HD66750S

(128 x 128-dot Graphics LCD Controller/Driver with
 Four-grayscale Functions)

HITACHI

Rev 0.1
November 2000

Description

The HD66750S, dot-matrix graphics LCD controller and driver LSI, displays 128-by-128-dot graphics for four monochrome grayscales. Since the HD66750S incorporates bit-operation functions and a 16 -bit high-speed bus interface, it enables efficient data transfer and high-speed rewriting of data in the graphics RAM. The following functions allow the user to easily see a variety of information: a smooth scroll display function that fixed-displays a part of the graphics icons and perform vertical smooth scrolling of the remaining bit-map areas, a double-height display function, and a hardware-supported window cursor display function.

The HD66750S has various functions to reduce the power consumption of an LCD system such as lowvoltage operation of 1.8 V min., a booster to generate maximum seven-times LCD drive voltage from the supplied voltage, and voltage-followers to decrease the direct current flow in the LCD drive bleederresistors. Combining these hardware functions with software functions, such as a partial display with low-duty drive and standby and sleep modes, allows precise power control. The HD66750S is suitable for any mid-sized or small portable battery-driven product requiring long-term driving capabilities, such as digital cellular phones supporting a WWW browser, bidirectional pagers, and small PDAs.

Features

- 128×128-dot graphics display LCD controller/driver for four monochrome grayscales
- Fixed display of graphics icons (pictograms)
- 16-/8-bit high-speed bus interface capability
- Clock synchronized serial interface capability
- Bit-operation functions for graphics processing incorporated:
- Write-data mask function in bit units
- Bit rotation function
- Bit logic-operation function
- Low-power operation support:
- $\mathrm{Vcc}=1.8$ to 3.6 V (low voltage)
- $\mathrm{V}_{\mathrm{LCD}}=5$ to 15.5 V (liquid crystal drive voltage)
- Two-, five-, six-, or seven-times internal booster for liquid crystal drive voltage (programmable)

HD66750S

- 64-step contrast adjuster and voltage followers to decrease direct current flow in the LCD drive bleeder-resistors
- Power-save functions such as the standby mode and sleep mode supported
- Programmable drive duty ratios and bias values displayed on LCD
- 128 -segment $\times 128$-common liquid crystal display driver
- n-raster-row AC liquid-crystal drive (C-pattern waveform drive)
- Duty ratio and drive bias (selectable by program)
- Window cursor display supported by hardware
- Vertical smooth scroll
- Partial smooth scroll control (fixed display of graphics icons)
- Vertical double-height display by each display raster-row
- Black-and-white reversed display
- No wait time for instruction execution and RAM access
- Internal oscillation and hardware reset
- Shift change of segment and common driver

Table 1 Programmable Display Sizes and Duty Ratios

Duty Ratio	Optimum Drive Bias	Bit-map Display Area	Graphics Display				
			$12 \times 12 \text {-dot }$ Font Width	12×13-dot Font Width	14×15-dot Font Width	16×16-dot Font Width	8×10-dot Font Width
1/16	1/5	128×16 dots	1 line $x 10$ characters	1 line $\times 10$ characters	1 line $\times 9$ characters	1 line x 8 characters	1 line $x 16$ characters
1/24	1/6	128×24 dots	2 lines $\times 10$ characters	1 line $\times 10$ characters	1 line $\times 9$ characters	1 line x 8 characters	2 lines $\times 16$ characters
1/32	1/6	128×32 dots	2 lines $\times 10$ characters	2 lines $\times 10$ characters	2 lines $\times 9$ characters	2 lines x 8 characters	3 lines $x 16$ characters
1/72	1/9	128×72 dots	6 lines $\times 10$ characters	5 lines $\times 10$ characters	4 lines $\times 9$ characters	4 lines x 8 characters	7 lines $\times 16$ characters
1/80	1/10	128×80 dots	6 lines $\times 10$ characters	6 lines $\times 10$ characters	5 lines $\times 9$ characters	5 lines x 8 characters	8 lines $\times 16$ characters
1/88	1/10	128×88 dots	7 lines $x 10$ characters	6 lines $\times 10$ characters	5 lines $x 9$ characters	5 lines x 8 characters	8 lines x 16 characters
1/96	1/10	128×96 dots	8 lines $\times 10$ characters	7 lines $\times 10$ characters	6 lines $\times 9$ characters	6 lines x 8 characters	9 lines $\times 16$ characters
1/104	1/11	$\begin{aligned} & 128 \times 104 \\ & \text { dots } \end{aligned}$	8 lines $\times 10$ characters	8 lines $\times 10$ characters	6 lines $x 9$ characters	6 lines x 8 characters	10 lines x 16 characters
1/112	1/11	$\begin{aligned} & 128 \times 112 \\ & \text { dots } \end{aligned}$	9 lines $\times 10$ characters	8 lines $\times 10$ characters	7 lines x 9 characters	7 lines x 8 characters	11 lines $\times 16$ characters
1/120	1/11	$\begin{aligned} & 128 \times 120 \\ & \text { dots } \end{aligned}$	10 lines $\times 10$ characters	9 lines $\times 10$ characters	8 lines $\times 9$ characters	$7 \text { lines } \times 8$ characters	12 lines $\times 16$ characters
1/128	1/11	$\begin{aligned} & 128 \times 128 \\ & \text { dots } \end{aligned}$	10 lines $\times 10$ characters	9 lines $\times 10$ characters	8 lines $x 9$ characters	8 lines x characters	12 lines $\times 16$ characters

HD66750S

<Target values>

Total Current Consumption Characteristics (Vcc $=3$ V, TYP Conditions, LCD Drive Power Current Included)

Character Display Dot Size	Duty Ratio	R-C Oscillation Frequency	Frame Frequency	Total Current Consumption				
				Normal Display Operation				
				Internal Logic	LCD Power	Total*	Sleep Mode	Standby Mode
128×16 dots	1/16	70 kHz	72 Hz	$(15 \mu \mathrm{~A})$	(15 $\mu \mathrm{A}$)	Two-times ($45 \mu \mathrm{~A}$)	$(10 \mu \mathrm{~A})$	$0.1 \mu \mathrm{~A}$
128×24 dots	1/24	70 kHz	72 Hz	$(15 \mu \mathrm{~A})$	$(15 \mu \mathrm{~A})$	Two-times ($45 \mu \mathrm{~A}$)	$(10 \mu \mathrm{~A})$	
128×32 dots	1/32	70 kHz	72 Hz	$(15 \mu \mathrm{~A})$	$(15 \mu \mathrm{~A})$	Two-times ($45 \mu \mathrm{~A}$)	$(10 \mu \mathrm{~A})$	
128×72 dots	1/72	70 kHz	71 Hz	$(40 \mu \mathrm{~A})$	$(18 \mu \mathrm{~A})$	Five-times $(130 \mu \mathrm{~A})$	$(10 \mu \mathrm{~A})$	
128×80 dots	1/80	70 kHz	73 Hz	$(40 \mu \mathrm{~A})$	$(18 \mu \mathrm{~A})$	Five-times $(130 \mu \mathrm{~A})$	$(10 \mu \mathrm{~A})$	
128×88 dots	1/88	70 kHz	74 Hz	$(45 \mu \mathrm{~A})$	$(18 \mu \mathrm{~A})$	Five-times ($135 \mu \mathrm{~A}$)	$(10 \mu \mathrm{~A})$	
128×96 dots	1/96	70 kHz	74 Hz	$(45 \mu \mathrm{~A})$	$(20 \mu \mathrm{~A})$	Five-times $(145 \mu \mathrm{~A})$	$(10 \mu \mathrm{~A})$	
128×104 dots	1/104	70 kHz	73 Hz	$(45 \mu \mathrm{~A})$	$(20 \mu \mathrm{~A})$	Five-times ($145 \mu \mathrm{~A}$)	$(10 \mu \mathrm{~A})$	
128×112 dots	1/112	70 kHz	71 Hz	$(50 \mu \mathrm{~A})$	$(25 \mu \mathrm{~A})$	Six-times $(200 \mu \mathrm{~A})$	$(10 \mu \mathrm{~A})$	
128×120 dots	1/120	70 kHz	76 Hz	$(50 \mu \mathrm{~A})$	$(25 \mu \mathrm{~A})$	Six-times ($200 \mu \mathrm{~A}$)	$(10 \mu \mathrm{~A})$	
128×128 dots	1/128	70 kHz	72 Hz	$(50 \mu \mathrm{~A})$	$(25 \mu \mathrm{~A})$	Six-times $(200 \mu \mathrm{~A})$	$(10 \mu \mathrm{~A})$	

Note: When a two-, five-, six-, or seven-times booster is used:
the total current consumption $=$ internal logic current + LCD power current $\times 2$ (two-times booster), the total current consumption = internal logic current + LCD power current $x 5$ (five-times booster), the total current consumption $=$ internal logic current + LCD power current $\times 6$ (six-times booster), and
the total current consumption = internal logic current + LCD power current x 7 (seven-times booster)

Type Name

Types	External Dimensions	COM Driver Arrangement	Display
HCD66750BP	Au-bump chip	Two side of COM	Four monochrome
HWD66750SBP	Au-bump wafer		grayscales
HD66750STB0	TCP		

HD66750S

LCD Family Comparison

Items	HD66724	HD66725	HD66726
Character display sizes	12 characters $\times 3$ lines	16 characters $\times 3$ lines	16 characters $\times 5$ lines
Graphic display sizes	72×26 dots	96×26 dots	96×42 dots
Grayscale display	-	-	-
Multiplexing icons	144	192	192
Annunciator	1/2 duty: 144	1/2 duty: 192	1/2 duty: 192
Key scan control	8×4	8×4	8×4
LED control ports	-	-	-
General output ports	3	3	3
Operating power voltages	1.8 V to 5.5 V	1.8 V to 5.5 V	1.8 V to 5.5 V
Liquid crystal drive voltages	3 V to 6.5 V	3 V to 6.5 V	4.5 V to 11 V
Serial bus	Clock-synchronized serial	Clock-synchronized serial	Clock-synchronized serial
Parallel bus	4 bits, 8 bits	4 bits, 8 bits	4 bits, 8 bits
Liquid crystal drive duty ratios	1/2, 10, 18, 26	1/2, 10, 18, 26	1/2, 10, 18, 26, 34, 42
Liquid crystal drive biases	1/4 to $1 / 6.5$	1/4 to $1 / 6.5$	1/2 to $1 / 8$
Liquid crystal drive waveforms	B	B	B
Liquid crystal voltage booster	Single, two-, or three-times	Single, two-, or three-times	Single, two-, three-, or fourtimes
Bleeder-resistor for liquid crystal drive	Incorporated (external)	Incorporated (external)	Incorporated (external)
Liquid crystal drive operational amplifier	Incorporated	Incorporated	Incorporated
Liquid crystal contrast adjuster	Incorporated	Incorporated	Incorporated
Horizontal smooth scroll	3-dot unit	3-dot unit	-
Vertical smooth scroll	Line unit	Line unit	Line unit
Double-height display	Yes	Yes	Yes
DDRAM	80×8	80×8	80×8
CGROM	20,736	20,736	20,736
CGRAM	384×8	384×8	480×8
SEGRAM	72×8	96×8	96×8
No. of CGROM fonts	$240+192$	$240+192$	$240+192$
No. of CGRAM fonts	64	64	64
Font sizes	6×8	6×8	6×8
Bit map areas	72×26	96×26	96×42
R-C oscillation resistor/ oscillation frequency	External resistor, incorporated (32 kHz)	External resistor, incorporated (32 kHz)	External resistor $(50 \mathrm{kHz})$
Reset function	External	External	External
Low power control	Partial display off, Oscillation off, Liquid crystal power off, Key wake-up interrupt	Partial display off, Oscillation off, Liquid crystal power off, Key wake-up interrupt	Partial display off, Oscillation off, Liquid crystal power off, Key wake-up interrupt
SEG/COM direction switching	SEG, COM	SEG, COM	SEG, COM
QFP package	-	-	-
TQFP package	-	-	-
TCP package	TCP-146	TCP-170	TCP-188
Bare chip	-	-	Yes
Bumped chip	Yes	Yes	Yes
No. of pins	146	170	188
Chip sizes	10.34×2.51	10.97×2.51	13.13×2.51
Pad intervals	$80 \mu \mathrm{~m}$	$80 \mu \mathrm{~m}$	$100 \mu \mathrm{~m}$

LCD Family Comparison (cont)

Items	HD66728	HD66729	HD66741
Character display sizes	16 characters $\times 10$ lines	-	-
Graphic display sizes	112×80 dots	105×68 dots	128×80 dots
Grayscale display	-	-	-
Multiplexing icons	-	-	-
Annunciator	-	-	-
Key scan control	8×4	-	-
LED control ports	-	-	-
General output ports	3	-	3
Operating power voltages	1.8 V to 5.5 V	1.8 V to 5.5 V	1.8 V to 5.5 V
Liquid crystal drive voltages	4.5 V to 15 V	4.0 V to 13 V	4.5 V to 15 V
Serial bus	Clock-synchronized serial	Clock-synchronized serial	Clock-synchronized serial
Parallel bus	4 bits, 8 bits	4 bits, 8 bits	4 bits, 8 bits
Liquid crystal drive duty ratios	$\begin{aligned} & 1 / 8,16,24,32,40,48,56, \\ & 64,72,80 \end{aligned}$	$\begin{aligned} & 1 / 8,16,24,32,40,48,56, \\ & 64,68 \end{aligned}$	$\begin{aligned} & 1 / 8,16,24,32,40,48,56, \\ & 64,72,80 \end{aligned}$
Liquid crystal drive biases	1/4 to $1 / 10$	1/4 to 1/9	1/4 to $1 / 10$
Liquid crystal drive waveforms	B, C	B, C	B, C
Liquid crystal voltage booster	Three-, four-, or five-times	Two-, three-, four-, or fivetimes	Three-, four-, or five-times
Bleeder-resistor for liquid crystal drive	Incorporated (external)	Incorporated (external)	Incorporated (external)
Liquid crystal drive operational amplifier	Incorporated	Incorporated	Incorporated
Liquid crystal contrast adjuster	Incorporated	Incorporated	Incorporated
Horizontal smooth scroll	-	-	-
Vertical smooth scroll	Line unit	Line unit	Line unit
Double-height display	Yes	Yes	Yes
DDRAM	160×8	-	-
CGROM	20,736	-	-
CGRAM	1,120 $\times 8$	$1,050 \times 8$	1,280 $\times 8$
SEGRAM	-	-	-
No. of CGROM fonts	$240+192$	-	-
No. of CGRAM fonts	64	-	-
Font sizes	6×8	-	-
Bit map areas	112×80	105×68	128×80
R-C oscillation resistor/ oscillation frequency	External resistor $(70-90 \mathrm{kHz})$	External resistor (75 kHz)	External resistor $(70-90 \mathrm{kHz})$
Reset function	External	External	External
Low power control	Partial display off, Oscillation off, Liquid crystal power off, Key wake-up interrupt	Partial display off, Oscillation off, Liquid crystal power off	Partial display off, Oscillation off, Liquid crystal power off
SEG/COM direction switching	SEG, COM	SEG, COM	SEG, COM
QFP package	-	-	-
TQFP package	-	-	-
TCP package	TCP-243	TCP-213	TCP-254
Bare chip	-	-	-
Bumped chip	Yes	Yes	Yes
No. of pins	243	213	243
Chip sizes	13.67×2.78	12.23×2.52	14.30×2.78
Pad intervals	$70 \mu \mathrm{~m}$	$70 \mu \mathrm{~m}$	$70 \mu \mathrm{~m}$

HD66750S

LCD Family Comparison (cont)

Items	HD66750R	HD66751	HD66750S
Character display sizes	-	-	-
Graphic display sizes	128×128 dots	128×128 dots	128×128 dots
Grayscale display	Four monochrome grayscales	Four monochrome grayscales	Four monochrome grayscales
Multiplexing icons	-	-	-
Annunciator	-	-	-
Key scan control	-	-	-
LED control ports	-	-	-
General output ports	-	-	-
Operating power voltages	2.0 V to 3.6 V	2.0 V to 3.6 V	1.8 V to 3.6 V
Liquid crystal drive voltages	5.0 V to 15.5 V	5.0 V to 15.5 V	5.0 V to 15.5 V
Serial bus	-	-	Clock synchronized serial
Parallel bus	8 bits, 16 bits	8 bits, 16 bits	8 bits, 16 bits
Liquid crystal drive duty ratios	$\begin{aligned} & 1 / 16,24,72,80,88,96,104 \text {, } \\ & 112,120,128 \end{aligned}$	$\begin{aligned} & 1 / 16,24,72,80,88,96,104, \\ & 112,120,128 \end{aligned}$	$\begin{aligned} & 1 / 16,24,72,80,88,96,104 \text {, } \\ & 112,120,128 \end{aligned}$
Liquid crystal drive biases	1/4 to $1 / 11$	$1 / 4$ to $1 / 11$	1/4 to $1 / 11$
Liquid crystal drive waveforms	B, C	B, C	B, C
Liquid crystal voltage booster	Two-, five-, six-, or seventimes	Two-, five-, six-, or seventimes	Two-, five-, six-, or seventimes
Bleeder-resistor for liquid crystal drive	Incorporated (external)	Incorporated (external)	Incorporated (external)
Liquid crystal drive operational amplifier	Incorporated	Incorporated	Incorporated
Liquid crystal contrast adjuster	Incorporated	Incorporated	Incorporated
Horizontal smooth scroll	-	-	-
Vertical smooth scroll	Line unit	Line unit	Line unit
Double-height display	Yes	Yes	Yes
DDRAM	-	-	-
CGROM	-	-	-
CGRAM	$4,096 \times 8$	$4,096 \times 8$	$4,096 \times 8$
SEGRAM	-	-	-
No. of CGROM fonts	-	-	-
No. of CGRAM fonts	-	-	-
Font sizes	-	-	-
Bit map areas	128×128	128×128	128×128
R-C oscillation resistor/ oscillation frequency	External resistor $(70 \mathrm{kHz})$	External resistor $(70 \mathrm{kHz})$	External resistor $(70 \mathrm{kHz})$
Reset function	External	External	External
Low power control	Partial display off, Oscillation off, Liquid crystal power off	Partial display off, Oscillation off, Liquid crystal power off	Partial display off, Oscillation off, Liquid crystal power off
SEG/COM direction switching	SEG, COM	SEG, COM	SEG, COM
QFP package	-	-	-
TQFP package	-	-	-
TCP package	TCP-308	-	TCP-308
Bare chip	-	-	-
Bumped chip	Yes	Yes	Yes
No. of pins	308	-	308
Chip sizes	10.97×4.13	10.97×4.13	8.44×2.95
Pad intervals	$60 \mu \mathrm{~m}$	$60 \mu \mathrm{~m}$	$50 \mu \mathrm{~m}$

HD66750S Block Diagram

HD66750S

HD66750S Pad Arrangement

HD66750S Pad Coordinate
(Unit: um)

														Rev 0.1	
No.	pad name	X	Y	No.	pad name	X	Y	No.	pad name	X	Y	No.	pad name	X	Y
1	Dummy 1	-4086	-1297	82	COM31/98	4086	-655	163	SEG31/98	1679	1341	244	SEG112/17	-2381	1341
2	COM4/125	-3916	-1297	83	COM32/97	4086	-605	164	SEG32/97	1629	1341	245	SEG113/16	-2431	1341
3	COM3/126	-3856	-1297	84	COM33/96	4086	-555	165	SEG33/96	1579	1341	246	SEG114/15	-2481	1341
4	COM2/127	-3796	-1297	85	COM34/95	4086	-505	166	SEG34/95	1529	1341	247	SEG115/14	-2531	1341
5	COM1/128	-3736	-1297	86	COM35/94	4086	-454	167	SEG35/94	1479	1341	248	SEG116/13	-2581	1341
6	IM2	-3552	-1297	87	COM36/93	4086	-404	168	SEG36/93	1428	1341	249	SEG117/12	-2631	1341
7	GNDDUM1	-3452	-1297	88	COM37/92	4086	-354	169	SEG37/92	1378	1341	250	SEG118/11	-2682	1341
8	IM1	-3352	-1297	89	COM38/91	4086	-304	170	SEG38/91	1328	1341	251	SEG119/10	-2732	1341
9	IM0/ID	-3248	-1297	90	COM39/90	4086	-254	171	SEG39/90	1278	1341	252	SEG120/9	-2782	1341
10	VCCDUM1	-3148	-1297	91	COM40/89	4086	-204	172	SEG40/89	1228	1341	253	SEG121/8	-2832	1341
11	OPOFF	-3048	-1297	92	COM41/88	4086	-154	173	SEG41/88	1178	1341	254	SEG122/7	-2882	1341
12	TEST	-2948	-1297	93	COM42/87	4086	-104	174	SEG42/87	1128	1341	255	SEG123/6	-2932	1341
13	GNDDUM2	-2847	-1297	94	COM43/86	4086	-53	175	SEG43/86	1078	1341	256	SEG124/5	-2982	1341
14	DB15	-2743	-1297	95	COM44/85	4086	-3	176	SEG44/85	1028	1341	257	SEG125/4	-3032	1341
15	DB14	-2598	-1297	96	COM45/84	4086	47	177	SEG45/84	977	1341	258	SEG126/3	-3083	1341
16	DB13	-2453	-1297	97	COM46/83	4086	97	178	SEG46/83	927	1341	259	SEG127/2	-3133	1341
17	DB12	-2309	-1297	98	COM47/82	4086	147	179	SEG47/82	877	1341	260	SEG128/1	-3183	1341
18	DB11	-2164	-1297	99	COM48/81	4086	197	180	SEG48/81	827	1341	261	COM112/17	-3238	1341
19	DB10	-2019	-1297	100	COM49/80	4086	247	181	SEG49/80	777	1341	262	COM111/18	-3298	1341
20	DB9	-1874	-1297	101	COM50/79	4086	297	182	SEG50/79	727	1341	263	COM110/19	-3358	1341
21	DB8	-1729	-1297	102	COM51/78	4086	348	183	SEG51/78	677	1341	264	COM109/20	-3418	1341
22	DB7	-1585	-1297	103	COM52/77	4086	398	184	SEG52/77	627	1341	265	COM108/21	-3478	1341
23	DB6	-1440	-1297	104	COM53/76	4086	448	185	SEG53/76	576	1341	266	COM107/22	-3539	1341
24	DB5	-1295	-1297	105	COM54/75	4086	498	186	SEG54/75	526	1341	267	COM106/23	-3599	1341
25	DB4	-1150	-1297	106	COM55/74	4086	548	187	SEG55/74	476	1341	268	COM105/24	-3659	1341
26	DB3	-1005	-1297	107	COM56/73	4086	598	188	SEG56/73	426	1341	269	COM104/25	-3719	1341
27	DB2	-861	-1297	108	COM57/72	4086	648	189	SEG57/72	376	1341	270	COM103/26	-3779	1341
28	DB1	-716	-1297	109	COM58/71	4086	698	190	SEG58/71	326	1341	271	COM102/27	-3839	1341
29	DB0	-585	-1297	110	COM59/70	4086	749	191	SEG59/70	276	1341	272	COM101/28	-3899	1341
30	GNDDUM3	-484	-1297	111	COM60/69	4086	799	192	SEG60/69	226	1341	273	Dummy 4	-4086	1341
31	RESET*	-384	-1297	112	COM61/68	4086	849	193	SEG61/68	175	1341	274	COM100/29	-4086	1200
32	CS*	-281	-1297	113	COM62/67	4086	899	194	SEG62/67	125	1341	275	COM99/30	-4086	1150
33	RS	-137	-1297	114	COM63/66	4086	949	195	SEG63/66	75	1341	276	COM98/31	-4086	1099
34	E/WR*/SCL	8	-1297	115	COM64/65	4086	999	196	SEG64/65	25	1341	277	COM97/32	-4086	1049
35	RW/RD*/SDA	153	-1297	116	COM113/16	4086	1049	197	SEG65/64	-25	1341	278	COM96/33	-4086	999
36	GND	277	-1297	117	COM114/15	4086	1099	198	SEG66/63	-75	1341	279	COM95/34	-4086	949
37	GND	397	-1297	118	COM115/14	4086	1150	199	SEG67/62	-125	1341	280	COM94/35	-4086	899
38	GND	517	-1297	119	COM116/13	4086	1200	200	SEG68/61	-175	1341	281	COM93/36	-4086	849
39	OSC2	642	-1297	120	Dummy 3	4086	1341	201	SEG69/60	-226	1341	282	COM92/37	-4086	799
40	OSC1	787	-1297	121	COM117/12	3899	1341	202	SEG70/59	-276	1341	283	COM91/38	-4086	749
41	VCC	962	-1297	122	COM118/11	3839	1341	203	SEG71/58	-326	1341	284	COM90/39	-4086	698
42	VCC	1062	-1297	123	COM119/10	3779	1341	204	SEG72/57	-376	1341	285	COM89/40	-4086	648
43	Vci	1236	-1297	124	COM120/9	3719	1341	205	SEG73/56	-426	1341	286	COM88/41	-4086	598
44	Vci	1336	-1297	125	COM121/8	3659	1341	206	SEG74/55	-476	1341	287	COM87/42	-4086	548
45	C6+	1442	-1297	126	COM122/7	3599	1341	207	SEG75/54	-526	1341	288	COM86/43	-4086	498
46	C6-	1542	-1297	127	COM123/6	3539	1341	208	SEG76/53	-576	1341	289	COM85/44	-4086	448
47	C5+	1642	-1297	128	COM124/5	3478	1341	209	SEG77/52	-627	1341	290	COM84/45	-4086	398
48	C5-	1742	-1297	129	COM125/4	3418	1341	210	SEG78/51	-677	1341	291	COM83/46	-4086	348
49	C4+	1842	-1297	130	COM126/3	3358	1341	211	SEG79/50	-727	1341	292	COM82/47	-4086	297
50	C4-	1942	-1297	131	COM127/2	3298	1341	212	SEG80/49	-777	1341	293	COM81/48	-4086	247
51	C3+	2042	-1297	132	COM128/1	3238	1341	213	SEG81/48	-827	1341	294	COM80/49	-4086	197
52	C3-	2142	-1297	133	SEG1/128	3183	1341	214	SEG82/47	-877	1341	295	COM79/50	-4086	147
53	C2+	2241	-1297	134	SEG2/127	3133	1341	215	SEG83/46	-927	1341	296	COM78/51	-4086	97
54	C2-	2341	-1297	135	SEG3/126	3083	1341	216	SEG84/45	-977	1341	297	COM77/52	-4086	47
55	C1+	2441	-1297	136	SEG4/125	3032	1341	217	SEG85/44	-1028	1341	298	COM76/53	-4086	-3
56	C1-	2541	-1297	137	SEG5/124	2982	1341	218	SEG86/43	-1078	1341	299	COM75/54	-4086	-53
57	VLOUT	2647	-1297	138	SEG6/123	2932	1341	219	SEG87/42	-1128	1341	300	COM74/55	-4086	-104
58	VLOUT	2747	-1297	139	SEG7/122	2882	1341	220	SEG88/41	-1178	1341	301	COM73/56	-4086	-154
59	VLCD	2847	-1297	140	SEG8/121	2832	1341	221	SEG89/40	-1228	1341	302	COM72/57	-4086	-204
60	VLCD	2947	-1297	141	SEG9/120	2782	1341	222	SEG90/39	-1278	1341	303	COM71/58	-4086	-254
61	V10UT	3052	-1297	142	SEG10/119	2732	1341	223	SEG91/38	-1328	1341	304	COM70/59	-4086	-304
62	V20UT	3152	-1297	143	SEG11/118	2682	1341	224	SEG92/37	-1378	1341	305	COM69/60	-4086	-354
63	V30UT	3252	-1297	144	SEG12/117	2631	1341	225	SEG93/36	-1428	1341	306	COM68/61	-4086	-404
64	V4OUT	3352	-1297	145	SEG13/116	2581	1341	226	SEG94/35	-1479	1341	307	COM67/62	-4086	-454
65	V50UT	3452	-1297	146	SEG14/115	2531	1341	227	SEG95/34	-1529	1341	308	COM66/63	-4086	-505
66	VTEST	3552	-1297	147	SEG15/114	2481	1341	228	SEG96/33	-1579	1341	309	COM65/64	-4086	-555
67	COM17/112	3736	-1297	148	SEG16/113	2431	1341	229	SEG97/32	-1629	1341	310	COM16/113	-4086	-605
68	COM18/111	3796	-1297	149	SEG17/112	2381	1341	230	SEG98/31	-1679	1341	311	COM15/114	-4086	-655
69	COM19/110	3856	-1297	150	SEG18/111	2331	1341	231	SEG99/30	-1729	1341	312	COM14/115	-4086	-705
70	COM20/109	3916	-1297	151	SEG19/110	2281	1341	232	SEG100/29	-1779	1341	313	COM13/116	-4086	-755
71	Dummy2	4086	-1297	152	SEG20/109	2230	1341	233	SEG101/28	-1829	1341	314	COM12/117	-4086	-805
72	COM21/108	4086	-1156	153	SEG21/108	2180	1341	234	SEG102/27	-1880	1341	315	COM11/118	-4086	-855
73	COM22/107	4086	-1106	154	SEG22/107	2130	1341	235	SEG103/26	-1930	1341	316	COM10/119	-4086	-905
74	COM23/106	4086	-1056	155	SEG23/106	2080	1341	236	SEG104/25	-1980	1341	317	COM9/120	-4086	-956
75	COM24/105	4086	-1006	156	SEG24/105	2030	1341	237	SEG105/24	-2030	1341	318	COM8/121	-4086	-1006
76	COM25/104	4086	-956	157	SEG25/104	1980	1341	238	SEG106/23	-2080	1341	319	COM7/122	-4086	-1056
77	COM26/103	4086	-905	158	SEG26/103	1930	1341	239	SEG107/22	-2130	1341	320	COM6/123	-4086	-1106
78	COM27/102	4086	-855	159	SEG27/102	1880	1341	240	SEG108/21	-2180	1341	321	COM5/124	-4086	-1156
79	COM28/101	4086	-805	160	SEG28/101	1829	1341	241	SEG109/20	-2230	1341				
80	COM29/100	4086	-755	161	SEG29/100	1779	1341	242	SEG110/19	-2281	1341				
81	COM30/99	4086	-705	162	SEG30/99	1729	1341	243	SEG111/18	-2331	1341				

HD66750S

Pin Functions

Table 2 Pin Functional Description

Signals	Number of Pins	I/O	Connected to	Functions
IM2, IM1,	3	I	GND or V ${ }_{\text {cc }}$	
IM0/ID				

Table 2	Pin Functional Description (cont)			
Number of				
Signals	Pins	I/O	Connected to	Functions

HD66750S

Table 2 Pin Functional Description (cont)

| Signals | Number of
 Pins | $\mathbf{I / O}$ | Connected to | Functions |
| :--- | :--- | :--- | :--- | :--- | | VccDUM | 1 | O | Input pins | Outputs the internal $\mathrm{V}_{\text {cc }}$ level; shorting this pin sets
 the adjacent input pin to the V_{Cc} level. |
| :--- | :--- | :--- | :--- | :--- |
| GNDDUM | 3 | O | Input pins | Outputs the internal GND level; shorting this pin sets
 the adjacent input pin to the GND level. |
| Dummy | 4 | - | - | Dummy pad. Must be left disconnected. |
| TEST | 1 | I | GND | Test pin. Must be fixed at GND level. |
| VTEST | 1 | - | - | Test pin. Must be left disconnected. When the
 internal operational amplifier is used, apply 1.2 V to
 1.3 V for low-voltage supply (Vcc < 2.5 V). |

Block Function Description

System Interface

The HD66750S has five high-speed system interfaces: an 80 -system 16 -bit/8-bit bus, a 68 -system 16 -bit/8-bit bus and clock synchronized serial interface bus. The interface mode is selected by the IM2-0 pins.

The HD66750S has three 16-bit registers: an index register (IR), a write data register (WDR), and a read data register (RDR). The IR stores index information from the control registers and the CGRAM. The WDR temporarily stores data to be written into control registers and the CGRAM, and the RDR temporarily stores data read from the CGRAM. Data written into the CGRAM from the MPU is first written into the WDR and then is automatically written into the CGRAM by internal operation. Data is read through the RDR when reading from the CGRAM, and the first read data is invalid and the second and the following data are normal. When a logic operation is performed inside of the HD66750S by using the display data set in the CGRAM and the data written from the MPU, the data read through the RDR is used. Accordingly, the MPU does not need to read data twice nor to fetch the read data into the MPU. This enables high-speed processing.

Execution time for instruction excluding oscillation start is 0 clock cycle and instructions can be written in succession.

Table 3 Register Selection by RS and R/W Bits
R/W Bits RS Bits Operations

0	0	Writes indexes into IR
1	0	Disabled
0	1	Writes into control registers and CGRAM through WDR
1	1	Reads from CGRAM through RDR

Bit Operation

The HD66750S supports the following functions: a bit rotation function that writes the data written from the MPU into the CGRAM by moving the display position in bit units, a write data mask function that selects and writes data into the CGRAM in bit units, and a logic operation function that performs logic operations on the display data set in the CGRAM and writes into the CGRAM. With the 16-bit bus interface, these functions can greatly reduce the processing loads of the MPU graphics software and can rewrite the display data in the CGRAM at high speed. For details, see the Graphics Operation Function section.

Address Counter (AC)

The address counter (AC) assigns addresses to the CGRAM. When an address set instruction is written into the IR, the address information is sent from the IR to the AC.

After writing into the CGRAM, the AC is automatically incremented by 1 (or decremented by 1). After reading from the data, the RDM bit automatically updates or does not update the AC.

HD66750S

Graphic RAM (CGRAM)

The graphic RAM (CGRAM) stores bit-pattern data of 128×128 dots. It has two bits/pixel and 4096byte capacity.

Grayscale Control Circuit

The grayscale control circuit performs four-grayscale control with the frame rate control (FRC) method for four-monochrome grayscale display. For details, see the Four Grayscale Display Function section.

Timing Generator

The timing generator generates timing signals for the operation of internal circuits such as the CGRAM. The RAM read timing for display and internal operation timing by MPU access are generated separately to avoid interference with one another.

Oscillation Circuit (OSC)

The HD66750S can provide R-C oscillation simply through the addition of an external oscillation-resistor between the OSC1 and OSC2 pins. The appropriate oscillation frequency for operating voltage, display size, and frame frequency can be obtained by adjusting the external-resistor value. Clock pulses can also be supplied externally. Since R-C oscillation stops during the standby mode, current consumption can be reduced. For details, see the Oscillation Circuit section.

Liquid Crystal Display Driver Circuit

The liquid crystal display driver circuit consists of 128 common signal drivers (COM1 to COM128) and 128 segment signal drivers (SEG1 to SEG128). When the number of lines are selected by a program, the required common signal drivers automatically output drive waveforms, while the other common signal drivers continue to output unselected waveforms.

Display pattern data is latched when 128 -bit data has arrived. The latched data then enables the segment signal drivers to generate drive waveform outputs. The shift direction of 128 -bit data can be changed by the SGS bit. The shift direction for the common driver can also be changed by the CMS bit by selecting an appropriate direction for the device mounting configuration.

When multiplexing drive is not used, or during the standby or sleep mode, all the above common and segment signal drivers output the GND level, halting the display.

Booster (DC-DC Converter)

The booster generates two-, five-, six-, or seven-times voltage input to the Vci pin. With this, both the internal logic units and LCD drivers can be controlled with a single power supply. Boost output level from two-times to seven-times boost can be selected by software. For details, see the Power Supply for Liquid Crystal Display Drive section.

V-Pin Voltage Follower

A voltage follower for each voltage level (V1 to V5) reduces current consumption by the LCD drive power supply circuit. No external resistors are required because of the internal bleeder-resistor, which generates different levels of LCD drive voltage. This internal bleeder-resistor can be software-specified from $1 / 4$ bias to $1 / 11$ bias, according to the liquid crystal display drive duty value. The voltage followers can be turned off while multiplexing drive is not being used. For details, see the Power Supply for Liquid Crystal Display Drive section.

Contrast Adjuster

The contrast adjuster can be used to adjust LCD contrast in 64 steps by varying the LCD drive voltage by software. This can be used to select an appropriate LCD brightness or to compensate for temperature.

HD66750S

Block Function Description

Table 4 Relationship between Display Position and CGRAM Address

Segment Driver			$\begin{aligned} & \stackrel{N}{N} \\ & \underset{\sim}{7} \\ & \underset{\sim}{心} \end{aligned}$	$\begin{aligned} & \underset{\sim}{J} \\ & \underset{N}{N} \\ & \underset{\sim}{U} \\ & \end{aligned}$		N $\underset{N}{N}$ N 心	$\begin{aligned} & \stackrel{\rightharpoonup}{N} \\ & \stackrel{\text { N }}{N} \\ & \underset{\sim}{W} \end{aligned}$					"-"-"	
SGS="0"	D0: $\mathrm{D} 1: \mathrm{D} 2: ~_{\text {D }}$							Do	D1:- ${ }^{\text {P15 }}$		Do D1		
Bt SGS="1"									'D14:- - Do		15, D14, - ${ }_{\text {D }}$	"--"-"'	
COM1	Address: "000"H								"001"H		"002"H	"--"-"'	"00F"H
COM2	Address: "010"H								"011"H		"012"H	"--"."'	"01F"H
COM3	Address: "020"H								"021"H		"022"H	-.----"	"02F"H
COM4	Address: "030"H								"031"H		"032"H	--.---"	"03F"H
COM5	Address: "040"H								"041"H		"042"H	-8.-8."	"04F"H
COM6	Address: "050"H								"051"H		"052"H	-"---"'	"05F"H
COM7	Address: "060"H								"061"H		"062"H	-.---.-'	"06F"H
COM8	Address: "070"H								"071"H		"072"H	".-.-."	"07F"H
COM9	Address: "080"H								"081"H		"082"H	".-".-"	"08F"H
COM10	Address: "090"H								"091"H		"092"H	-.-.".-'	"09F"H
COM11	Address: "0A0"H								"0A1"H		"0А2"H	-.-.-.-'	"0AF"H
COM12	Address: "0B0"H								"0B1"H		"0B2"H	"-7-".'	"0BF"H
COM13	Address: "0C0"H								"0C1"H		"0C2"H	".-".-"	"OCF"H
COM14	Address: "0D0"H								"0D1"H		"0D2"H	-.-.-."	"ODF"H
COM15	Address: "0E0"H								"0E1"H		"0E2"H	-.-6.-.'	"OEF"H
COM16	Address: "0F0"H								"0F1"H		"0F2"H	".-.".-1	"OFF"H
COM17	Address: "100"H								"101"H		"102"H	-.----',	"10F"H
COM18	Address: "110"H								"111"H		"112"H	".-."."	"11F"H
COM19	Address: "120"H								"121"H		"122"H	-.".-."	"12F"H
COM20	Address: "130"H								"131"H		"132"H	"--"-"'	"13F"H
									:		!	"--"-"'	;
COM125	Address: "7C0"H								"7C1"H		"7C2"H	"-7-".'	"7CF"H
COM126	Address: "7D0"H								"7D1"H		"7D2"H	"-8."-'	"7DF"H
COM127	Address: "7E0"H								"7E1"H		"7E2"H	".-.".-'	"7EF"H
COM128	Address: "7F0"H								"7F1"H		"7F2"H	-----"'	"7FF"H

Table 5 Relationship between CGRAM Data and Display Contents

Upper bit	Lower bit	LCD
0	0	Non-selection display (unlit)
0	1	$1 / 3$ or $1 / 2$ level grayscale display (selected by the GS bit)
1	0	$2 / 3$ level gray scale
1	1	Selection display (lit)
Note:	Upper bits: DB15, DB13, DB11, DB9, DB7, DB5, DB3, DB1 	Lower bits: DB14, DB12, DB10, DB8, DB6, DB4, DB2, DB0

Instructions

Outline

The HD66750S uses the 16-bit bus architecture. Before the internal operation of the HD66750S starts, control information is temporarily stored in the registers described below to allow high-speed interfacing with a high-performance microcomputer. The internal operation of the HD66750S is determined by signals sent from the microcomputer. These signals, which include the register selection signal (RS), the read/write signal (R/W), and the data bus signals (DB15 to DB0), make up the HD66750S instructions. There are seven categories of instructions that:

- Specify the index
- Read the status
- Control the display
- Control power management
- Process the graphics data
- Set internal CGRAM addresses
- Transfer data to and from the internal CGRAM

Normally, instructions that write data are used the most. However, an auto-update of internal CGRAM addresses after each data write can lighten the microcomputer program load.

Because instructions are executed in 0 cycles, they can be written in succession.

HD66750S

Instruction Descriptions

Index (IR)

The index instruction specifies the RAM control indexes (R00 to R12). It sets the register number in the range of 00000 to 10010 in binary form.

Figure 1 Index Instruction

Status Read (SR)

The status read instruction reads the internal status of the HD66750S.
L6-0: Indicate the driving raster-row position where the liquid crystal display is being driven.
C5-0: Read the contrast setting values (CT5-0).

Figure 2 Status Read Instruction

Start Oscillation (R00h)

The start oscillation instruction restarts the oscillator from the halt state in the standby mode. After issuing this instruction, wait at least 10 ms for oscillation to stabilize before issuing the next instruction. (See the Standby Mode section.)

If this register is read forcibly when $\mathrm{R} / \mathrm{W}=1,0750 \mathrm{H}$ is read.

Figure 3 Start Oscillation Instruction

Driver Output Control (R01h)

CMS: Selects the output shift direction of a common driver. When CMS $=0, \mathrm{COM} 1 / 128$ shifts to
COM1, and COM128/1 to COM128. When CMS $=1$, COM1/128 shifts to COM128, and COM128/1 to
COM1. Output position of a common driver shifts depending on the CN bit setting.
SGS: Selects the output shift direction of a segment driver. When SGS $=0$, SEG1/128 shifts to SEG1, and SEG128/1 to SEG128. When SGS $=1$, SEG1/128 shifts to SEG128, and SEG128/1 to SEG1.
$\mathbf{C N}$: When $\mathrm{CN}=1$, the display position is shifted down by 32 raster-rows and display starts from COM33. When the liquid crystal is driven at a low duty ratio in the system wait state, it can be partially displayed at the center of the screen. For details, see the Partial-display-on Function section.

NL3-0: Specify the LCD drive duty ratio. The duty ratio can be adjusted for every eight raster-rows. CGRAM address mapping does not depend on the setting value of the drive duty ratio.

Figure 4 Driver Output Control Instruction
Table 6 NL Bits and Drive Duty

NL3	NL2	NL1	NL0	Display Size	LCD Drive Duty	Common Driver Used
0	0	0	0	128×8 dots	$1 / 8$ Duty	COM1-COM8
0	0	0	1	128×16 dots	$1 / 16$ Duty	COM1-COM16
0	0	1	0	128×24 dots	$1 / 24$ Duty	COM1-COM24
0	0	1	1	128×32 dots	$1 / 32$ Duty	COM1-COM32
0	1	0	0	128×40 dots	$1 / 40$ Duty	COM1-COM40
0	1	0	1	128×48 dots	$1 / 48$ Duty	COM1-COM48
0	1	1	0	128×56 dots	$1 / 56$ Duty	COM1-COM56
0	1	1	1	128×64 dots	$1 / 64$ Duty	COM1-COM64
1	0	0	0	128×72 dots	$1 / 72$ Duty	COM1-COM72
1	0	0	1	128×80 dots	$1 / 80$ Duty	COM1-COM80
1	0	1	0	128×88 dots	$1 / 88$ Duty	COM1-COM88
1	0	1	1	128×96 dots	$1 / 96$ Duty	COM1-COM96
1	1	0	0	128×104 dots	$1 / 104$ Duty	COM1-COM104
1	1	0	1	128×112 dots	$1 / 112$ Duty	COM1-COM112
1	1	1	0	128×120 dots	$1 / 120$ Duty	COM1-COM120
1	1	1	1	128×128 dots	$1 / 128$ Duty	COM1-COM128

HD66750S

LCD-Driving-Waveform Control (R02h)

B / C : When $B / C=0$, a B-pattern waveform is generated and alternates in every frame for LCD drive. When $\mathrm{B} / \mathrm{C}=1$, a C-pattern waveform is generated and alternates in each raster-row specified by bits EOR and NW4-NW0 in the LCD-driving-waveform control register. For details, see the n-raster-row Reversed AC Drive section.

EOR: When the C-pattern waveform is set $(\mathrm{B} / \mathrm{C}=1)$ and $\mathrm{EOR}=1$, the odd/even frame-select signals and the n-raster-row reversed signals are EORed for alternating drive. EOR is used when the LCD is not alternated by combining the set values of the LCD drive duty ratio and the n raster-row. For details, see the n-raster-row Reversed AC Drive section.

NW4-0: Specify the number of raster-rows n that will alternate at the C -pattern waveform setting ($\mathrm{B} / \mathrm{C}=$ 1). NW4-NW0 alternate for every set value +1 raster-row, and the first to the 32 nd raster-rows can be selected.

Figure 5 LCD-Driving-Waveform Control Instruction

Table 7 Common Driver Pin Function
Common Driver Pin Function
CN = 0 (Normal Output) \quad CN = 1 (Center Output)

Common Driver Pin	CMS = 0	CMS = 1	CMS $=0$	CMS = 1
COM1/128	COM1	COM128	COM97	COM96
-	:	:	:-	:
	C-MM	C-CM121	C-'̄M104	C̄ŌM89
COM9/120	COM9	COM120	COM105	COM88
:---		--	-	:
	- $\mathrm{COM}^{\text {1-1 }}$	COM113		C̄ŌM81
COM17/112	COM17	COM112	COM113	COM80
-				
	- $\mathrm{COM}^{\text {24 }}$	C-MM105		С̄О̄М̄73
COM25/104	COM25	COM104	(COM121)	COM72
C'C̄M̄32/97 ${ }^{-}$	--0M32	С-0M97	(COM'̄128)	C̄ŌM65
COM33/96	COM33	COM96	COM1	COM64
	COM40	C--MM89	C-OM8	C̄OM-7
COM41/88	COM41	COM88	COM9	COM56
$\overline{\mathrm{CO}} \overline{\mathrm{M}} 48 / 8 \overline{1}$	COM48	- С--M81	C̄OM1 $\overline{6}$	C̄ŌM $\overline{\text { ¢ }}$
COM49/80	COM49	COM80	COM17	COM48
$\overline{\mathrm{CO}} \overline{\mathrm{M}} \overline{56 / 7} \overline{3}^{-}$	- С-MM56	- $\mathrm{COM} \overline{3} \overline{3}$	C--M- ${ }^{\text {Cob }}$	C̄OM ${ }^{\text {¢ }}$
COM57/72	COM57	COM72	COM25	COM40
	- COM 64	COM65	C--M̄32	С̄О̄M33
COM65/64	COM65	COM64	COM33	COM32
C'ŌM̄72/57 ${ }^{-}$	- COM 72	COM57	С-С̄M40	C̄OM2-
COM73/56	COM73	COM56	COM41	COM24
C̄̄̄̄̄̄0/49	COM80	COM- ${ }^{\text {Com }}$	C-OM4	C̄OM17
COM81/48	COM81	COM48	COM49	COM16
$\overline{\mathrm{CO}} \overline{\mathrm{M}} \overline{8} 8 / 4 \overline{1}$	----788	COM41	СС-̄M5 $\overline{6}$	C-̄̄M9
COM89/40	COM89	COM40	COM57	COM8
:-----------------------------------				
	- COM 96	ССОМЗ3	C-OMM64	C̄ŌM1

HD66750S

Table 7 Common Driver Pin Function (cont)
Common Driver Pin Function

Common Driver Pin	CN = 0 (Normal Output)		CN = 1 (Center Output)	
	CMS = 0	CMS = 1	CMS = 0	CMS = 1
COM97/32	COM97	COM32	COM65	(COM128)
:	:	:	:	
	COM104	COM ${ }^{\text {ch }}$		(COM'- ${ }^{\text {(21) }}$
COM105/24	COM105	COM24	COM73	COM120
:				
$\overline{\mathrm{CO}} \mathrm{M} \overline{1} 1 \overline{2} / \overline{17}$	C- ${ }^{\text {Com112 }}$	C-MM17		C̄̄̄M11 $\overline{1}$
COM113/16	COM113	COM16	COM81	COM112
:				
	COM^{-720}	С- ${ }^{\text {OM9 }}$		$\overline{\mathrm{C}} \mathrm{O}^{\text {M }} 10 \overline{5}$
COM121/8	COM121	COM8	COM89	COM104
:-----				
	- $\mathrm{COM}^{\text {- }} 128$	COM1		C̄ŌM97

Power Control (R03h)

BS2-0: The LCD drive bias value is set within the range of a $1 / 4$ to $1 / 11$ bias. The LCD drive bias value can be selected according to its drive duty ratio and voltage. For details, see the Liquid Crystal Display Drive Bias Selector section.

BT1-0: The output factor of VLOUT between two-times, five-times, six-times, and seven-times boost is switched. The LCD drive voltage level can be selected according to its drive duty ratio and bias. Lower amplification of the booster consumes less current.

DC1-0: The operating frequency in the booster is selected. When the boosting operating frequency is high, the driving ability of the booster and the display quality become high, but the current consumption is increased. Adjust the frequency considering the display quality and the current consumption.

AP1-0: The amount of fixed current from the fixed current source in the operational amplifier for V pins (V1 to V5) is adjusted. When the amount of fixed current is large, the driving ability of the booster and the display quality become high, but the current consumption is increased. Adjust the fixed current considering the display quality and the current consumption.

During no display, when AP1-0 $=00$, the current consumption can be reduced by ending the operational amplifier and booster operation.

Table 8 BS Bits and LCD Drive Bias Value

BS2	BS1	BS0	LCD Drive Bias Value
0	0	0	$1 / 11$ bias drive
0	0	1	$1 / 10$ bias drive
0	1	0	$1 / 9$ bias drive
0	1	1	$1 / 8$ bias drive
1	0	0	$1 / 7$ bias drive
1	0	1	$1 / 6$ bias drive
1	1	0	$1 / 5$ bias drive
1	1	1	$1 / 4$ bias drive

Table $9 \quad$ BT Bits and Output Level

BT1	BT0	V5OUT Output Level
0	0	Two-times boost
0	1	Five-times boost
1	0	Six-times boost
1	1	Seven-times boost

Table 10 DC Bits and Operating Clock Frequency

DC1	DC0	Operating Clock Frequency in the Booster
0	0	32-divided clock
0	1	16-divided clock
1	0	8-divided clock
1	1	4-divided clock

Table 11 AP Bits and Amount of Fixed Current

AP1	AP0	Amount of Fixed Current in the Operational Amplifier
0	0	Operational amplifier and booster do not operate.
0	1	Small
1	0	Middle
1	1	Large

SLP: When SLP $=1$, the HD66750S enters the sleep mode, where the internal display operations are halted except for the R-C oscillator, thus reducing current consumption. For details, see the Sleep Mode section. Only the following instructions can be executed during the sleep mode.

Power control (BS2-0, BT1-0, DC1-0, AP1-0, SLP, and STB bits)
During the sleep mode, the other CGRAM data and instructions cannot be updated although they are

HD66750S

retained.
STB: When $\mathrm{STB}=1$, the HD66750S enters the standby mode, where display operation completely stops, halting all the internal operations including the internal R-C oscillator. Further, no external clock pulses are supplied. For details, see the Standby Mode section.

Only the following instructions can be executed during the standby mode.
a. Standby mode cancel $(\mathrm{STB}=0)$
b. Start oscillation
c. Power control (BS2-0, BT1-0, DC1-0, AP1-0, SLP, and STB bits)

During the standby mode, the CGRAM data and instructions may be lost. To prevent this, they must be set again after the standby mode is canceled.

Figure 6 Power Control Instruction

Contrast Control (R04h)

CT5-0: These bits control the LCD drive voltage (potential difference between V1 and GND) to adjust 64 -step contrast. For details, see the Contrast Adjuster section.

Figure 7 Contrast Control Instruction

Figure 8 Contrast Adjuster

HD66750S

Table 12 CT Bits and Variable Resistor Value of Contrast Adjuster
CT Set Value

CT5	CT4	CT3	CT2	CT1	CT0	Variable Resistor (VR)
0	0	0	0	0	0	$3.20 \times \mathrm{R}$
0	0	0	0	0	1	$3.15 \times \mathrm{R}$
0	0	0	0	1	0	$3.10 \times \mathrm{R}$
0	0	0	0	1	1	$3.05 \times \mathrm{R}$
0	0	0	1	0	0	$3.00 \times \mathrm{R}$
			\bullet			\bullet
0	1	1	1	1	1	$1.65 \times \mathrm{R}$
1	0	0	0	0	0	$1.60 \times \mathrm{R}$
1	0	0	0	0	1	$1.55 \times \mathrm{R}$
1	0	0	0	1	0	$1.50 \times \mathrm{R}$
			\bullet			\bullet
1	1	1	1	0	1	$0.15 \times \mathrm{R}$
1	1	1	1	1	0	$0.10 \times \mathrm{R}$
1	1	1	1	1	1	$0.05 \times \mathrm{R}$

Entry Mode (R05h)

Rotation (R06h)

The write data sent from the microcomputer is modified in the HD66750S and written to the CGRAM. The display data in the CGRAM can be quickly rewritten to reduce the load of the microcomputer software processing. For details, see the Graphics Operation Function section.

I/D: When I/D $=1$, the address counter (AC) is automatically incremented by 1 after the data is written to the CGRAM. When $I / D=0$, the $A C$ is automatically decremented by 1 after the data is written to the CGRAM.

AM1-0: Set the automatic update method of the AC after the data is written to the CGRAM. When AM1-0 $=00$, the data is continuously written in parallel. When AM1-0 $=01$, the data is continuously written vertically. When AM1-0 $=10$, the data is continuously written vertically with two-word width (32-bit length).

LG1-0: Write again the data read from the CGRAM and the data written from the microcomputer to the CGRAM by a logical operation. When LG1-0 $=00$, replace (no logical operation) is done. ORed when LG1-0 $=01$, ANDed when LG1 $-0=10$, and EORed when LG1-0 $=11$.

RT2-0: Write the data sent from the microcomputer to the CGRAM by rotating in a bit unit. RT3-0 specify rotation. For example, when RT2 $-0=001$, the data is rotated in the upper side by two bits. When RT2 $-0=111$, the data is rotated in the upper side by 14 bits. The upper bit overflown in the most
significant bit (MSB) side is rotated in the least significant bit (LSB) side.

Figure 9 Entry Mode and Rotation Instructions

Note: The write data mask (WM15-0) is set by the register in the RAM Write Data Mask section.

Figure 10 Logical Operation and Rotation for the CGRAM

HD66750S

Display Control (R07h)

PS1-0: When PS1-0 $=01$, only the upper eight raster-rows (COM1-COM8) are fixed-displayed in vertical smooth scrolling, and the other display raster-rows are smooth-scrolled. When PS1-0 $=10$, the upper 16 raster-rows (COM1-COM16) are fixed-displayed. When PS1-0 $=11$, the upper 24 raster-rows (COM1-COM24) are fixed-displayed. For details, see the Partial Smooth Scroll Display Function section.

DHE: When DHE = 1, the double height between raster-rows specified in the Double-height Display Position section is displayed. For details, see the Double-height Display section.

GS: When GS $=0$, the grayscale level at a weak-colored display $(\mathrm{DB}=01)$ is $1 / 3$. When $\mathrm{GS}=1$, the grayscale level at weak-colored display is $1 / 2$, and at strong-colored display (when $\mathrm{DB}=10$) it is $2 / 3$.

REV: Displays all character and graphics display sections with black-and-white reversal when REV $=1$. For details, see the Reversed Display Function section.

D: Display is on when $\mathrm{D}=1$ and off when $\mathrm{D}=0$. When off, the display data remains in the CGRAM, and can be displayed instantly by setting $\mathrm{D}=1$. When D is 0 , the display is off with the SEG1 to SEG128 outputs and COM1 to COM128 outputs set to the GND level. Because of this, the HD66750S can control the charging current for the LCD with AC driving.

Figure 11 Display Control Instruction

Cursor Control (R08h)

C: When $\mathrm{C}=1$, the window cursor display is started. The display mode is selected by the CM1-0 bits, and the display area is specified in a dot unit by the horizontal cursor position register (HS6-0 and HE6-0 bits) and vertical cursor position register (VS6-0 and VE6-0 bits). For details, see the Window Cursor Display section.

CM1-0: The display mode of the window cursor is selected. These bits can display a white-blink cursor, black-blink cursor, black-and-white reversed cursor, and black-and-white-reversed blink cursor.

Figure 12 Cursor Control Instruction

Table 13 CM Bits and Window Cursor Display Mode

CM1	CM0	Window Cursor Display Mode
0	0	White-blink cursor (alternately blinking between the normal display and an all-white display (all unlit))
0	1	Black-blink cursor (alternately blinking between the normal display and an all-black display (all lit))
1	0	Black-and-white reversed cursor (black-and-white-reversed normal display (no blinking))
1	1	Black-and-white-reversed blink cursor (alternately blinking the black-and-white- reversed normal display)

Double-height Display Position (R09h)

DS6-0: Specify any common raster-row position where the double-height display starts. Note that no scrolling is done by vertical scrolling. For details, see the Double-height Display section.

DE6-0: Specify any common raster-row position where the double-height display ends. Set the end position of the double-height display after the start position of the double-height display, satisfying the relationship DS6-0 \leq DE6-0. When the area specifying the double height has an odd number of rasterrows, the double-height display is done for the DE6-0 + 1 raster-rows.

When the double-height display is not used, set the DHE bit in the display-control instruction register to 0 .

Figure 13 Double-height Display Position Instruction

HD66750S

Vertical Scroll Control (R0Ah)

SL6-0: Specify the display start raster-row for vertical smooth scrolling. Any raster-row from the first to 128 th can be selected (table 14). After the 128th raster-row is displayed, the display restarts from the first raster-row. For details, see the Vertical Smooth Scroll section.

In partial smooth scrolling, these bits specify the display start raster-row of the next fixed-display rasterrow. For details, see the Partial Smooth Scroll Display Function section.

Figure 14 Vertical Scroll Control Instruction
Table 14 SL Bits and Display-start Raster-row

SL6	SL5	SL4	SL3	SL2	SL1	SL0	Display-start Raster-row
0	0	0	0	0	0	0	1st raster-row
0	0	0	0	0	0	1	2nd raster-row
0	0	0	0	0	1	0	3rd raster-row
0	0	0	0	0	1	1	4th raster-row
0	0	0	0	1	0	0	5th raster-row
$:$	$:$	$:$	$:$	$:$	$:$	$:$	$:$
1	1	1	1	1	1	0	127th raster-row
1	1	1	1	1	1	1	128th raster-row

Horizontal Cursor Position (R0Bh)

Vertical Cursor Position (R0Ch)

HS6-0: Specify the start position for horizontally displaying the window cursor in a dot unit. The cursor is displayed from the 'set value +1 ' dot. Ensure that HS6-0 \leq HE6-0.

HE6-0: Specify the end position for horizontally displaying the window cursor in a dot unit. The cursor is displayed to the 'set value +1 ' dot. Ensure that HS6-0 \leq HE6-0.

VS6-0: Specify the start position for vertically displaying the window cursor in a dot unit. The cursor is displayed from the 'set value + 1' dot. Ensure that VS6-0 \leq VE6-0.

VE6-0: Specify the end position for vertically displaying the window cursor in a dot unit. The cursor is displayed to the 'set value +1 ' dot. Ensure that VS6-0 \leq VE6-0. In vertical scrolling, rewrite VS6-0 and VE6-0 since this window cursor does not move vertically.

Figure 15 Horizontal Cursor Position and Vertical Cursor Position Instructions

Figure 16 Window Cursor Position

HD66750S

RAM Write Data Mask (R10h)

WM15-0: In writing to the CGRAM, these bits mask writing in a bit unit. When WM15 = 1, this bit masks the write data of DB15 and does not write to the CGRAM. Similarly, the WM14-0 bits mask the write data of DB14-0 in a bit unit. However, when $\mathrm{AM}=10$, the write data is masked with the set values of VM15-0 for the odd-times CGRAM write. It is also masked automatically with the reversed set values of VM15-0 for the even-times CGRAM write. For details, see the Graphics Operation Function section.

R/W	RS	DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0															
0	1	$\begin{aligned} & \text { VM } \\ & 15 \end{aligned}$	$\begin{gathered} \hline \text { VM } \\ 14 \end{gathered}$	$\begin{gathered} \text { VM } \\ 13 \end{gathered}$	$\begin{aligned} & \text { VM } \\ & 12 \end{aligned}$	$\begin{gathered} \text { VM } \\ 11 \end{gathered}$	$\begin{gathered} \text { VM } \\ 10 \end{gathered}$	$\begin{gathered} \text { VM } \\ 9 \end{gathered}$	$\begin{gathered} \text { VM } \\ 8 \end{gathered}$	$\begin{gathered} \hline \text { VM } \\ 7 \end{gathered}$	$\begin{gathered} \text { VM } \\ 6 \end{gathered}$	$\begin{gathered} \text { VM } \\ 5 \end{gathered}$	$\begin{gathered} \text { VM } \\ 4 \end{gathered}$	$\begin{gathered} \text { VM } \\ 3 \end{gathered}$	$\begin{gathered} \text { VM } \\ 2 \end{gathered}$	$\begin{gathered} \text { VM } \\ 1 \end{gathered}$	$\begin{gathered} \text { VM } \\ 0 \end{gathered}$

Figure 17 RAM Write Data Mask Instruction

RAM Address Set (R11h)

AD10-0: Initially set CGRAM addresses to the address counter (AC). Once the CGRAM data is written, the AC is automatically updated according to the AM1-0 and I/D bit settings. This allows consecutive accesses without resetting addresses. Once the CGRAM data is read, the AC is not automatically updated. CGRAM address setting is not allowed in the sleep mode or standby mode.

Figure 18 RAM Address Set Instruction

Table 15 AD Bits and CGRAM Settings

AD10-ADO	CGRAM Setting
"000"H-"00F"H	Bitmap data for COM1
"010"H-"01F"H	Bitmap data for COM2
"020"H-"02F"H	Bitmap data for COM3
"030"H-"03F"H	Bitmap data for COM4
$:$	$:$
"760"H-"76F"H	Bitmap data for COM119
"770"H-"77F"H	Bitmap data for COM120
"780"H-"78F"H	Bitmap data for COM121
"790"H-"79F"H	Bitmap data for COM122
"7A0"H-"7AF"H	Bitmap data for COM123
"7B0"H-"7BF"H	Bitmap data for COM124
"7C0"H-"7CF"H	Bitmap data for COM125
"7D0"H-"7DF"H	Bitmap data for COM126
"7E0"H-"7EF"H	Bitmap data for COM127
"7F0"H-"7FF"H	Bitmap data for COM128

Write Data to CGRAM (R12h)

WD15-0 : Write 16-bit data to the CGRAM. After a write, the address is automatically updated according to the AM1-0 and I/D bit settings. During the sleep and standby modes, the CGRAM cannot be accessed.

Figure 19 Write Data to CGRAM Instruction

HD66750S

Read Data from CGRAM (R12h)

RD15-0 : Read 16-bit data from the CGRAM. When the data is read to the microcomputer, the firstword read immediately after the CGRAM address setting is latched from the CGRAM to the internal read-data latch. The data on the data bus (DB15-0) becomes invalid and the second-word read is normal.

When bit processing, such as a logical operation, is performed within the HD66750S, only one read can be processed since the latched data in the first word is used.

Figure 20 Read Data from CGRAM Instruction

Figure 21 CGRAM Read Sequence

Table 16 Instruction List

Reg. No.	Register Name	Upper Code										Lower Code								Description	Execu- tion Cycle
		R/W	RS	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0		
IR	Index	0	0	*	*	*	*	*	*	*	*	*	*	*	ID4	ID3	ID2	ID1	ID0	Sets the index register value.	0
SR	Status read	1	0	0	L6	L5	L4	L3	L2	L1	L0	0	0	C5	C4	C3	C2	C1	CO	Reads the driving raster-row position (L6-0) and contrast setting (C5-0).	0
R00	Start oscillation	0	1	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	1	Starts the oscillation mode.	10 ms
	Device code read	1	1	0	0	0	0	0	1	1	1	0	1	0	1	0	0	0	0	Reads 0750H.	0
R01	Driver output control	0	1	*	*	*	*	*	*	CMS	SGS	*	CN	*	*	NL3	NL2	NL1	NLO	Sets the common driver shift direction (CMS), segment driver shift direction (SGS), driving duty ratio (NL3-0), and centering (CN).	0
R02	LCD-drivingwaveform control	0	1	*	*	*	*	*	*	*	*	*	B/C	EOR	NW4	NW3	NW2	NW1	NW0	Sets the LCD drive AC waveform (B/C), and EOR output (EOR) or the number of n-raster-rows (NW4-0) at C-pattern AC drive.	0
R03	Power control	0	1	*	*	*	BS2	BS1	BSO	BT1	BTO	*	*	DC1	DC0	AP1	APO	SLP	STB	Sets the sleep mode (SLP), standby mode (STB), LCD power on (AP1-0), boosting cycle (DC1-0), boosting ouput multiplying factor (BT1-0), and LCD drive bias value (BS2-0).	0
R04	Contrast control	0	1	*	*	*	*	*	*	*	*	*	*	CT5	CT4	CT3	CT2	CT1	СTO	Sets the contrast adjustment (CT5-0).	0
R05	Entry mode	0	1	*	*	*	*	*	*	*	*	*	*	*	I/D	AM1	AMO	LG1	LGO	Specifies the logical operation (LG1-0), AC counter mode (AM1-0), and increment/decrement mode (I/D).	0
R06	Rotation	0	1	*	*	*	*	*	*	*	*	*	*	*	*	*	RT2	RT1	RTO	Specifies the amount of write-data rotation (RT2-0).	0
R07	Display control	0	1	*	*	*	*	*	*	*	*	*	*	PS1	PSO	DHE	GS	REV	D	Specifies display on (D), black-and-white reversed display (REV), grayscale mode (GS), double-height display on (DHE), and partial scroll (PS1-0).	0
R08	Cursor control	0	1	*	*	*	*	*	*	*	*	*	*	*	*	*	C	CM1	CMO	Specifies cursor display on (C) and cursor display mode (CM1-0).	0
R09	Double-height display position	0	1	*	DE6	DE5	DE4	DE3	DE2	DE1	DE0	*	DS6	DS5	DS4	DS3	DS2	DS1	DS0	Specifies double-height display start (DS6-0) and end (DE6-0).	0
R0A	Vertical scroll	0	1	*	*	*	*	*	*	*	*	*	SL6	SL5	SL4	SL3	SL2	SL1	SLO	Sets the display-start raster-row (SL6-0).	0
ROB	Horizontal cursor position	0	1	*	HE6	HE5	HE4	HE3	HE2	HE1	HEO	*	HS6	HS5	HS4	HS3	HS2	HS1	HSO	Sets horizontal cursor start (HS6-0) and end (HE6-0).	0
ROC	Vertical cursor position	0	1	*	VE6	VE5	VE4	VE3	VE2	VE1	VEO	*	VS6	VS5	VS4	VS3	VS2	VS1	vSo	Sets vertical cursor start (VS6-0) and end (VE6-0).	0
R10	RAM write data mask	0	1	$\begin{gathered} \text { WM } \\ 15 \end{gathered}$	$\begin{gathered} \text { WM } \\ 14 \\ \hline \end{gathered}$	WM 13	$\begin{array}{\|c\|} \hline \text { WM } \\ 12 \\ \hline \end{array}$	$\begin{gathered} \text { WM } \\ 11 \\ \hline \end{gathered}$	$\begin{gathered} \text { WM } \\ 10 \end{gathered}$	WM9	WM8	WM7	WM6	WM5	WM4	WM3	WM2	WM1	WM0	Specifies write data mask (WM15-0) at RAM write.	0
R11	RAM address set	0	1	*	*	*	*	*	AD10-8 (upper)			AD7-0 (lower)								Initially sets the RAM address to the address counter (AC).	0
R12	RAM data write	0	1	Write data (upper)								Write data (lower)								Writes data to the RAM.	0
	RAM data read	1	1	Read data (upper)								Read data (lower)								Reads data from the RAM.	0

Note: '*' means 'doesn't matter'.

HD66750S

Reset Function

The HD66750S is internally initialized by RESET input. Because the HD66750S is a busy state during the reset period, no instruction or CGRAM data access from the MPU is accepted. The reset input must be held for at least 1 ms . Do not access the CGRAM or initially set the instructions until the R-C oscillation frequency is stable after power has been supplied $(10 \mathrm{~ms})$.

Instruction Set Initialization:

1. Start oscillation executed
2. Driver output control $(\mathrm{CN}=0, \mathrm{NL} 3-0=1111, \mathrm{SGS}=0, \mathrm{CMS}=0)$
3. B-pattern waveform AC drive $(\mathrm{B} / \mathrm{C}=0, \mathrm{ECR}=0, \mathrm{NW} 4-0=00000)$
4. Power control $(\mathrm{DC} 1-0=00, \mathrm{AP} 1-0=00$: LCD power off, $\mathrm{SLP}=0$: Sleep mode off, $\mathrm{STB}=0$: Standby mode off)
5. $1 / 11$ bias drive $(\mathrm{BS} 2-0=000)$, Two-times boost $(\mathrm{BT} 1-0=00)$, Weak contrast $(\mathrm{CT} 5-0=000000)$
6. Entry mode set $(\mathrm{I} / \mathrm{D}=1$: Increment by $1, \mathrm{AM} 1-0=00$: Horizontal move, $\mathrm{LG} 1-0=00$: Replace mode)
7. Rotation (RT2-0 $=000$: No shift)
8. Display control ($\mathrm{DHE}=0$: Double-height display off, $\mathrm{REV}=0, \mathrm{GS}=0, \mathrm{D}=0$: Display off, $\mathrm{PS} 1-0=$ 00: Partial scroll off)
9. Cursor control $(\mathrm{C}=0$: Cursor display off, $\mathrm{CM} 1-0=00$: White blink cursor)
10. Double-height display position $(\mathrm{DS} 6-0=0000000$, DE6 $-0=0000000$)
11. Vertical scroll control (SL6-0 $=0000000$: First raster-row displayed at the top)
12. Window cursor display position (HS6 $-0=$ HE6 $-0=$ VS6 $-0=$ VE6 $-0=0000000$)
13. RAM write data mask (WM15-0 $=0000 \mathrm{H}$: No mask)
14. RAM address set (AD10-0 $=000 \mathrm{H})$

CGRAM Data Initialization:

This is not automatically initialized by reset input but must be initialized by software while display is off ($\mathrm{D}=0$).

Output Pin Initialization:

1. LCD driver output pins (SEG/COM): Outputs GND level
2. Booster output pins (VLOUT): Outputs Vcc level
3. Oscillator output pin (OSC2): Outputs oscillation signal

Parallel Data Transfer

16-bit Bus Interface

Setting the IM2/IM1/IM0 (interface mode) to the GND/GND/GND level allows 68-system E-clocksynchronized 16-bit parallel data transfer. Setting the IM2/1/0 to the GND/Vcc/GND level allows 80system 16-bit parallel data transfer. When the number of buses or the mounting area is limited, use an 8bit bus interface.

Figure 22 Interface to 16-bit Microcomputer

8-bit Bus Interface

Setting the IM2/1/0 (interface mode) to the GND/GND/Vcc level allows 68-system E-clock-synchronized 8 -bit parallel data transfer using pins DB15-DB8. Setting the IM2/1/0 to the GND/Vcc/Vcc level allows 80-system 8-bit parallel data transfer. The 16-bit instructions and RAM data are divided into eight upper/lower bits and the transfer starts from the upper eight bits. Fix unused pins DB7-DB0 to the Vcc or GND level. Note that the upper bytes must be written when those bits are written in the index register.

Figure 23 Interface to 8-bit Microcomputer
Note: Transfer synchronization function for an 8-bit bus interface
The HD66750S supports the transfer synchronization function which resets the upper/lower counter to count upper/lower 8-bit data transfer in the 8-bit bus interface. Noise causing transfer mismatch between the eight upper and lower bits can be corrected by a reset triggered by consecutively writing a 00 H instruction four times. The next transfer starts from the upper eight bits. Executing synchronization function periodically can recover any runaway in the display system.

HD66750S

Figure 24 8-bit Transfer Synchronization

Serial Data Transfer (Clock synchronized serial interface)

Setting the IM2/1 to the Vcc/GND level allows standard clock synchronized serial data transfer, using the chip select line (CS*), serial data line (SDA) and serial transfer clock line (SCL). For the clock synchronized serial interface, the IM0/ID pin function uses an ID pin.

The HD66750S initiates clock synchronized serial data transfer by transferring the first byte at the falling edge of CS* input. It ends clock synchronized serial data transfer the rising edge of CS* input.

The HD66750S is selected when the higher 6-bit slave address in the first byte transferred from the transmitting device match the 6-bits device identification code assigned to the HD66750S. The HD66750S, when selected, receive the subsequent data string. The lower 1-bit of the device identification code can be determined by the ID pin. The upper five bits are fixed to 01110 . Two different chip address must be assigned to a single HD66750S because the seventh bit of the start byte is used as a register select bit (RS); that is, when $R S=0$, an index can be written, and when $R S=1$, control register and CGRAM data can be written or read from CGRAM. Read or write is selected according to the eighth bit of the start byte (R/W bit). The data is received when the R/W bit is 0 , and is transmitted when the R/W bit is 1 .

After receiving the start byte, the HD66750S receives the subsequent data as an HD66750S index or as CGRAM data.

Five bytes of CGRAM read data after the start byte are invalid. The HD66750S start to read correct GRAM data from sixth byte.

Table 16-a Start Byte Format

Transfer Bit	S	1	2	3	4	5	6	7	8
Start byte format	Transfer start	Device ID code						RS	R/W
		0	1	1	1	0	ID		

Note: ID bit is selected by the IM0/ID pin.
Table 16-b RS and R/W bit function

RS	R/W	Function
0	0	Write index register to index
0	1	Read status
1	0	Write control register or GRAM via write data register
1	1	Read GRAM via read data register

HD66750S

a) Basic data-receive timing through the clock synchronized serial interface

b) 1st and 2nd byte assignment

c) Consecutive data-receive timing through the clock synchnorized serial interface

note:

- After start byte transfer, upper bits of the index or write data register should be written first.
- Start byte should be transfered first.
- Index or write data register is executed when upper and lower bits are written.

Therefore, data transfer unit has to be twice byte access cycle.

Figure 24-a Clock synchronized serial interface data-receive sequence
a) Basic data-send timing through the clock synchronized serial interface

b) 1st and 2nd byte assignment

c) Consecutive data-send timing through the clock synchnorized serial interface

When GRAM data is read, valid data can be read after five dummy read cycles.

Figure 24-b Clock synchronized serial interface data-send sequence

HD66750S

Graphics Operation Function

The HD66750S can greatly reduce the load of the microcomputer graphics software processing through the 16 -bit bus architecture and graphics-bit operation function. This function supports the following:

1. A write data mask function that selectively rewrites some of the bits in the 16 -bit write data.
2. A bit rotation function that shifts and writes the data sent from the microcomputer in a bit unit.
3. A logical operation function that writes the data sent from the microcomputer and the original RAM data by a logical operation.

Since the display data in the graphics RAM (CGRAM) can be quickly rewritten, the load of the microcomputer processing can be reduced in the large display screen when a font pattern, such as kanji characters, is developed for any position (BiTBLT processing).

The graphics bit operation can be controlled by combining the entry mode register, the bit set value of the RAM-write-data mask register, and the read/write from the microcomputer.

Table 17 Graphics Operation

	Bit Setting									
Operation Mode	I/D	AM	LG	Operation and Usage		Write mode 1	$0 / 1$	00	00	Horizontal data replacement, horizontal-border drawing
:---	:---	:---	:---	:---						
Write mode 2	$0 / 1$	01	00	Vertical data replacement, font development, vertical- border drawing						
Write mode 3	$0 / 1$	10	00	Vertical data replacement with two-word width, kanji- font development						
Read/write mode 1	$0 / 1$	00	011011	Horizontal data replacement with logical operation, horizontal-border drawing						
Read/write mode 2	$0 / 1$	01	011011	Vertical data replacement with logical operation, vertical-border drawing						
Read/write mode 3	$0 / 1$	10	011011	Horizontal data replacement with two-word-width logical operation						

Figure 25 Data Processing Flow of the Graphics Bit Operation

HD66750S

1. Write mode 1: AM1-0 = 00, LG1-0 = 00

This mode is used when the data is horizontally written at high speed. It can also be used to initialize the graphics RAM (CGRAM) or to draw borders. The rotation function (RT2-0) or write-data mask function (WM15-0) are also enabled in these operations. After writing, the address counter (AC) automatically increments by $1(\mathrm{I} / \mathrm{D}=1)$ or decrements by $1(\mathrm{I} / \mathrm{D}=0)$, and automatically jumps to the counter edge one-raster-row below after it has reached the left edge of the graphics RAM.

```
Operation Examples:
1) I/D = 1, AM1-0 = 00, LG1-0 = 00, RT2-0 = 000
2) WM15-0 = 0000H
3) AC =000H
WM0 WM15
```



```
                    DB0 DB15
```



```
        Write data (2): < 1 1 1 0.0.0
        Write data (3): < < 0
            000H 001H
        002H
```


Figure 26 Writing Operation of Write Mode 1

2. Write mode 2: AM1-0 $=\mathbf{0 1}$, LG1- $\mathbf{0}=\mathbf{0 0}$

This mode is used when the data is vertically written at high speed. It can also be used to initialize the graphics RAM (CGRAM), develop the font pattern in the vertical direction, or draw borders. The rotation function (RT2-0) or write-data mask function (WM15-0) are also enabled in these operations. After writing, the address counter (AC) automatically increments by 16, and automatically jumps to the upper-right edge $(I / D=1)$ or upper-left edge $(I / D=0)$ following the I / D bit after it has reached the lower edge of the graphics RAM.

```
Operation Examples:
1) I/D = 1, AM1-0 = 01, LG1-0 = 00, RT2-0 = 010
2) WM15-0 = F007H
3) AC=000H
```

WMO
WM15

Write data mask: | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

010 H

Write data (2)
020H

Write data (3)
CGRAM

Notes: 1. The bit area data in the RAM indicated by '*' is not changed.
2. After writing to address 7 FOH , the AC jumps to 001 H .

Figure 27 Writing Operation of Write Mode 2

HD66750S

3. Write mode 3: AM1-0 = 10, LG1-0 = 00

This mode is used when the data is written at high speed by vertically shifting bits. It can also be used to write the 16-bit data for two words into the graphics RAM (CGRAM), develop the font pattern, or transfer the BiTBLT as a bit unit. The rotation function (RT2-0) or write-data mask function (WM15-0) are also enabled in these operation. However, although the write-data mask function masks the bit position set with the write-data mask register (WM15-0) at the odd-times (such as the first or third) write, the function masks the bit position that reversed the setting value of the write-data mask register (WM15-0) at the even-times (such as the second or fourth) write. After the odd-times writing, the address counter (AC) automatically increments by $1(\mathrm{I} / \mathrm{D}=1)$ or decrements by $1(I / D=0)$. After the even-times writing, the AC automatically increments or decrements by $-1+16$ $(I / D=1)$ or $+1+16(I / D=0)$. The AC automatically jumps to the upper edge after it has reached the lower edge of the graphics RAM.

```
Operation Examples:
1) I/D = 1, AM1-0 = 10, LG1-0 = 00, RT2-0 = 010
2) WM15-0 = 0007H
3) }\textrm{AC}=000\textrm{H
```


Figure 28 Writing Operation of Write Mode 3

4. \quad Read/Write mode 1: AM1-0 = 00, LG1-0 $=01 / 10 / 11$

This mode is used when the data is horizontally written at high speed by performing a logical operation with the original data. It reads the display data (original data), which has already been written in the graphics RAM (CGRAM), performs a logical operation with the write data sent from the microcomputer, and rewrites the data to the CGRAM. This mode can read the data during the same bus cycle as for the write operation since the read operation of the original data does not latch the read data into the microcomputer and temporarily holds it in the read-data latch. The rotation function (RT2-0) or write-data mask function (WM15-0) are also enabled in these operations. After writing, the address counter (AC) automatically increments by $1(\mathrm{I} / \mathrm{D}=1)$ or decrements by $1(\mathrm{I} / \mathrm{D}=$ 0), and automatically jumps to the counter edge one-raster-row below after it has reached the left or right edges of the graphics RAM.
ation Examples:

1) $I / D=1, A M 1-0=00$, LG1- $0=01$ (OR), RT2- $0=000$
2) $\mathrm{WM} 15-0=0000 \mathrm{H}$
3) $A C=000 \mathrm{H}$

Figure 29 Writing Operation of Read/Write Mode 1

HD66750S

5. \quad Read/Write mode 2: $\mathbf{A M 1} \mathbf{- 0}=\mathbf{0 1}$, LG1-0 $=\mathbf{0 1} / \mathbf{1 0} / 11$

This mode is used when the data is vertically written at high speed by performing a logical operation with the original data. It reads the display data (original data), which has already been written in the graphics RAM (CGRAM), performs a logical operation with the write data sent from the microcomputer, and rewrites the data to the CGRAM. This mode can read the data during the same bus cycle as for the write operation since the read operation of the original data does not latch the read data into the microcomputer and temporarily holds it in the read-data latch. The rotation function (RT2-0) or write-data mask function (WM15-0) are also enabled in these operations. After writing, the address counter (AC) automatically increments by 16 , and automatically jumps to the upper-right edge ($\mathrm{I} / \mathrm{D}=1$) or upper-left edge $(\mathrm{I} / \mathrm{D}=0)$ following the I / D bit after it has reached the lower edge of the graphics RAM.

Operation Examples:

1) $I / D=1, A M 1-0=01$, LG1- $0=01$ (OR), RT2- $0=010$
2) $\mathrm{WM} 15-0=\mathrm{FC} 03 \mathrm{H}$
3) $A C=000 \mathrm{H}$

Notes: 1. The bit area data in the RAM indicated by '*' is not changed.
2. After writing to address 7 FOH , the AC jumps to 001 H .

Figure 30 Writing Operation of Read/Write Mode 2

6. \quad Read/Write mode 3: $\mathbf{A M 1} \mathbf{- 0}=\mathbf{1 0}$, LG1- $\mathbf{0}=\mathbf{0 1} / \mathbf{1 0} / \mathbf{1 1}$

This mode is used when the data is written with high speed by vertically shifting bits and by performing logical operation with the original data. It can be also used to write the 16-bit data for two words into the graphics RAM (CGRAM), develop the font pattern, or transfer the BiTBLT as a bit unit. This mode can read the data during the same bus cycle as for the write operation since the read operation of the original data does not latch the read data into the microcomputer and temporarily holds it in the read-data latch. The rotation function (RT2-0) or write-data mask function (WM15-0) are also enabled in these operations. However, although the write-data mask function masks the bit position set with the write-data mask register (WM15-0) at the odd-times (such as the first or third) write, the function masks the bit position which reversed the setting value of the write-data mask register (WM15-0) at the even-times (such as the second or fourth) write. After the odd-times writing, the address counter (AC) automatically increments by $1(\mathrm{I} / \mathrm{D}=1)$ or decrements by $1(\mathrm{I} / \mathrm{D}=$ 0). After the even-times writing, the AC automatically increments or decrements by $-1+16(\mathrm{I} / \mathrm{D}=1)$ or $+1+16(I / D=0)$. The AC automatically jumps to the upper edge after it has reached the lower edge of the graphics RAM.

Figure 31 Writing Operation of Read/Write Mode 3

HD66750S

Oscillation Circuit

The HD66750S can either be supplied with operating pulses externally (external clock mode) or oscillate using an internal R-C oscillator with an external oscillator-resistor (external resistor oscillation mode). Note that in R-C oscillation, the oscillation frequency is changed according to the internal capacitance value, the external resistance value, or operating power-supply voltage.

Figure 32 Oscillation Circuits
Table 18 Relationship between Liquid Crystal Drive Duty Ratio and Frame Frequency

LCD Duty	NL3-0 Set Value	Recommended Drive Bias Value	Frame Frequency	One-frame Clock
$1 / 16$	0001	$1 / 6$	70 Hz	1024
$1 / 24$	0010	$1 / 6$	70 Hz	1032
$1 / 32$	0011	$1 / 6$	70 Hz	1024
$1 / 40$	0100	$1 / 7$	69 Hz	1040
$1 / 48$	0101	$1 / 8$	71 Hz	1008
$1 / 56$	0110	$1 / 8$	71 Hz	1008
$1 / 64$	0111	$1 / 9$	70 Hz	1024
$1 / 72$	1000	$1 / 9$	71 Hz	1008
$1 / 80$	1001	$1 / 10$	69 Hz	1040
$1 / 88$	1010	$1 / 10$	68 Hz	1056
$1 / 96$	1011	$1 / 10$	68 Hz	1056
$1 / 104$	1100	$1 / 11$	69 Hz	1040
$1 / 112$	1101	$1 / 11$	71 Hz	1008
$1 / 120$	1110	$1 / 11$	67 Hz	1080
$1 / 128$	1111	$1 / 11$	70 Hz	1024

Note: The frame frequency above is for $72-\mathrm{kHz}$ operation and proportions the oscillation frequency (fosc).

Figure 33 LCD Drive Output Waveform (B-pattern AC Drive with 1/128 Duty Ratio)

HD66750S

n-raster-row Reversed AC Drive

The HD66750S supports not only the LCD reversed AC drive in a one-frame unit (B-pattern waveform) but also the n-raster-row reversed AC drive which alternates in an n-raster-row unit from one to 32 rasterrows (C-pattern waveform). When a problem affecting display quality occurs, such as crosstalk at highduty driving of more than $1 / 64$ duty, the n-raster-row reversed AC drive (C-pattern waveform) can improve the quality. Determine the number of raster-rows n (NW bit set value +1) for alternating after confirmation of the display quality with the actual LCD panel. However, if the number of AC rasterrows is reduced, the LCD alternating frequency becomes high. Because of this, the charge or discharge current is increased in the LCD cells.

Figure 34 Example of an AC Signal under n-raster-row Reversed AC Drive

Liquid Crystal Display Voltage Generator

When External Power Supply and Internal Operational Amplifiers are Used

To supply LCD drive voltage directly from the external power supply without using the internal booster, circuits should be connected as shown in figure 35 . Here, contrast can be adjusted by software through the CT bits of the contrast adjustment register.

The HD66750S incorporates a voltage-follower operational amplifier for each V1 to V5 to reduce current flowing through the internal bleeder-resistors, which generate different levels of liquid-crystal drive voltages. Thus, potential difference between $\mathrm{V}_{\mathrm{LCD}}$ and V 1 must be 0.1 V or higher, and that between V 4 and GND must be 1.4 V or higher. Note that the OPOFF pin must be grounded when using the operational amplifiers. Place a capacitor of about $0.47 \mu \mathrm{~F}$ (B characteristics) between each internal operational amplifier (V1OUT to V5OUT outputs) and GND and stabilize the output level of the operational amplifier. Adjust the capacitance value of the stabilized capacitor after the LCD panel has been mounted and the screen quality has been confirmed.

Notes : 1. Adjust the capacitance value of the capacitor after the LCD panel has been mounted.
2. Use the capacitors with breakdown voltages equal to or higher than the LCD voltage for connecting to V1OUT through V5OUT. Determine the capacitor breakdown voltages by checking VLCD voltage fluctuation.

Figure 35 External Power Supply Circuit for LCD Drive Voltage Generation

When an Internal Booster and Internal Operational Amplifiers are Used

To supply LCD drive voltage using the internal booster, circuits should be connected as shown in figure 36. Here, contrast can be adjusted through the CT bits of the contrast control instruction. Temperature can be compensated either through the CT bits or by controlling the reference voltage for the booster (Vci pin) using a thermistor.

Note that Vci is both a reference voltage and power supply for the booster. The reference voltage must therefore be adjusted using an emitter-follower or a similar element so that sufficient current can be supplied.

The HD66750S incorporates a voltage-follower operational amplifier for each of V1 to V5 to reduce current flowing through the internal bleeder-resistors, which generate different liquid-crystal drive voltages. Thus, potential difference between $\mathrm{V}_{\mathrm{LCD}}$ and V 1 must be 0.1 V or higher, and that between V 4 and GND must be 1.4 V or higher. Note that the OPOFF pin must be grounded when using the operational amplifiers. Place a capacitor of about $0.47 \mu \mathrm{~F}$ (B characteristics) between each internal operational amplifier (V1OUT to V5OUT outputs) and GND and stabilize the output level of the operational amplifier. Adjust the capacitance value of the stabilized capacitor after the LCD panel has been mounted and the screen quality has been confirmed. The wiring length between capacitors and the HD66750S should be as shorter as possible.

HD66750S

Notes : 1. The reference voltage input (Vci) must be adjusted so that the output voltage after boosting will not exceed the absolute maximum rating for the liquid-crystal power supply voltage (16.5 V).
2. Vci is both a reference voltage and power supply for the step-up circuit; connect it to Vcc directly or combine it with a transistor so that sufficient current can be obtained.
3. Polarized capacitors must be connected correctly.
4. Circuits for temperature compensation should be based on the sample circuits in figure 37
5. Adjust the capacitance value of the stabilized capacitor after the LCD panel has been mounted.
6. The breakdown voltages of the capacitors connected to $\mathrm{C} 3+/ \mathrm{C} 3-$ and $\mathrm{C} 6+/ \mathrm{C} 6$ - should be three times or higher than the Vci voltage
7. The breakdown voltages of the capacitors connected to $\mathrm{C} 1+/ \mathrm{C} 1-, \mathrm{C} 2+/ \mathrm{C} 2-, \mathrm{C} 4+/ \mathrm{C} 4-$, and $\mathrm{C} 5+/ \mathrm{C} 5-$ should be equal to or higher than the Vci voltage.
8. The breakdown voltages of the capacitors connected to VLOUT and V1OUT through V5OUT should be n times or higher than the Vci voltage (n : step-up magnification).
9. Determine thebreakdown voltages of the capacitors used in 6 to 8 above by checking Vci voltage fluctuation.

Figure 36 Internal Booster for LCD Drive Voltage Generation

Figure 37 Temperature Compensation Circuits

Notes on Using Internal Operational Amplifier

The HD66750S has a low-current-consumption-type operational amplifier. When a low-voltage supply is used, particularly at low temperatures near $-20^{\circ} \mathrm{C}$, the current in the operational amplifier is reduced. Therefore, depending on the specifications or display pattern of the LCD panel used, screen quality may be poor or the LCD panel may not operate at all.

For the operational specifications of the LCD panel, one must consider the drive condition (setting of the VTEST pin) or the peripheral circuits of the LCD panel in conjunction with the power-supply voltage.

Pin condition for HD66750S (setting VTEST pin):

1. When the power-supply voltage is $\mathrm{Vcc} \geq 2.5 \mathrm{~V}$ (i.e., the current in the operational amplifier is sufficient), leave the VTEST pin open (disconnected).
2. When the power-supply voltage is $\mathrm{Vcc}<2.5 \mathrm{~V}$ (i.e., the current is reduced in the operational amplifier at low temperature), 1.2 to 1.3 V should be input to the VTEST pin.

The following table and figure correspond to inputs of 1.2 to 1.3 V to the VTEST pin. When higher LCD drive current is required due to the characteristics of the LCD panel, check the screen quality and current consumption, adjust the resistance values (R 1 and R 2), and increase the VTEST pin voltage. (This is also valid when Vcc $\geq 2.5 \mathrm{~V}$.)

Figure 38 Circuit to for Generating VTEST Pin Voltage

HD66750S

Table 19 Settings to Generate VTEST Pin Voltage

Vcc	R1	R2	Vtest (VTEST Pin Voltage)
2.4 V	$270 \mathrm{k} \Omega$	$330 \mathrm{k} \Omega$	1.23 V
2.0 V	$220 \mathrm{k} \Omega$	$360 \mathrm{k} \Omega$	1.22 V
1.8 V	$180 \mathrm{k} \Omega$	$390 \mathrm{k} \Omega$	1.22 V

Countermeasures for Screen Quality when Using On-chip Operational Amplifier

The HD66750S is an on-chip LCD driver that has an LCD power supply for high duty. Screen quality is affected by the load current of the high-duty LCD panel used. When the bias ($1 / 11$ bias, $1 / 10$ bias, $1 / 9$ bias, etc.) is high and the displayed pattern is completely or almost completely white, the white sections may appear dark.

If this happens, execute the following countermeasures to improve screen quality.
(1) After the change in the V4OUT/V3OUT level is verified, insert about $1 \mathrm{M} \Omega$ between V4OUT and GND or VLCD and V3OUT and then adjust the screen quality (see the following figures). By inserting resistance, the current consumption increases as much as the boosting factor of the resistance current. Adjust the resistance after checking the screen quality and the increase in current consumption.
(2) Decrease the drive bias and use the new bias level after verifying that the potential differences between V4OUT and GND or VLCD and V3OUT are sufficient.

Figure 39 Countermeasure for V4OUT Output

Figure 40 Countermeasure for V3OUT Output
Note: The actual LCD drive voltage-VLCD used must not exceed 15.5 V , and the absolute rating must not exceed 16.5 V .

Switching the Boosting Factor

Instruction bits (BT1/0 bits) can optionally select the boosting factor of the internal booster. According to the display status, current consumption can be reduced by changing the LCD drive duty and the LCD drive bias, and by controlling the boosting factor for the minimum requirements. For details, see the Partial-display-on Function section.

Because of the maximum boosting factor, external capacitors need to be connected. For example, when the maximum boosting is six times or five times, capacitors between C6+ and C6- or between C5+ and C5- are needed as well, as in the case of the seven-times boosting. When the boosting is two-times boosting, capacitors between $\mathrm{C} 1+$ and $\mathrm{C} 1-$ or between $\mathrm{C} 4+$ and $\mathrm{C} 4-$ are not needed.

Place a capacitor with a voltage of three or more times the Vci-GND voltage between C6+ and C6- and between C3+ and C3-, and a capacitor with a voltage larger than the Vci-GND voltage between C1+ and $\mathrm{C} 1-, \mathrm{C} 2+$ and $\mathrm{C} 2-, \mathrm{C} 4+$ and C 4 -, and $\mathrm{C} 5+$ and $\mathrm{C} 5-$, and connect a capacitor with a voltage of n or more times the Vci-GND voltage to the VLOUT (n : boosting factor).

Note: The voltage of each capacitor must be considered with regard to the change in Vci voltage.
Table 20 VLOUT Output Status
BT1 BT0 VLOUT Output Status

0	0	Two-times boosting output
0	1	Five-times boosting output
1	0	Six-times boosting output
1	1	Seven-times boosting output

HD66750S

i) Maximum seven-times boosting

iii) Maximum five-times boosting

ii) Maximum six-times boosting

iv) Maximum two-times boosting

Figure 41 Booster Output Factor Switching

Example of Power-supply Voltage Generator for More Than Seven-times Boosting Output

The HD66750S incorporates a booster for up to seven-times boosting. However, the LCD drive voltage (VLCD) will not be enough for seven-times boosting from Vcc when the power-supply voltage of Vcc is low or when the LCD drive voltage is high for the high-contrast LCD display. In this case, the reference voltage (Vci) for boosting can be set higher than the power-supply voltage of Vcc.

When the boosting factor is high, the current driving ability is lowered and insufficient display quality may result. In this case, the boosting ability can be improved by decreasing the boosting factor as shown in the booster in figure 42.

Set the Vci input voltage for the booster to 3.6 V . Control the Vci voltage so that the boosting output voltage (VLOUT) should be less than the absolute maximum ratings (16.5 V).

Figure 42 Usage Example of Booster at Vci > Vcc

HD66750S

Precautions when Switching Boosting Circuit

The boosting factor of the HD66750S can be switched between 2, 5, 6, and 7 times by instruction. When the factor is switched, there is a transition period before the voltage from VLOUT stabilizes. When VLOUT is used as the VLCD, the boosting factor is changed by switching the BT bit, and the supply voltage for the LCD is changed, a direct current may be applied to the LCD display if the display is on during the transition period.

When the output voltage of the VLOUT pin is changed, the display must be switched off and on after the output voltage stabilizes.

Table 21 Instructions Accompanying Change in Boosting Factor (example)

Display Contents	Instructions	
All display drive in $1 / 128$ duty to $1 / 48$ duty drive	(1) Display control (R7)	
	(2) Power control (R1)	0×0000
	(3) 10-ms wait	
	(4) Contrast control (R4)	0×0006
	(5) Driver output control (R1)	0×0245
	(6) Display control (R7)	0×0005

Contrast Adjuster

Software can adjust 64-step contrast for an LCD by varying the liquid-crystal drive voltage (potential difference between $\mathrm{V}_{\mathrm{LCD}}$ and V 1) through the CT bits of the contrast adjustment register (electron volume function). The value of a variable resistor between $\mathrm{V}_{\mathrm{LCD}}$ and V 1 (VR) can be precisely adjusted in a 0.05 $\mathrm{x} R$ unit within a range from $0.05 \times \mathrm{R}$ through 3.20 x R , where R is a reference resistance obtained by dividing the total resistance.

The HD66750S incorporates a voltage-follower operational amplifier for each of V1 to V5 to reduce current flowing through the internal bleeder resistors, which generate different liquid-crystal drive voltages. Thus, CT5-0 bits must be adjusted so that potential difference between $\mathrm{V}_{\mathrm{LCD}}$ and V 1 is 0.1 V or higher and that between V4 and GND is 1.4 V or higher when liquid-crystal drives, particularly when the VR is small.

Figure 43 Contrast Adjuster

HD66750S

Table 22 Contrast Adjustment Bits (CT) and Variable Resistor Values

CT Set Value						Variable Resistor Value (VR)	Potential Difference between V1 and GND	Display Color
CT5	CT4	CT3	CT2	CT1	CT0			
0	0	0	0	0	0	$3.20 \times \mathrm{R}$	(Small)	(Light)
0	0	0	0	0	1	$3.15 \times \mathrm{R}$		
0	0	0	0	1	0	$3.10 \times \mathrm{R}$		
0	0	0	0	1	1	$3.05 \times \mathrm{R}$		
0	0	0	1	0	0	$3.00 \times \mathrm{R}$		
0	0	0	1	0	1	$2.95 \times \mathrm{R}$		
0	0	0	1	1	0	$2.90 \times \mathrm{R}$		
0	0	0	1	1	1	$2.85 \times \mathrm{R}$		
0	0	1	0	0	0	$2.80 \times \mathrm{R}$		
0	0	1	0	0	1	$2.75 \times \mathrm{R}$		
0	0	1	0	1	0	$2.70 \times \mathrm{R}$		
0	0	1	0	1	1	$2.65 \times \mathrm{R}$		
0	0	1	1	0	0	$2.60 \times \mathrm{R}$		
			E			E E \bar{Z}		
0	1	1	1	1	1	$1.65 \times \mathrm{R}$		
1	0	0	0	0	0	$1.60 \times \mathrm{R}$		
1	0	0	0	0	1	$1.55 \times \mathrm{R}$		
1	0	0	0	1	0	$1.50 \times \mathrm{R}$		
1	0	0	0	1	1	$1.45 \times \mathrm{R}$		
1	0	0	1	0	0	$1.40 \times \mathrm{R}$		
1	0	0	1	0	1	$1.35 \times \mathrm{R}$		
1	0	0	1	1	0	$1.30 \times \mathrm{R}$		
1	0	0	1	1	1	$1.25 \times \mathrm{R}$		
1	0	1	0	0	0	$1.20 \times \mathrm{R}$		
1	1	1	0	0	1	$1.15 \times \mathrm{R}$		
Z\vdotsI						Z		
1	1	1	1	0	0	$0.20 \times \mathrm{R}$		
1	1	1	1	0	1	$0.15 \times \mathrm{R}$		
1	1	1	1	1	0	$0.10 \times \mathrm{R}$		
1	1	1	1	1	1	$0.05 \times \mathrm{R}$		

HITACHI

Liquid-crystal-display Drive-bias Selector

An optimum liquid-crystal-display bias value can be selected using the BS2-0 bits, according to the liquid crystal drive duty ratio setting (NL3-0 bits). The liquid-crystal-display drive duty ratio and bias value can be displayed while switching software applications to match the LCD panel display status. The optimum bias value calculated using the following expression is a logical optimum value. Driving by using a lower value than the optimum bias value provides lower logical contrast and lower liquid-crystaldisplay voltage (the potential difference between V1 and GND), which results in better image quality. When the liquid-crystal-display voltage is insufficient even if a seven-times booster is used, when the boosting driving ability is lowered by setting a high factor for the booster, or when the output voltage is lowered because the battery life has been reached, the display can be made easier to see by lowering the liquid-crystal-display bias.

The liquid crystal display can be adjusted by using the contrast adjustment register (CT5-0 bits) and selecting the booster output level (BT1/0 bits).

$$
\text { Optimum bias value for } 1 / N \text { duty ratio drive voltage }=\frac{1}{\sqrt{N}+1}
$$

Table 23 Optimum Drive Bias Values

LCD drive duty ratio	1/128	1/120	1/112	1/104	1/96	1/88	1/80	1/72	1/64	1/32	1/24	1/16
(NL3-0 set value)	1111	1110	1101	1100	1011	1010	1001	1000	0111	0100	0011	0010
Optimum drive bias value	1/11	1/11	1/11	1/11	1/10	1/10	1/10	1/9	1/9	1/6	1/6	1/5
(BS2-0 set value)	000	000	000	000	001	001	001	010	010	101	101	100

HD66750S

Figure 44 Liquid Crystal Display Drive Bias Circuit

HD66750S

Table 24 Contrast Adjustment per Bias Drive Voltage

Bias	LCD drive voltage: VDR	Contrast adjustment range
1/11 bias drive	$\frac{11 \times R}{11 \times R+V R} \times(V L C D-G N D)$	- LCD drive voltage adjustment range $: 0.775 \times(\mathrm{VLCD}-\mathrm{GND}) \leq \mathrm{VDR} \leq 0.995 \times(\mathrm{VLCD}-\mathrm{GND})$ -- Limit of potential difference between V4 and GND $: \frac{2 \times \mathrm{R}}{11 \times \mathrm{R}+\mathrm{VR}} \times(\mathrm{VLCD}-\mathrm{GND}) \geq 1.4[\mathrm{~V}]$ - Limit if potential difference between VLCD and V 1$: \frac{\mathrm{VR}}{11 \times \mathrm{R}+\mathrm{VR}} \times(\mathrm{VLCD}-\mathrm{GND}) \geq 0.1[\mathrm{~V}]$
1/10 bias drive	$\frac{10 \times R}{10 \times R+V R} \times(V L C D-G N D)$	
1/9 bias drive	$\frac{9 \times R}{9 \times R+V R} \times(V L C D-G N D)$	
1/8 bias drive	$\frac{8 \times R}{8 \times R+V R} \times(V L C D-G N D)$	
$\begin{aligned} & 1 / 7 \\ & \text { bias } \\ & \text { drive } \end{aligned}$	$\frac{7 \times R}{7 \times R+V R} \times(V L C D-G N D)$	- LCD drive voltage adjustment range $: 0.686 \times(\mathrm{VLCD}-\mathrm{GND}) \leq \mathrm{VDR} \leq 0.993 \times(\mathrm{VLCD}-\mathrm{GND})$ - Limit of potential difference between V4 and GND $: \frac{2 \times \mathrm{R}}{7 \times \mathrm{R}+\mathrm{VR}} \times(\mathrm{VLCD}-\mathrm{GND}) \geq 1.4[\mathrm{~V}]$ - Limit if potential difference between VLCD and V1 $: \frac{\mathrm{VR}}{7 \times \mathrm{R}+\mathrm{VR}} \times(\mathrm{VLCD}-\mathrm{GND}) \geq 0.1[\mathrm{~V}]$
1/6 bias drive	$\frac{6 \times R}{6 \times R+V R} \times(V L C D-G N D)$	- LCD drive voltage adjustment range $: 0.652 \times(\mathrm{VLCD}-\mathrm{GND}) \leq \mathrm{VDR} \leq 0.992 \times(\mathrm{VLCD}-\mathrm{GND})$ - Limit of potential difference between V4 and GND $: \frac{2 \times \mathrm{R}}{6 \times \mathrm{R}+\mathrm{VR}} \times(\mathrm{VLCD}-\mathrm{GND}) \geq 1.4[\mathrm{~V}]$ - Limit if potential difference between VLCD and V1$: \frac{\mathrm{VR}}{6 \times \mathrm{R}+\mathrm{VR}} \times(\mathrm{VLCD}-\mathrm{GND}) \geq 0.1[\mathrm{~V}]$
$\begin{aligned} & 1 / 5 \\ & \text { bias } \\ & \text { drive } \end{aligned}$	$\frac{5 \times \mathrm{R}}{5 \times \mathrm{R}+\mathrm{VR}} \times(\mathrm{VLCD}-\mathrm{GND})$	
$\begin{aligned} & 1 / 4 \\ & \text { bias } \\ & \text { drive } \end{aligned}$	$\frac{4 \times \mathrm{R}}{4 \times \mathrm{R}+\mathrm{VR}} \times(\mathrm{VLCD}-\mathrm{GND})$	

HD66750S

Four-grayscale Display Function

The HD66750S supports the four-grayscale monochrome display function. The four-grayscale monochrome display is used for the display data of the two-bit pixel set sent to the CGRAM. There are four grayscale levels: always unlit, weak middle level, strong middle level, and always lit. In the weak middle-level grayscale display, the GS bit can select the $1 / 3$ or $1 / 2$ level.

The frame rate control (FRC) method is used for grayscale control.
Table 25 Relationships between the CGRAM Data and the Display Contents

Upper Bit	Lower Bit	Liquid Crystal Display
0	0	Non-selected (unlit)
0	1	GS $=0: 1 / 3$-level grayscale (one frame lit during a three-frame period) GS $=1: 1 / 2$-level grayscale (one frame lit during a two-frame period)
1	0	2/3-level grayscale (two frames lit during a three-frame period)
1	1	Selected (lit)
Note:	Upper bits: DB15, DB13, DB11, DB9, DB7, DB5, DB3, and DB1 Lower bits: DB14, DB12, DB10, DB8, DB6, DB4, DB2, and DB0	

Figure 45 Four-grayscale Monochrome Display

Window Cursor Display Function

The HD66750S displays the window cursor by specifying a window area. The horizontal display position of the window cursor is specified with the horizontal cursor position register (HS6-0 to HE6-0), and the vertical display position is specified with the vertical cursor position register (VS6-0 or VE6-0). In these display position setting registers, ensure that HS6-0 \leq HE6-0 and VS6-0 \leq VE6-0. If these relationships are not satisfied, normal display cannot be attained. In addition, if the setting is VS6-0 $=\mathrm{VE} 6-0=00 \mathrm{H}$, a cursor is displayed on a raster-row at the most-upper edge of the screen.

This window cursor can automatically display the hardware-supported block cursor, highlight window, or menu bar. The CM1-0 bits select the following four displays in each window cursor:

1. White-blink cursor $($ CM1-0 $=00)$: Alternately blinks between the normal display and an all-white (unlit) display
2. Black-blink cursor $(\mathrm{CM} 1-0=01)$: Alternately blinks between the normal display and an all-black (all lit) display
3. Black-and-white reversed cursor $(\mathrm{CM1-0}=10)$: Black-and-white-reversed normal display (no blinking)
4. Black-and-white-reversed blink cursor $(\mathrm{CM} 1-0=11)$: Alternately blinks between the normal display and a black-and-white-reversed display

The above blinking display is switched in a 32 -frame unit.
In vertical scrolling, note that this window cursor does not automatically move vertically.

Figure 46 White Blink Cursor Display

HD66750S

Figure 47 Black Blink Cursor Display

Figure 48 Black-and-White Reversed Cursor Display

Figure 49 Black-and-White Reversed Blink Cursor Display

Vertical Smooth Scroll Display

The HD66750S can scroll the graphics display vertically in units of raster-rows. The data storage capacity of the CGRAM is 128 raster-rows. Continuous smooth vertical scrolling is achieved by writing display data into a raster-row area that is not being used for display. After the 128th raster-row is displayed, the first raster-row is displayed again. Using the status read, the user can check the display raster-rows (L6-0) that are currently driving the LCD, and flicker can be eliminated by writing the display data in the CGRAM while the LCD is not driven.

Additionally, when display areas of a graphics icon such as a pictogram or a menu bar are partially fixeddisplayed, the remaining areas can be displayed. For details, see the Partial Smooth Scroll Display Function section.

Specifically, this function is controlled by incrementing or decrementing the value in the display-start raster-row bits (SL6-0) by 1. For example, to smoothly scroll up, increment display-start raster-row bits (SL6-0) by 1 from 0000000 to 1111111 to scroll 128 raster-rows.

Note that the vertical double-height display or window cursor display is not automatically changed in synchronization with the vertical scrolling.

When the response speed of the liquid crystal is low or when high-speed scrolling is needed, two- to four-raster-row scrolling is recommended.

HD66750S

Figure 50

Partial Smooth Scroll Display Function

The HD66750S can partially fixed-display the areas of a graphics icon such as a pictogram or a menu bar, and perform vertical smooth scrolling of the remaining bit-map areas. Since the PS1 to PS0 bits are not used for smooth scrolling of the upper first to 24th display raster-rows but are used for fixed-display, pictograms can be placed on the screen. This function can largely control the rewrite frequencies of the bit-map data during smooth scrolling and reduce the software load of the MPU.

HD66750S

Table 26 Bit Setting and Display Lines

Bit Setting	$\begin{aligned} & \text { COM } \\ & \text { Position } \end{aligned}$	$\begin{aligned} & \text { SL6-0 } \\ & =00 \mathrm{H} \end{aligned}$	$\begin{aligned} & \text { SL6-0 } \\ & =01 \mathrm{H} \end{aligned}$	$\begin{aligned} & \text { SL6-0 } \\ & =02 \mathrm{H} \end{aligned}$	$\begin{aligned} & \text { SL6-0 } \\ & =04 \mathrm{H} \end{aligned}$	$\begin{aligned} & \text { SL6-0 } \\ & =07 \mathrm{H} \end{aligned}$	$\begin{aligned} & \text { SL6-0 } \\ & =08 \mathrm{H} \end{aligned}$		$\begin{aligned} & \text { SL6-0 } \\ & =7 E H \end{aligned}$	$\begin{aligned} & \text { SL6-0 } \\ & =7 F H \end{aligned}$
$\begin{aligned} & \text { PS1-0 } \\ & =" 00 " \end{aligned}$	COM1 \square COM120	1st raster-row 2nd raster-row 3rd raster-row	2nd raster-row 3rd raster-row 4th raster-row	$\begin{gathered} \text { 3rd raster-row } \\ \hline \text { 4th raster-row } \\ \hline \text { 5th raster-row } \\ \hline \end{gathered}$	$\begin{aligned} & \text { 5th raster-row } \\ & \hline \text { 6th raster-row } \\ & \hline \text { 7th raster-row } \\ & \hline \end{aligned}$	8th raster-row 9th raster-row 10th raster-row	9th raster-row 10th raster-row 11th raster-row			128th raster-row 1st raster-row 2nd raster-row
		118th raster-row 119th raster-row 120th raster-row	119th raster-row 120th raster-row 121 raster-row	120th raster-row 121st raster-row 122nd raster-row	122nd raster-row 123 rd raster-row 124 th raster-row	125 th raster-row 126 th raster-row 127 th raster-row	126th raster-row 127th raster-row 128th raster-row		116th raster-row 117 th raster-row 118 th raster-row	117th raster-row 118 th raster-row 119th raster-row
$\begin{aligned} & \text { PS1-0 } \\ & =" 01 " \end{aligned}$		1st to 8th raster-row	- ••	1st to 8th raster-row	1st to 8th raster-row					
		st raster-row	2nd raster-row	3rd raster-row	5th raster-row	Bth raster-row	9th raster-row		27th raster-row	128th raster-r
		2nd raster-ro	3rd raster-ro	raster-row	h raster-ro	9th raster-ro	10th raster-row		128th raster-row	9th raster-row
		3rd raster-row	4th raster-row	5th raster-row	th raster-row	10th raster-row	11th raster-row		9th raster-row	10th raster-row
					-				\bullet	\bullet
		th raster-row	th raster-ro	th raster-rom	4th raster-ro	117th raster-row	18th raster-row	- -	6th raster-row	17th raster-row
		1th raster-row	2th raster-ro	3th raster-ro	5th raster-ro	118th raster-rom	119th raster-row		7th raster-row	18th raster-row
		112th raster-row	113th raster-row	114th raster-row	116th raster-row	119th raster-row	120th raster-row		118th raster-row	119th raster-row
$\begin{aligned} & \text { PS1-0 } \\ & =" 10 " \end{aligned}$	COM1	$\begin{aligned} & \text { 1st to 16th } \\ & \text { raster-row } \end{aligned}$	1st to 16 th raster-row	1st to 16th raster-row	1st to 16th raster-row	1st to 16 th raster-row	1st to 16th raster-row		1st to 16 th raster-row	$\begin{aligned} & \text { 1st to } 16 \text { th } \\ & \text { raster-row } \end{aligned}$
		1st raster-row	2nd raster-row	3rd raster-row	5th raster-row	8th raster-row	9th raster-row		127th raster-row	128th raster-row
		2nd raster-row	raster-rom	raster-ro	6th raster-ro	9th raster-row	10th raster-rom		28th raster-row	17th raster-row
		3rd raster-row	4th raster-row	5th raster-row	7 th raster-row	10th raster-row	11th raster-row		17th raster-row	18th raster-row
		\bullet								
		102nd raster-row	3 rd raster-ro	104th raster-rom	106th raster-ro	109th raster-row	110th raster-row		6th raster-row	117th raster-row
		103rd raster-row	104th raster-row	105th raster-ro	107th raster-row	110 th raster-rom	111th raster-row		17 th raster-row	118th raster-row
		104th raster-row	105th raster-row	106th raster-row	108th raster-row	111th raster-row	112nd raster-row		18 th raster-rom	119th raster-row
$\begin{aligned} & \text { PS1-0 } \\ & =" 11 " \end{aligned}$		1st to 24th raster-row		1st to 24th raster-row	1st to 24th raster-row					
		1st raster-row	2nd raster-row	3rd raster-ro	5th raster-row	8th raster-row	9th raster-row		27th raster-ro	128th raster-row
		2nd raster-row	3rd raster-row	4th raster-row	6th raster-row	9th raster-row	10th raster-row		128th raster-row	25th raster-row
		3rd raster-row	4th raster-row	5th raster-rom	7th raster-row	10th raster-row	11th raster-row		25th raster-row	26th raster-row
					\bullet	\bullet				
		th raster-row	95th raster-row	96 th raster-row	98th raster-row	101th raster-row	102th raster-row		6th raster-row	117th raster-row
		raster-row	raster-1	h raster-rom	99th raster-row	102th raster-row	03th raster-rou		7th raster-roun	118th raster-row
		96th raster-row	97th raster-row	98th raster-row	100th raster-row	103th raster-row	104nd raster-row	- - -	118th raster-row	119th raster-row

Notes: 1. The shadow raster-rows above are fixed-displayed. They do not depend on the setting of the SL6-0 bits.
2. The SL6-0 bits specify the next first scroll display raster-row of the fixed-displayed raster-rows.

Partial Smooth Scroll Examples

Table 27 Data setting to the CGRAM

CGRAM Address	CGRAM Data
＂000＂to＂07F＂	＂中
＂080＂to＂0FF＂	
＂100＂to＂17F＂	
＂180＂to＂1FF＂	
＂200＂to＂27F＂	
＂280＂to＂2FF＂	
＂300＂to＂37F＂	
＂380＂to＂3FF＂	明朋
＂400＂to＂47F＂	
＂480＂to＂4FF＂	
＂500＂to＂57F＂	
＂580＂to＂5FF＂	

HD66750S

i) Initial screen display

- PS1-0 = "01" : Fixed-displays the first to eighth raster-rows
- SL6-0 = "0001000" : Starts display from the ninth raster-row

Figure 51
Example of the initial screen in the partial smooth scroll mode
ii) Four-dot partial scroll up

- PS1-0 = "01" : Fixed-displays the first to eighth raster-rows

SL6-0 = "0001100" : Starts display from the 13th raster-row

Figure 52 Example of display screen in the partial smooth scroll mode (1)

iii) Eight-dot partial scroll up

- PS1-0 = "01" : Fixed-displays the first to eighth raster-rows
- SL6-0 = "0010000" : Starts display from the 17th raster-row

Figure 53 Example of display screen in the partial smooth scroll mode (2)

HD66750S

Double-height Display Function

The HD66750S can double the height of any desired area in units of raster-rows (dots). The doubleheight display is done by setting the DHE bit in the display control register to 1 .

The start position of the double-height display is set by the DS6 to DS0 bits of the double-height display position register, and the double-height display starts at the (the setting value plus one)-th raster-row. The end position is set by the DE6 to DE0 bits of the double-height display position register, and the display ends at the (the setting value plus one)-th raster-row. Here, the end position of the double-height display must be after the start position, so set the register setting values so that DS6-0 \leq DE6- 0 . When the area specified to be doubled in height is an odd number of raster-rows, the double-height display is done up to the (DE6-0 plus one)-th raster-row.

In vertical smooth scrolling, the double-height display position does not automatically move up or down.

Figure 54
Double-height display ($\mathbf{9}^{\text {th }}$ to $\mathbf{4 0}^{\text {th }}$ raster-rows)

Reversed Display Function

The HD66750S can display graphics display sections by black-and-white reversal. Black-and-white reversal can be easily displayed when the REV bit in the display control register is set to 1 .

Figure 55
Reversed display

HD66750S

Partial-display-on Function

The HD66750S can program the liquid crystal display drive duty ratio setting (NL3-0 bits), the liquid crystal display drive bias value selection (BS2-0 bits), the boost output level selection (BT1-0 bits), and the contrast adjustment (CT5-0 bits). For example, when the 128×120-dot screen is normally displayed with a $1 / 120$ duty ratio, the HD66750S can selectively drive only the center of the screen or the top of the screen by combining these register functions and the centering display function (CN bit). This is called partial-display-on. Lowering the liquid crystal display drive duty ratio reduces the liquid crystal display drive voltage, thus reducing internal current consumption. This is suitable for a 16 raster-row display ($1 / 16$ duty ratio) of a calendar or time in the system-standby state, or the display of only graphics icons (pictograms) at the top of the screen, which enables continuous display with minimal current consumption. The non-displayed lines are constantly driven by the unselected level voltage, thus turning off the LCD for these lines.

In general, lowering the liquid crystal display drive duty ratio decreases the optimum liquid crystal display drive voltage and liquid crystal display drive bias value. This reduces output multiplying factors in the booster and greatly controls current consumption.

When the boosting factor is changed according to partial display, the display should be in the off state during the period before the boost output voltage stabilizes.

Table 28 Partial-display-on Function (1/120-duty Normal Drive)

Item	Normal Display	Partial-on Display (Limited to Four-line Display)	
LCD screen	128×120 dots	128×16 dots only on the center of the screen	128×16 dots only at the top of the screen
LCD drive position shift	Not necessary $(\mathrm{CN}=0)$	Necessary $(\mathrm{CN}=1)$	Not necessary $(\mathrm{CN}=0)$
LCD drive duty ratio	1/120 (NL3 to 0 = 1110)	1/16 (NL3 to 0 = 0001)	1/16 (NL3 to 0 = 0001)
LCD drive bias value (optimum)	1/11 (BS2 to $0=000)$	$1 / 5(\mathrm{BS} 2$ to $0=110)$	$1 / 5($ BS2 to $0=110)$
LCD drive voltage*	13.5 V to 15.5 V (precisely adjustable using CT5 to 0)	4 V to 5 V (precisely adjustable using CT5 to 0)	4 V to 5 V (precisely adjustable using CT5 to 0)
Boosting output multiplying factor	Six times (BT1 to $0=$ 10)	Two times (BT1 to $0=$ 00)	Two times (BT1 to $0=$ 00)
Frame frequency (fosc $=70 \mathrm{kHz}$)	68 Hz	68 Hz	68 Hz
Note: The LCD drive voltage depends on the LCD materials used. Since the LCD drive voltage is high when the LCD drive duty ratio is high, a low duty ratio enables low-power consumption.			

HD66750S
i) $1 / 16$ duty drive at the top of the screen

Figure $56 \quad$ Partial-on display (Date and Time indicated) (1)
ii) $1 / 16$ duty drive at the center of the screen (Centering display)

Figure $57 \quad$ Partial-on display (Date and Time indicated) (2)

HD66750S

Sleep Mode

Setting the sleep mode bit (SLP) to 1 puts the HD66750S in the sleep mode, where the device stops all internal display operations, thus reducing current consumption. Specifically, LCD operation is completely halted. Here, all the SEG (SEG1 to SEG128) and COM (COM1 to COM128) pins output the GND level, resulting in no display. If the AP1-0 bits in the power control register are set to 00 in the sleep mode, the LCD drive power supply can be turned off, reducing the total current consumption of the LCD module.

Table 29 Comparison of Sleep Mode and Standby Mode

Function	Sleep Mode (SLP = 1)	Standby Mode (STB = 1)
LCD control	Turned off	Turned off
R-C oscillation circuit	Operates normally	Operation stopped

Standby Mode

Setting the standby mode bit (STB) to 1 puts the HD66750S in the standby mode, where the device stops completely, halting all internal operations including the R-C oscillation circuit, thus further reducing current consumption compared to that in the sleep mode. Specifically, all the SEG (SEG1 to SEG128) and COM (COM1 to COM128) pins for the multiplexing drive output the GND level, resulting in no display. If the AP1-0 bits are set to 00 in the standby mode, the LCD drive power supply can be turned off.

During the standby mode, no instructions can be accepted other than the start-oscillation instruction. To cancel the standby mode, issue the start-oscillation instruction to stabilize R-C oscillation before setting the STB bit to 0 .

Figure 58 Procedure for Setting and Canceling Standby Mode

HD66750S

Absolute Maximum Ratings				
Item	Symbol	Unit	Value	Notes* *
Power supply voltage (1)	V_{CC}	V	-0.3 to +4.6	1,2
Power supply voltage (2)	$\mathrm{V}_{\mathrm{LCD}}-\mathrm{GND}$	V	-0.3 to +16.5	1,3
Input voltage	Vt	V	-0.3 to $\mathrm{V}_{\mathrm{CC}}+0.3$	1
Operating temperature	Topr	${ }^{\circ} \mathrm{C}$	-40 to +85	1,4

Notes: 1. If the LSI is used above these absolute maximum ratings, it may become permanently damaged. Using the LSI within the following electrical characteristics limits is strongly recommended for normal operation. If these electrical characteristic conditions are also exceeded, the LSI will malfunction and cause poor reliability.
2. $V C C>G N D$ must be maintained.
3. VLCD $>$ GND must be maintained.
4. For die and wafer products, specified up to $85^{\circ} \mathrm{C}$.

HD66750S

DC Characteristics ($\mathrm{V}_{\mathrm{CC}}=\mathbf{1 . 8}$ to $\mathbf{3 . 6} \mathrm{V}$, $\mathbf{T a}=\mathbf{- 4 0}$ to $+\mathbf{8 5}{ }^{\circ} \mathrm{C}^{* 1}$)
$\left.\begin{array}{llllllll}\text { Item } & \text { Symbol } & \text { Min } & \text { Typ } & \text { Max } & \text { Unit Test Condition } & \text { Notes } \\ \hline \text { Input high voltage } & \mathrm{V}_{\mathrm{HH}} & 0.7 \mathrm{~V}_{\mathrm{CC}} & - & \mathrm{V}_{\mathrm{CC}} & \mathrm{V} & & 2,3 \\ \hline \text { Input low voltage } & \mathrm{V}_{\mathrm{IL}} & -0.3 & - & 0.15 \mathrm{~V}_{\mathrm{CC}} & \mathrm{V} & \mathrm{V}_{\mathrm{CC}}=1.8 \text { to } 2.4 \mathrm{~V} & 2,3 \\ \hline & & -0.3 & - & 0.15 \mathrm{~V}_{\mathrm{CC}} & \mathrm{V} & \mathrm{V}_{\mathrm{CC}}=2.4 \text { to } 3.6 \mathrm{~V} & 2,3 \\ \hline \begin{array}{l}\text { Output high voltage (1) } \\ \text { (DB0-15 pins) }\end{array} & \mathrm{V}_{\mathrm{OH} 1} & 0.75 \mathrm{~V}_{\mathrm{CC}} & - & - & \mathrm{V} & \mathrm{I}_{\mathrm{OH}}=-0.1 \mathrm{~mA} & 2 \\ \hline \begin{array}{l}\text { Output low voltage (1) } \\ \text { (DB0-15 pins) }\end{array} & \mathrm{V}_{\mathrm{OL1}} & - & - & 0.2 \mathrm{~V}_{\mathrm{CC}} & \mathrm{V} & \mathrm{V}_{\mathrm{CC}}=1.8 \text { to } 2.4 \mathrm{~V}, & 2 \\ \mathrm{I}_{\mathrm{L}}=0.1 \mathrm{~mA}\end{array}\right]$

HD66750S

Booster Characteristics

Item	Symbol	Min	Typ	Max	Unit	Test Condition	Notes
Two-times-boost output voltage (VLOUT pin)	$\mathrm{V}_{\text {UP2 }}$	3.9	4.2	4.4	V	$\begin{aligned} & \mathrm{V}_{\mathrm{cC}}=\mathrm{Vci}=2.2 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{O}}=30 \mu \mathrm{~A}, \mathrm{C}=1 \mu \mathrm{~F}, \\ & \mathrm{f}_{\mathrm{osc}}=70 \mathrm{kHz}, \mathrm{Ta}=25^{\circ} \mathrm{C} \end{aligned}$	11
Five-times-boost output voltage (VLOUT pin)	$\mathrm{V}_{\text {UP5 }}$	10.5	10.8	11.0	V	$\begin{aligned} & \mathrm{V}_{\mathrm{cC}}=\mathrm{Vci}=2.2 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{O}}=30 \mu \mathrm{~A}, \mathrm{C}=1 \mu \mathrm{~F}, \\ & \mathrm{f}_{\mathrm{osc}}=70 \mathrm{kHz}, \mathrm{Ta}=25^{\circ} \mathrm{C} \end{aligned}$	11
Six-times-boost output voltage (VLOUT pin)	$\mathrm{V}_{\text {UP6 }}$	12.7	12.9	13.2	V	$\begin{aligned} & \mathrm{V}_{\mathrm{cC}}=\mathrm{Vci}=2.2 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{O}}=30 \mu \mathrm{~A}, \mathrm{C}=1 \mu \mathrm{~F}, \\ & \mathrm{f}_{\mathrm{osc}}=70 \mathrm{kHz}, \mathrm{Ta}=25^{\circ} \mathrm{C} \end{aligned}$	11
Seven-timesboost output voltage (VLOUT pin)	$\mathrm{V}_{\text {UP7 }}$	14.9	15.1	15.4	V	$\begin{aligned} & \mathrm{V}_{\mathrm{cC}}=\mathrm{Vci}=2.2 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{O}}=30 \mu \mathrm{~A}, \mathrm{C}=1 \mu \mathrm{~F}, \\ & \mathrm{f}_{\mathrm{osc}}=70 \mathrm{kHz}, \mathrm{Ta}=25^{\circ} \mathrm{C} \end{aligned}$	11
Use range of boost output voltages	$\begin{aligned} & \mathrm{V}_{\text {UP2 }} \\ & \mathrm{V}_{\text {UP5 }} \\ & \mathrm{V}_{\text {UP6 }} \\ & \mathrm{V}_{\text {UP7 }} \end{aligned}$	Vcc	-	15.5	V	For two- to seven-times boost	11

Note: For the numbered notes, refer to the Electrical Characteristics Notes section following these tables.

HD66750S

AC Characteristics ($\mathrm{V}_{\mathrm{CC}}=\mathbf{1 . 8}$ to $\mathbf{3 . 6} \mathrm{V}$, $\mathbf{T a}=\mathbf{- 4 0}$ to $+\mathbf{8 5}{ }^{\circ} \mathrm{C}^{* 1}$)

Clock Characteristics ($\mathrm{V}_{\mathrm{CC}}=1.8$ to 3.6 V)

Item	Symbol	Min	Typ	Max	Unit	Test Condition	Notes
External clock frequency	fcp	50	75	150	kHz		9
External clock duty ratio	Duty	45	50	55	$\%$	9	
External clock rise time	trcp	-	-	0.2	$\mu \mathrm{~s}$	9	
External clock fall time	tfcp	-	-	0.2	$\mu \mathrm{~s}$		9
R-C oscillation clock	$\mathrm{f}_{\text {osc }}$	59	74	89	kHz	$\mathrm{Rf}=330 \mathrm{k} \Omega$, $\mathrm{V}_{\mathrm{cc}}=3 \mathrm{~V}$	10

Note: For the numbered notes, refer to the Electrical Characteristics Notes section following these tables.

68-system Bus Interface Timing Characteristics

$(\mathbf{V c c}=1.8$ to 2.4 V$)$

Item		Symbol	Min	Typ	Max	Unit	Test Condition
Enable cycle time	Write	$\mathrm{t}_{\text {CYCE }}$	600	-	-	ns	Figure 65
	Read	$\mathrm{t}_{\text {CYCE }}$	800	-	-		
Enable high-level pulse width	Write	$\mathrm{PW}_{\text {EH }}$	120	-	-	ns	Figure 65
	Read	$\mathrm{PW}_{\text {EH }}$	350	-	-		
Enable low-level pulse width	Write	PW ${ }_{\text {EL }}$	300	-	-	ns	Figure 65
	Read	$\mathrm{PW}_{\mathrm{EL}}$	400	-	-		
Enable rise/fall time		$\mathrm{t}_{\mathrm{Er}}, \mathrm{t}_{\mathrm{Ef}}$	-	-	25	ns	Figure 65
Setup time (RS, R/W to E, CS*)		$t_{\text {ASE }}$	50	-	-	ns	Figure 65
Address hold time		$t_{\text {AHE }}$	20	-	-	ns	Figure 65
Write data setup time		$\mathrm{t}_{\text {DSWE }}$	60	-	-	ns	Figure 65
Write data hold time		$\mathrm{t}_{\text {HE }}$	20	-	-	ns	Figure 65
Read data delay time		$\mathrm{t}_{\text {DDRE }}$	-	-	300	ns	Figure 65
Read data hold time		$\mathrm{t}_{\text {DHRE }}$	5	-	-	ns	Figure 65

$(\mathrm{Vcc}=2.4$ to 3.6 V$)$

Item		Symbol	Min	Typ	Max	Unit	Test Condition
Enable cycle time	Write	$\mathrm{t}_{\text {CYCE }}$	380	-	-	ns	Figure 65
	Read	$\mathrm{t}_{\text {CYCE }}$	500	-	-		
Enable high-level pulse width	Write	$\mathrm{PW}_{\text {EH }}$	70	-	-	ns	Figure 65
	Read	$\mathrm{PW}_{\text {EH }}$	250	-	-		
Enable low-level pulse width	Write	$\mathrm{PW}_{\text {EL }}$	150	-	-	ns	Figure 65
	Read	$\mathrm{PW}_{\mathrm{EL}}$	200	-	-		
Enable rise/fall time		$\mathrm{t}_{\mathrm{Er}}, \mathrm{t}_{\mathrm{Ef}}$	-	-	25	ns	Figure 65
Setup time (RS, R/W to E, CS*)		$t_{\text {ASE }}$	50	-	-	ns	Figure 65
Address hold time		$t_{\text {AHE }}$	20	-	-	ns	Figure 65
Write data setup time		$\mathrm{t}_{\text {DSWE }}$	60	-	-	ns	Figure 65
Write data hold time		$\mathrm{t}_{\text {HE }}$	20	-	-	ns	Figure 65
Read data delay time		$\mathrm{t}_{\text {DDRE }}$	-	-	200	ns	Figure 65
Read data hold time		$\mathrm{t}_{\text {DHRE }}$	5	-	-	ns	Figure 65

HD66750S

80-system Bus Interface Timing Characteristics

$($ Vcc = 1.8 to 2.4 V)

Item		Symbol	Min	Typ	Max	Unit	Test Condition
Bus cycle time	Write	$\mathrm{t}_{\text {cycw }}$	600	-	-	ns	Figure 66
	Read	$\mathrm{t}_{\text {CYCR }}$	800	-	-	ns	Figure 66
Write low-level pulse width		$\mathrm{PW}_{\text {Lw }}$	120	-	-	ns	Figure 66
Read low-level pulse width		$\mathrm{PW}_{\text {LR }}$	350	-	-	ns	Figure 66
Write high-level pulse width		$\mathrm{PW}_{\text {Hw }}$	300	-	-	ns	Figure 66
Read high-level pulse width		$\mathrm{PW}_{\text {HR }}$	400	-	-	ns	Figure 66
Write/Read rise/fall time		$\mathrm{t}_{\text {WRr }}$, wRt	-	-	25	ns	Figure 66
Setup time (RS to CS*, WR*, RD*)		$\mathrm{t}_{\text {AS }}$	50	-	-	ns	Figure 66
Address hold time		$\mathrm{t}_{\text {AH }}$	20	-	-	ns	Figure 66
Write data setup time		$\mathrm{t}_{\text {DSw }}$	60	-	-	ns	Figure 66
Write data hold time		t_{H}	20	-	-	ns	Figure 66
Read data delay time		$\mathrm{t}_{\text {DDR }}$	-	-	300	ns	Figure 66
Read data hold time		$\mathrm{t}_{\text {DHR }}$	5	-	-	ns	Figure 66

$(\mathbf{V c c}=2.4$ to 3.6 V$)$

Item	Symbol Min	Typ	Max	Unit	Test Condition	
Bus cycle time	Write $\mathrm{t}_{\mathrm{CYCW}}$	380	-	-	ns	Figure 66
	Read $\mathrm{t}_{\mathrm{CYCR}}$	500	-	-	ns	Figure 66
Write low-level pulse width	$\mathrm{PW}_{\mathrm{Lw}}$	70	-	-	ns	Figure 66
Read low-level pulse width	$\mathrm{PW}_{\mathrm{LR}}$	250	-	-	ns	Figure 66
Write high-level pulse width	$\mathrm{PW}_{\mathrm{HW}}$	150	-	-	ns	Figure 66
Read high-level pulse width	$\mathrm{PW}_{\mathrm{HR}}$	200	-	-	ns	Figure 66
Write/Read rise/fall time	$\mathrm{t}_{\mathrm{WRr}, \mathrm{WR}}$	-	-	25	ns	Figure 66
Setup time (RS to $\left.\mathrm{CS}^{*}, \mathrm{WR}^{*}, \mathrm{RD}^{*}\right)$	t_{AS}	50	-	-	ns	Figure 66
Address hold time	t_{AH}	20	-	-	ns	Figure 66
Write data setup time	$\mathrm{t}_{\mathrm{DSW}}$	60	-	-	ns	Figure 66
Write data hold time	t_{H}	20	-	-	ns	Figure 66
Read data delay time	$\mathrm{t}_{\mathrm{DDR}}$	-	-	200	ns	Figure 66
Read data hold time	$\mathrm{t}_{\mathrm{DHR}}$	5	-	-	ns	Figure 66

Reset Timing Characteristics ($\mathrm{V}_{\mathrm{CC}}=\mathbf{1 . 8}$ to $\mathbf{3 . 6} \mathrm{V}$)

Item	Symbol	Min	Typ	Max	Unit	Test Condition
Reset low-level width	$\mathrm{t}_{\text {RES }}$	1	-	-	ms	Figure 69

Clock Synchronized Serial Interface Timing Characteristics
$($ Vcc $=1.8$ to 2.4 V)

Item		Symbol	Min	Typ	Max	Unit	Test Condition
Serial clock cycle time	At write (receive)	$\mathrm{t}_{\text {scyc }}$	0.5	-	20	us	Figure 67, 68
	At read (send)	$\mathrm{t}_{\text {scyc }}$	1	-	20	us	Figure 67, 68
Serial clock high-level pulse width	At write (receive)	$\mathrm{t}_{\text {SCH }}$	230	-	-	ns	Figure 67, 68
	At read (send)	$\mathrm{t}_{\text {SCH }}$	480	-	-	ns	Figure 67, 68
Serial clock low-level pulse width	At write (receive)	t_{cw}	230	-	-	ns	Figure 67, 68
	At read (send)	$\mathrm{t}_{\text {cwL }}$	480	-	-	ns	Figure 67, 68
Serial clock rise/fall time		$\mathrm{t}_{\mathrm{scr}}, \mathrm{t}_{\text {sct }}$	-	-	20	ns	Figure 67, 68
CS* Setup time		$\mathrm{t}_{\text {csu }}$	60	-	-	ns	Figure 67, 68
CS* hold time		t_{CH}	200	-	-	ns	Figure 67, 68
Serial input data setup time		$\mathrm{t}_{\text {SISU }}$	100	-	-	ns	Figure 67
Serial input data hold time		$\mathrm{t}_{\text {SIH }}$	100	-	-	ns	Figure 67
Serial output data delay time		$\mathrm{t}_{\text {Sod }}$	-	-	400	ns	Figure 68
Serial output data hold time		$\mathrm{t}_{\text {SOH }}$	5	-	-	ns	Figure 68

HD66750S

$(\mathrm{Vcc}=2.4$ to 3.6 V)							
Item		Symbol	Min	Typ	Max	Unit	Test Condition
Serial clock cycle time	At write (receive)	$\mathrm{t}_{\text {scyc }}$	0.2	-	20	us	Figure 67, 68
	At read (send)	$\mathrm{t}_{\text {scyc }}$	0.5	-	20	us	Figure 67, 68
Serial clock high-level pulse width	At write (receive)	$\mathrm{t}_{\text {SCH }}$	80	-	-	ns	Figure 67, 68
	At read (send)	$\mathrm{t}_{\text {SCH }}$	230	-	-	ns	Figure 67, 68
Serial clock low-level pulse width	At write (receive)	$\mathrm{t}_{\text {swL }}$	80	-	-	ns	Figure 67, 68
	At read (send)	$\mathrm{t}_{\text {swL }}$	230	-	-	ns	Figure 67, 68
Serial clock rise/fall time		$\mathrm{t}_{\mathrm{scr}}, \mathrm{t}_{\text {sct }}$	-	-	20	ns	Figure 67, 68
CS* Setup time		$\mathrm{t}_{\mathrm{csu}}$	60	-	-	ns	Figure 67, 68
CS* hold time		t_{CH}	200	-	-	ns	Figure 67, 68
Serial input data setup time		$\mathrm{t}_{\text {SISU }}$	40	-	-	ns	Figure 67
Serial input data hold time		$\mathrm{t}_{\text {SIH }}$	40	-	-	ns	Figure 67
Serial output data delay time		$\mathrm{t}_{\text {sod }}$	-	-	200	ns	Figure 68
Serial output data hold time		$\mathrm{t}_{\text {SOH }}$	5	-	-	ns	Figure 68

Electrical Characteristics Notes

1. For bare die and wafer products, specified up to $85^{\circ} \mathrm{C}$.
2. The following three circuits are I/O pin configurations (figure 59).

Figure 59 I/O Pin Configuration

HD66750S

3. The TEST pin must be grounded and the IM1/0 and OPOFF pins must be grounded or connected to Vcc.
4. Applies to the resistor value (RCOM) between power supply pins V1OUT, V2OUT, V5OUT, GND and common signal pins, and resistor value (RSEG) between power supply pins V1OUT, V3OUT, V4OUT, GND and segment signal pins.
5. This excludes the current flowing through output drive MOSs.
6. This excludes the current flowing through the input/output units. The input level must be fixed high or low because through current increases if the CMOS input is left floating.
7. The following shows the relationship between the operation frequency (fosc) and current consumption (Icc) (figure 60).

Figure 60 Relationship between the Operation Frequency and Current Consumption
8. Each COM and SEG output voltage is within $\pm 0.15 \mathrm{~V}$ of the LCD voltage (Vcc, V1, V2, V3, V4, V5) when there is no load.
9. Applies to the external clock input (figure 61).

Figure 61 External Clock Supply
10. Applies to the internal oscillator operations using external oscillation resistor Rf (figure 62 and table 30).

Figure 62 Internal Oscillation
Table 30 External Resistance Value and R-C Oscillation Frequency (Referential Data)

External	R-C Oscillation Frequency: fosc			
	Vcc = 1.8 V	Vcc = 2.2 V	Vcc = 3.0 V	Vcc = 3.6 V
$200 \mathrm{k} \Omega$	89 kHz	103 kHz	115 kHz	121 kHz
$270 \mathrm{k} \Omega$	70 kHz	80 kHz	88 kHz	92 kHz
$300 \mathrm{k} \Omega$	65 kHz	73 kHz	80 kHz	83 kHz
$330 \mathrm{k} \Omega$	60 kHz	68 kHz	74 kHz	77 kHz
$360 \mathrm{k} \Omega$	55 kHz	62 kHz	68 kHz	71 kHz
$390 \mathrm{k} \Omega$	52 kHz	58 kHz	64 kHz	66 kHz
$430 \mathrm{k} \Omega$	48 kHz	53 kHz	58 kHz	60 kHz
$470 \mathrm{k} \Omega$	44 kHz	48 kHz	52 kHz	54 kHz

11. Booster characteristics test circuits are shown in figure 63.

Figure 63 Booster

HD66750S

Referential data
VUP6 = VLCD-GND, VUP7 = VLCD-GND
(i) Relation between the obtained voltage and input voltage

$\mathrm{Vci}=\mathrm{Vcc}, \mathrm{fosc}=70 \mathrm{kHz}, \mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{DC} 1$ to $0=00$

$\mathrm{Vci}=\mathrm{Vcc}$, fosc $=70 \mathrm{kHz}, \mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{DC} 1$ to $0=00$
(ii) Relation between the obtained voltage and temperature

$\mathrm{Vci}=\mathrm{Vcc}=2.2 \mathrm{~V}$, fosc $=70 \mathrm{kHz}$, $\mathrm{Io}=30 \mu \mathrm{~A}$, DC1 to $0=00$

$\mathrm{Vci}=\mathrm{Vcc}=2.2 \mathrm{~V}$, fosc $=70 \mathrm{kHz}, \mathrm{lo}=30 \mu \mathrm{~A}$, DC1 to $0=00$
(iii) Relation between the obtained voltage and capacity

$\mathrm{Vci}=\mathrm{Vcc}=2.2 \mathrm{~V}$, fosc $=70 \mathrm{kHz}, \mathrm{lo}=30 \mu \mathrm{~A}$, DC1 to $0=00$

$\mathrm{Vci}=\mathrm{Vcc}=2.2 \mathrm{~V}$, fosc $=70 \mathrm{kHz}$, $\mathrm{lo}=30 \mu \mathrm{~A}$, DC1 to $0=00$

Figure 63 Booster (cont)
(iv) Relation between the obtained voltage and current

$\mathrm{Vci}=\mathrm{Vcc}=2.2 \mathrm{~V}$, fosc $=70 \mathrm{kHz}, \mathrm{Ta}=25^{\circ} \mathrm{C}$, DC1 to $0=00$

$\mathrm{Vci}=\mathrm{Vcc}=2.2 \mathrm{~V}$, fosc $=70 \mathrm{kHz}, \mathrm{Ta}=25^{\circ} \mathrm{C}$, DC1 to $0=00$

Figure 63 Booster (cont)

Load Circuits

AC Characteristics Test Load Circuits

Data bus: DB15 to DB0

Test Point

Figure 64 Load Circuit

HD66750S

Timing Characteristics

68-system Bus Operation

Figure 65 68-system Bus Timing

80-system Bus Operation

Figure 66 80-system Bus Timing

Clock Synchronized Serial Interface Operation

Figure 67 Clock Synchronized Serial Interface Input Timing

Figure 68 Clock Synchronized Serial Interface Output Timing

Reset Operation

Figure 69 Reset Timing

HD66750S

Power-on/off Sequence

To prevent pulse lighting of LCD screens at power-on/off, the power-on/off sequence is activated as shown below. However, since the sequence depends on LCD materials to be used, confirm the conditions by using your own system.

Power-on Sequence

Figure 70 Power-on Sequence

HD66750S

Figure 71 Power-on Timing

HD66750S

Power-off Sequence

Figure 72 Power-off Sequence

Note: When hardware reset is input during the power-off period, the D bit is cleared to 0 and SEG/COM output is forcibly lowered to the GND level.

Figure 73 Power-off Timing

HD66750S

Modification history

Revision 0.1 (November. 2000)

- First release

When using this document, keep the following in mind:

1. This document may, wholly or partially, be subject to change without notice.
2. All right reserved: No one is permitted to reproduce or duplicated, in any form, the whole or part of this document without Hitachi's permission.
3. Hitachi will not be held responsible for any damage to the user that may result from accidents or any other reasons during operation of the user's unit according to this document.
4. Circuitry and other examples described herein are meant merely to indicate the characteristics and performance of Hitachi's semiconductor products. Hitachi assumes no responsibility for any intellectual property claims or other problems that may result from applications based on the examples described herein.
5. No license is granted by implication or otherwise under any patents or other rights of any third party of Hitachi, Ltd.
6. MEDICAL APPLICATIONS: Hitachi's products are not authorized for use in MEDICAL APPLICATIONS without the written consent of the appropriate officer of Hitachi's sales company. Such use includes, but is not limited to use in life support systems. Buyers of Hitachi's products are requested to notify the relevant Hitachi sales offices when planning to use the products in MEDICAL APPLICATIONS.
