gray level lookup table
Default value: 00h

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Command code								Data							
3 Ch								EV1T							


Bit/Field Name	Reset	Function
EV1T	00h	Number of SCLK clock periods for the even $1^{\text {st }}$ level of gray   0000 0000b $=1$ SCLK   $\ldots$   $01111111 \mathrm{~b}=128$ SCLK   $\ldots$   1111 1111b $=256$ SCLK   Note: this command is not to be sent while display is in 64 level gray scale mode.

SLEEP - W - Software Sleep IN/OUT Select
Default value: 00h

| Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


Command code	Data							
F1h	X	X	X	X	X	X	X	SLEEP


Bit/Field Name	Reset	Function
SLEEP	0	Software Sleep IN/OUT selection   $0=$ exit from sleep mode (OUT of sleep mode)   $1=$ enter sleep mode (IN sleep mode)

SOFTRST - w - Software Reset Default value: - -h


Bit/Field Name	Reset	Function
-	--	Approx. 200ns max after sending or issuing this command, the state of the STV8105 becomes:   - oscillator ON   - DC/DC Converter remains OFF but waiting for a command   - Column drivers at GNDL but also waiting for a command   - internal Row drivers at GNDL (waiting for a command)   - external Driver Control: SCLK_OUT = SCLK Clock output   - external IC controls VSYNCOUT, HSYNCOUT, RCTRLA, RCTRLB and ROWDATA are at GND   - all Registers are at their default values (waiting for a command)   For more information see Section 12.1.

Note: For information about commands F3h, F5h and F7h, see Section 11.2: OTP Memory Programming.

## 14 Electrical Characteristics

### 14.1 Absolute Maximum Ratings

Maximum ratings are the values beyond which damage to the device may occur. Functional operation should be restricted to the limits defined in the electrical characteristics table.

Symbol	Parameter	Value	Units
$\mathrm{V}_{\mathrm{DD}}$	Controller Supply Range	$-0.3,+4.6$	V
$\mathrm{~V}_{\text {bat }}$	Battery Supply Range	$-0.3,+18$	V
$\mathrm{~V}_{\mathrm{PP}}$	Analog Display Supply Range	$-0.3,+27$	V
$\mathrm{I}_{\text {PP }}$	DC Display Current Range	TBD	mA
$\mathrm{V}_{\mathrm{DC}}$	"Buffer" Supply Range	$-0.3,+12$	V
$\mathrm{~V}_{\text {PRG }}$	OTP Programming Supply	$-0.3,+20$	V
$\mathrm{~V}_{\text {INPUT }}$	Logic Input Voltage Range	$-0.3, \mathrm{~V}_{\mathrm{DD}}+0.3$	V
$\mathrm{I}_{\text {INPUT }}$	DC Logic Input Current Range	10	mA
$\mathrm{~V}_{\text {ESD }}$	ESD Susceptibility, Human Body Model $(100 \mathrm{pF}$   through 1.5Kohms $)^{1}$	2.0	KV
$\mathrm{T}_{\mathrm{J}}$	Junction Temperature	125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STOR }}$	Storage Temperature	$-50,+150$	${ }^{\circ} \mathrm{C}$

1. Pad VHSENSE and pads R1 to R72 sustain 1 KV

### 14.2 Thermal Data

Symbol	Parameter	Value	Units
$\mathrm{R}_{\text {thJA }}$	Junction-ambient Thermal Resistance (Maximum) on a single-layer   board	TBD	${ }^{\circ} \mathrm{C} / \mathrm{W}$

### 14.3 Recommended Operating Conditions

$$
\begin{aligned}
& \mathrm{VDD}=3.3 \mathrm{~V}, \mathrm{VPP} 1=\mathrm{VPP} 2=18 \mathrm{~V}, \mathrm{GND}=\mathrm{GNDL}=0 \mathrm{~V}, \\
& \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \text { and frame frequency } \mathrm{f}_{\mathrm{VSYNC}}=75 \mathrm{~Hz} \text { unless otherwise specified. }
\end{aligned}
$$

### 14.3.1 DC Characteristics

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Units
$\mathrm{V}_{\mathrm{DD}}$	Controller Supply voltage		3.0	3.3	3.6	V
$\mathrm{I}_{\mathrm{DD}}$	Controller Supply current		-	TBD	-	$\mu \mathrm{A}$
$\mathrm{V}_{\text {bat }}$	Battery voltage range for   step-up DCDC converter		3		12	V


Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Units
$V_{\text {PP }}$	Display Supplies, VPP1 and VPP2	From external step-up convertor	$\begin{gathered} \mathrm{V}_{\mathrm{bat}} \\ -\mathrm{V}_{\text {diode }} \end{gathered}$	18	25	V
		From external supply	6.0	-	25	V
$V_{\text {PRG }}$	OTP Supply Voltage ${ }^{1}$	14	. 0		18.0	V
$\mathrm{I}_{\text {PRG }}$	OTP Supply Current ${ }^{2}$		250		TBD	mA
Istandby	Standby Current	Device biased but not operating (standby mode)			TBD	$\mu \mathrm{A}$
$\mathrm{V}_{\text {IL }}$	Low level of input logic signal		GND		$\begin{aligned} & 0.2 x \\ & V_{D D} \end{aligned}$	V
$\mathrm{V}_{\mathrm{IH}}$	High level of input logic signal		$\begin{aligned} & 0.8 \mathrm{x} \\ & \mathrm{~V}_{\mathrm{DD}} \end{aligned}$		$V_{D D}$	V
IIL	Low level Input current of logic signals	$\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}$			1	$\mu \mathrm{A}$
$\mathrm{IIH}^{\text {H }}$	High level Input current of logic signals	$\mathrm{V}_{\mathrm{IH}}=0 \mathrm{~V}$			1	$\mu \mathrm{A}$
$\mathrm{V}_{\text {OL }}$	Low level output signal	Output sinking < 1 mA	GND		$\begin{aligned} & 0.2 x \\ & V_{D D} \end{aligned}$	V
$\mathrm{V}_{\mathrm{OH}}$	High level output signal	Output sourcing $<1 \mathrm{~mA}$	$\begin{aligned} & 0.8 \mathrm{x} \\ & \mathrm{~V}_{\mathrm{DD}} \end{aligned}$		$V_{D D}$	V

1. $\mathrm{V}_{\mathrm{PRG}}$ is to be applied only when programming the non-volatile OTP memory.
2. When applying $V_{P R G}$, $I_{P R G}$ should forced to at least 250 mA to assure complete "blowing" of the antifuse structure associated with an OTP memory bit.

### 14.3.2 Timing Generator

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Units
$\mathrm{f}_{\mathrm{CLK}}$	Oscillation Frequency	External RC or Crystal		2.4	24	MHz
$\mathrm{f}_{\text {CRC }}$	Internal Clock Frequency	Internal RC oscillator	2.04	2.40	2.76	MHz
$\mathrm{f}_{\mathrm{EXT}}$	External Clock Input		0.1		10	MHz
Duty	Clock Duty	Crystal, RC oscillation	45	50	55	$\%$
		45	50	55	$\%$	
$\mathrm{f}_{\text {SYS }}$	System Operation Frequency	System Clock		2.4		MHz
$\mathrm{f}_{\text {VSYNC }}$	Frame Frequency	Default configuration, 75 Hz		75		Hz
$\mathrm{f}_{\text {HSYNC }}$	Row Frequency			TBD		Hz

### 14.3.3 Row Drivers

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Units
$\mathrm{I}_{\text {ROW }}$	Sink row Supply Current	Maximum Brightness			110	mA
$\mathrm{~V}_{\text {ROWON }}$	ROW ON Voltage drop	$\mathrm{I}_{\text {ROW }}=110 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DD}}=3.3 \mathrm{~V}$		TBD		V
$\mathrm{R}_{\text {ROWOFF }}$	$\mathrm{R}_{\text {DSON }}$ of Row high side transistor			1.0	TBD	Kohms

14.3.4 Column Drivers

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Units
$\mathrm{I}_{\text {COL }}$	Column Supply Current	Minimum Brightness, 01h Maximum Brightness, 1Fh		$\begin{aligned} & \hline-1.3 \\ & -800 \end{aligned}$		$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
$\mathrm{R}_{\mathrm{COL}}$	Column output impedance during precharge	$\mathrm{I}_{\text {OUt }}=-200 \mathrm{uA}$		1.0	TBD	Kohms
$\mathrm{R}_{\text {COLDIS }}$	Column output impedance during discharge	$\mathrm{l}_{\text {OUt }}=+200 \mathrm{uA}$		1.0	TBD	Kohms
$\mathrm{D}_{\mathrm{COL}}$	Column differential uniformity $\begin{aligned} & \mathrm{D}_{\mathrm{COL}}=\mathrm{ABS}\left(\mathrm{I}_{\mathrm{COL} _\mathrm{N}}-\mathrm{I}_{\mathrm{COL}-\mathrm{N}+1}\right) / I_{\mathrm{AVG} 1}, \\ & \mathrm{I}_{\mathrm{AVG} 1}=\left(\mathrm{I}_{\mathrm{COL} _\mathrm{N}}+\mathrm{I}_{\mathrm{COL}-\mathrm{N}+1}\right) / 2 \end{aligned}$	$\mathrm{I}_{\text {OUT }}=200 \mathrm{uA}$   Intermediate All outputs		$\begin{aligned} & 1.0 \\ & 2.5 \end{aligned}$		$\begin{aligned} & \% \\ & \% \end{aligned}$
$\mathrm{D}_{\text {CHIP }}$	Device differential uniformity   $\mathrm{D}_{\text {CHIP }}=$ ABS (ICOL_MAX $\left.-I_{\text {COL_MIN }}\right) /$ IAVG2 2,   and $\mathrm{I}_{\text {AVG2 }}=\left(\mathrm{I}_{\mathrm{COL}}\right.$ - $1+$ to $+\mathrm{I}_{\mathrm{COL}}$ 256 $) / 256$			5		\%
DICOL	Average current deviation against absolute level	$\text { \|col }=200 \mu \mathrm{~A}$   RREF1 and RREF2: $1 \%$		TBD		\%
loff	Output Leakage Current	All outputs OFF			2	$\mu \mathrm{A}$

14.3.5 Current Reference and Brightness Adjustment D/A Converter

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Units
Vref1	Voltage Reference1		0.64		2.77	V
Iref1	Current Reference1		-400		-32	$\mu \mathrm{~A}$
Vref2	Voltage Reference2		0.64		2.77	V
Iref2	Current Reference2		-400		-32	$\mu \mathrm{~A}$
Dres	D/A Converter Resolution			7		Bit
VDH	D/A Output maximum Voltage	Reg 01h/Reg 02h $=1 \mathrm{Fh}$	2.61	2.69	2.77	V
VDL	D/A Output minimum Voltage	Reg 01h/Reg 02h $=00 \mathrm{~h}$	0.64	0.66	0.68	V
DLE	D/A differentiation linearity error		$-1 / 2$		$+1 / 2$	LSB

### 14.3.6 DC/DC Converter

$$
\mathrm{VDD}=3.3 \mathrm{~V}, \mathrm{VDC}=\mathrm{V}_{\mathrm{bat}}=6.0 \mathrm{~V}
$$

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Units
$\mathrm{V}_{\mathrm{H}}$	Step-up output voltage range	$\mathrm{V}_{\text {bat }}=3.0 \mathrm{~V}, \mathrm{l}_{\text {OUT }}=10 \mathrm{~mA}$		18.0	25.0	V
Iout	Output current range	$\begin{aligned} & V_{H}=18 \mathrm{~V} \text {, in PWM mode } \\ & (\text { pad TON } / \bar{F}=\text { GND }) \end{aligned}$		TBD	150	mA
$V_{D C}$	"Buffer" supply range		3.0	5.0	10.0	V
$V_{\text {SENSE }}$	VSENSE control voltage	VCOMP = VSENSE	1.21	1.25	1.29	V
DC_HUVLO	DC supply "start" voltage			2.77		V
DC_LUVLO	DC supply "off" voltage			2.54		V
IDC_STBY	DC supply standby current	$\begin{aligned} & \text { VDC = 10V, Reg 03h, } \\ & \text { DCDCON = "0" } \end{aligned}$		10		$\mu \mathrm{A}$
$\mathrm{f}_{\text {SWI }}$	Switching frequency	$\begin{aligned} & \text { Reg 03h, } \operatorname{FDCDC}=00 \mathrm{~b} \\ & \text { Reg 03h, } F D C D C=11 \mathrm{~b} \end{aligned}$		$\begin{aligned} & 150 \\ & 300 \end{aligned}$		$\begin{aligned} & \mathrm{KHz} \\ & \mathrm{KHz} \end{aligned}$
$\mathrm{V}_{\text {DRIVEH }}$	External MOS gate drive ON	$\mathrm{I}_{\text {DRIVE }}=$ TBD		-	$V_{\text {DC }}$	V
$\mathrm{V}_{\text {DRIVEL }}$	External MOS gate drive OFF	$\mathrm{I}_{\text {DRIVE }}=$ TBD	GND	-		V
$V_{\text {DRIVECYCLE }}$	External MOS gate: turn ON duty cycle		0		80	\%
PFMDTY	PFM duty rate	No Load		90		\%
Efficiency				TBD		\%

### 14.3.7 Voltage Generators

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Units
$\mathrm{V}_{\mathrm{COL} 1,2}$	Column precharge power supply		3		25	V
$\mathrm{~V}_{\mathrm{ROW} 1,2}$	Row-off power supply		6	12	25	V

### 14.3.8 Reset Input

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.
Tr	Reset Completed Time				
Trw	Reset Pulse Width (for valid reset)		5		
Trw	Reset Rejection				
Trs	Software Reset Completed Time			1	$\mu \mathrm{~s}$

Figure 42: Reset Timing


Figure 43: Reset Timing


## 15 Revision History

The following table summarizes the modifications applied to this document.

Date	Revision	Changes
05-Sep-2005	1	Draft
03-Mar-2006	1.1	Renaming and grouping of certain pad names reserved for test by ST.

## Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to th is document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services de scribed herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST product and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. I fany part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IT ST'S TERMS AND CONDITIONS OF SALE, ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILTY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED REPRESENTATIVE OF ST, ST PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE.

Resale of ST products with provisions different from the statements and/or technical features set for th in thi s document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2006 STMicroelectronics - All Rights Reserved

## STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com

## Crystalfontz America, Incorporated

## CFA10009 Demonstration Board Kits User Guide



Crystalfontz Model Number	CFA10009 Demonstration Board Kits (for OLEDs)
Hardware Version	Revision 1.1, June 2009
Firmware Version	Revision 1.0, June 2009
Data Sheet Version	Revision 1.0, June 2009
Product Pages	www.crystalfontz.com/product/CFA10009.html

## Crystalfontz America, Incorporated

12412 East Saltese Avenue
Spokane Valley, WA 99216-0357
Phone: 888-206-9720
Fax: 509-892-1203
Email: techinfo@crystalfontz.com
URL: www.crystalfontz.com

Crystalfontz America, Inc.
CFA10009 Demonstration Board Kits User Guide www.crystalfontz.com Hardware 1.1 / Firmware 1.0 / User Guide 1.0
June 2009

## REVISION HISTORY

CFA10009 DEMONSTATION BOARD	
$2009 / 06 / 25$	Current demonstration board version: v1.1   New demonstration board.


CFA10009 DEMONSTRATION BOARD KITS FIRMWARE	
$2009 / 06 / 25$	Current firmware version (series): v1.0   Initial release.

CFA10009 DEMONSTRATION BOARD KITS USER GUIDE
2009/06/25
Current Data Sheet version: v1.0
New Data Sheet.

## The Fine Print

Certain applications using Crystalfontz America, Inc. products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications"). CRYSTALFONTZ AMERICA, INC. PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT
APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. Inclusion of Crystalfontz America, Inc. products in such applications is understood to be fully at the risk of the customer. In order to minimize risks associated with customer applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazard. Please contact us if you have any questions concerning potential risk applications.

Crystalfontz America, Inc. assumes no liability for applications assistance, customer product design, software performance, or infringements of patents or services described herein. Nor does Crystalfontz America, Inc. warrant or represent that any license, either express or implied, is granted under any patent right, copyright, or other intellectual property right of Crystalfontz America, Inc. covering or relating to any combination, machine, or process in which our products or services might be or are used.

The information in this publication is deemed accurate but is not guaranteed.
Company and product names mentioned in this publication are trademarks or registered trademarks of their respective owners.

Copyright © 2009 by Crystalfontz America, Inc., 12412 East Saltese Avenue, Spokane Valley, WA 99216-0357 U.S.A.

## QUICK START

The CFA10009 demonstration board is shipped with a compatible OLED module of your choice installed and tested. Simply plug the power supply (included) into an AC outlet. The CFA10009 will initialize and turn on the display, then run the demonstration script from the included microSD card.

## INTRODUCTION

The CFA10009 Demonstration Board Kit has everything you need to easily demonstrate and experiment with one compatible Crystalfontz OLED module. The kit can also be used as a reference for your designs that use a Crystalfontz OLED module listed in the table on the next page.

You can easily modify the miniBASIC scripts and bitmaps on the microSD card to make your own test screens, or even to model user interface functions. All that is needed is the included microSD USB reader, a text editor (Notepad will do), an image editor (MS Paint will do), and a simple, open-source format conversion utility (Image2Code) that we offer free of charge.

Beyond demonstrations, the CFA10009 allows you to easily measure current of the different portions of the circuit under operation.

The schematic, bill of materials, and even the PCB layout is available for download from our site. (As always, no registration is required.) Since the design materials are available before purchase, there is no risk of being "surprised" late in the design.

The CFA10009 is preprogrammed with a microSD boot loader. You can load our simple C example code, the miniBASIC interpreter, or build your own application for the CFA10009's versatile Atmel ATMEGA2561 microcontroller using AVR Studio and WinAVR (both free).

The board has a JTAG port for more advanced programming and debugging. All the ports are on 0.1 " centers so you can connect them to anything you need. The CFA10009 is so versatile that you may want to use it as a base development platform for your projects.

## CFA10009 KIT CONFIGURATIONS

FOR OLED MODULE	WITH THIS CONTROLLER	ORDER THIS DEMONSTRATION BOARD KIT	BLOCK DIAGRAM
CFAL12822A-Y-B	Solomon SSD1305	DMO-L12822AYB	Figure 2.
CFAL12822A-Y-B1	Solomon SSD1305	DMO-L12822AYB1	Figure 1.
CFAL12832C-W-B1	Sino Wealth SH1101A	DMO-L12832CWB1	Figure 1.
CFAL12864C-Y-B1	Solomon SSD1305	DMO-L12864CYB1	Figure 1.
CFAL12864L-G-B2	Solomon SSD1305	DMO-L12864LGB2	Figure 2.
CFAL12864L-Y-B2	Solomon SSD1305	DMO-L12864LYB2	Figure 2.
CFAL12864L-G-B2TS	Solomon SSD1305	DMO-L12864LGB2TS	Figure 4.
CFAL12864L-Y-B2TS	Solomon SSD1305	DMO-L12864LYB2TS	Figure 4.
CFAL12864L-G-B4	Solomon SSD1305	DMO-L12864LGB4	Figure 2.
CFAL12864L-Y-B4	Solomon SSD1305	DMO-L12864LYB4	Figure 2.
CFAL12864L-G-B6	Solomon SSD1305	DMO-L12864LGB6	Figure 2.
CFAL12864L-G- B6TS	Solomon SSD1305	DMO-L12864LGB6TS	Figure 3.
CFAL12864L-Y-B6TS	Solomon SSD1305	DMO-L12864LYB6TS	Figure 3.
CFAL12864L-W-B6TS	Solomon SSD1305	DMO-L12864LWB6TS	Figure 3.
CFAL12864N-A-B1	Sino Wealth SH1101A	DMO-L12864NAB1	Figure 1.
CFAL12864S-Y-B1	Solomon SSD1303	DMO-L12864SYB1	Figure 1.
CFAL12864U-W-B1	Solomon SSD1303	DMO-L12864UWB1	Figure 1.
CFAL12864Z-G-B2	Solomon SSD1325	DMO-L12864ZGB2	Figure 2.
CFAL12864Z-Y-B2	Solomon SSD1325	DMO-L12864ZYB2	Figure 2.
CFAL12864Z-G-B2TS	Solomon SSD1325	DMO-L12864ZGB2TS	Figure 4.
CFAL12864Z-Y-B2TS	Solomon SSD1325	DMO-L12864YB2TS	Figure 4.
CFAL12864Z-G-B4	Solomon SSD1325	DMO-L12864ZGB4	Figure 2.
CFAL12864Z-Y-B4	Solomon SSD1325	DMO-L12864ZYB4	Figure 2.
CFAL12864Z-G-B6	Solomon SSD1325	DMO-L12864ZGB6	Figure 2.
CFAL12864Z-W-B6	Solomon SSD1325	DMO-L12864ZWB6	Figure 2.
CFAL12864Z-Y-B6	Solomon SSD1325	DMO-L12864ZYB6	Figure 2.


FOR OLED MODULE	WITH THIS   CONTROLLER	ORDER THIS   DEMONSTRATION   BOARD KIT	BLOCK DIAGRAM
$\underline{\text { CFAL12864Z-G-B6TS }}$	$\underline{\text { Solomon SSD1325 }}$	$\underline{\text { DMO-L12864ZGB6TS }}$	Figure 3.
$\underline{\text { CFAL12864Z-W-B6TS }}$	$\underline{\text { Solomon SSD1325 }}$	$\underline{\text { DMO-L12864ZWB6TS }}$	Figure 3.
$\underline{\text { CFAL12864Z-Y-B6TS }}$	$\underline{\text { Solomon SSD1325 }}$	$\underline{\text { DMO-L12864ZYB6TS }}$	Figure 3.
$\underline{\text { CFAL25664A-Y-B1 }}$	$\underline{\text { ST STV8105 }}$	$\underline{\text { DMO-L25664AYB1 }}$	Figure 1.
$\underline{\text { CFAL9664A-W-B1 }}$	$\underline{\text { Solomon SSD1305 }}$	$\underline{\text { DMO-L9664AWB1 }}$	Figure 1.

## CONTENTS OF DEMONSTRATION BOARD KIT

- CFA10009 Demonstration Board (PCB).

Installed OLED module of your choice. (Selected at time of ordering. See choices in the table above.)

- Power adapter.

MicroSD memory card loaded with BASIC demonstration program and bitmap images.
U USB reader for the microSD memory card.
In addition to the kit contents, a zipped folder of hardware design and program files is available at http:// www.crystalfontz.com/product/CFA10009.html. (Free download.)

## HOW TO MAKE A CUSTOM DEMONSTRATION

The CFA10009 is programmed with firmware that will read a BASIC program file from the microSD memory card. The BASIC program can read bitmap image files from the microSD memory card and display them on the OLED module. The BASIC program can also read the four demonstration board buttons and change the brightness settings.

By using the USB reader, a text editor, and a graphic conversion utility (provided), you can customize the demonstration to include your own bitmap images. The large capacity of the microSD card allows you to create complex demonstrations.

For the most recent version of the graphic conversion utility, sample scripts, and sample images for customizing the demonstration, download the zipped folder at http://www.crystalfontz.com/product/CFA10009.html.

## LOADING A CUSTOM HEX FILE

The CFA10009 Demonstration Board Kit is shipped with the miniBasic-AVR interpreter loaded into the microcontroller Atmel ATMEGA2561's flash memory.

If you want to load our simple demonstration or your own program, simply name the hex file "cfa10009.hex" and copy it into the root the directory of the microSD card. When the CFA10009 boots, the boot loader will program the ATMEGA2561's flash with "cfa10009.hex" and then execute it.

Acknowledgement Note: The miniBASIC-AVR is a derivative of this (see http://www.personal.leeds.ac.uk/~bgy1mm/ Minibasic/MiniBasicHome.html). The miniBASIC-AVR also includes the EFSL embedded filesystems library (see http:// efsl.bel.

## HARDWARE DESIGN INFORMATION

## BLOCK DIAGRAM

Here are block diagrams of the CFA10009 Demonstration Board with different types of installed modules:


Figure 1. For kits with CFAL12822A-Y-B1,CFAL12832C-W-B1,CFAL12864C-Y-B1,CFAL12864N-A-B1, CFAL12864S-Y-B1, CFAL25664A-Y-B1, and CFAL9664A-W-B1

Crystalfontz America, Inc. www.crystalfontz.com June 2009


Figure 2. For kits with CFAL12822A-Y-B, CFAL12864L-G-B2, CFAL12864L-Y-B2, CFAL12864L-G-B4,CFAL12864L-Y-B4, CFAL12864L-G-B6, CFAL12864Z-G-B2, CFAL12864Z-Y-B2, CFAL12864Z-G-B4, CFAL12864Z-Y-B4, CFAL12864Z-G-B6,CFAL12864Z-W-B6, and CFAL12864Z-Y-B6


Figure 3. For kits with CFAL12864L-G- B6TS, CFAL12864L-Y- B6TS, and CFAL12864L-W- B6TS


Figure 4. CFAL12864L-G-B2TS,CFAL12864L-Y-B2TS,CFAL12864L-G- B6TS, CFAL12864L-Y- B6TS, CFAL12864Z-G-B2TS, CFAL12864Z-Y-B2TS, CFAL12864Z-G-B6TS, CFAL12864Z-W-B6TS, and CFAL12864Z-Y-B6TS

## CONTENTS OF HARDWARE DESIGN FOLDER

The zipped folder at http://www.crystalfontz.com/product/CFA10009.html includes the complete hardware design of the CFA10009 Demonstration Board.

- Schematic.
- PCB layout.
- Bill Of Materials (BOM) as an XLS spreadsheet.
- Simple OLED initialization code and bitmap display code.

The schematic and PCB layout were created with CadSoft EAGLE. EAGLE is a capable and low-cost electrical CAD system. You can download a freeware light edition of EAGLE from http://www.cadsoft.de/ to load, view, and print the schematic and layout files.

## CARE AND HANDLING PRECAUTIONS

The kit is sold with a module mounted on it. If you attempt to modify the board to work with other modules, the warranty is void. Do not disassemble or modify the CFA10009 Demonstration Board Kit.

For optimum operation of the module and demonstration board and to prolong their life, please follow the precautions below.

## ESD (ELECTRO-STATIC DISCHARGE)

The circuitry is industry standard CMOS logic and susceptible to ESD damage. Please use industry standard antistatic precautions as you would for any other PCB such as expansion cards or motherboards. Ground your body, work surfaces, and equipment.

## AVOID SHOCK, IMPACT, TORQUE, OR TENSION

- Do not expose the demonstration board and module to strong mechanical shock, impact, torque, or tension.
- Do not drop, toss, bend, or twist the demonstration board and module.
- Do not place weight or pressure on the demonstration board and module.


## OPERATION

- The module ships with a protective film over the display. Please peel off the protective film slowly. Peeling off the protective film abruptly may generate static electricity.
- Use only the included AC adapter to power the board.
- Observe the operating temperature limitations for the module: from $-20^{\circ} \mathrm{C}$ minimum to $+70^{\circ} \mathrm{C}$ maximum with minimal fluctuations. Operation outside of these limits may shorten the life and/or harm the display.
- Operate away from dust, moisture, and direct sunlight.


## CLEANING

- The polarizer (laminated to the glass) is soft plastic. The soft plastic is easily scratched or damaged. Be very careful when you clean the polarizer.
- Do not clean the polarizer with liquids. Do not wipe the polarizer with any type of cloth or swab (for example, Qtips).
- Use the removable protective film to remove smudges (for example, fingerprints) and any foreign matter. If you no longer have the protective film, use standard transparent office tape (for example, Scotch® brand "Crystal Clear Tape"). If the polarizer is dusty, you may carefully blow it off with clean, dry, oil-free compressed air.


## STORAGE AND RECYCLING



- Store in an ESD-approved container away from dust, moisture, and direct sunlight.
- Observe the storage temperature limitations: from $-30^{\circ} \mathrm{C}$ minimum to $+80^{\circ} \mathrm{C}$ maximum with minimal fluctuations. Rapid temperature changes can cause moisture to form, resulting in permanent damage.
- Do not allow weight to be placed on the modules while they are in storage.
- Please recycle the demonstration board and module at an approved facility.

