Crystalfontz This controller datasheet was downloaded from http://www.crystalfontz.com/controllers/

NOVATEK 聯 詠 科 技

NT75451

132 X 65 RAM-Map STN LCD

Data Sheet

Controller/Driver

V0.02

Revision History
Features 4
General Description
Pad Configuration
Block Diagram 6
Pad Descriptions7
Functional Descriptions 12
Commands
Command Description
Absolute Maximum Rating
Electrical Characteristics
Microprocessor Interface (for reference only)
Bonding Diagram
Package Information
Ordering Information 70
NONNODISE

Revision History

NT75451 Specification Revision History								
Version	Content	Date						
0.00	Origin	Mar 2007						
0.01	 Add OTP Programming Notice Add pad location and alignment mark location Add pad dimensions 	Jun 2007						
0.02	 ♦ P.69~Correct pad pitch 91~92, 223~224 from 26 to 55 um ♦ P50~Change VIHC SPEC min from 0.7xVDD to 0.8xVDD ♦ P50~Change VILC SPEC max from 0.3xVDD to 0.2xVDD 	Jul 2007						
MON	ATEK CONFIDENCE ATEK CLOSURE NO							

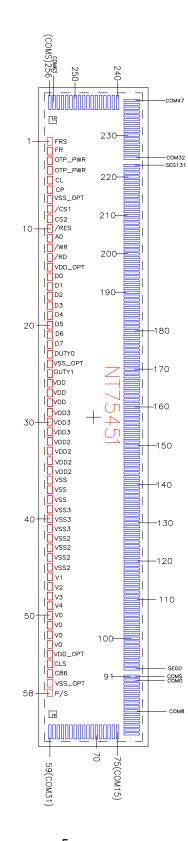
Features

- 132 x 65-dot graphics display LCD controller/driver for black/white STN LCD
- RAM capacity: 132 x 65 = 8,580 bits
- 8-bit parallel bus interface for both 8080 and 6800 series, 4-wire Serial Peripheral Interface (SPI)
- Direct RAM data display using the display data RAM. When RAM data bit is 0, it is not displayed. When RAM data bit is 1, it is displayed. (At normal display)
- Many command functions:

Read/Write display data, display ON/OFF, Normal/Reverse display, page address set, display start line set, LCD bias set, electronic contrast controls, V0 voltage regulation internal resistor ratio set, read modify write, segment driver direction select, power save.

- Other command functions: Partial display, partial start line set, N-Line inversion.
- Power supply voltage:
 - VDD = 1.8 ~ 3.6 V (Digital, Interface Power Input Range)
 - VDD2 = 2.6 ~ 3.6 V (Pump Power Input Range)
 - VDD3 = 2.4 ~ 3.6 V (Analog Power Input Range)
 - VLCD(V0-VSS2) = 4.0 ~ 14.2 V
- 3X / 4X / 5X on chip DC-DC converter
- On chip LCD driving voltage generator or external power supply selectable
- 64-step contrast adjuster and on chip voltage follower
- On chip oscillation and hardware reset
- OTP programming

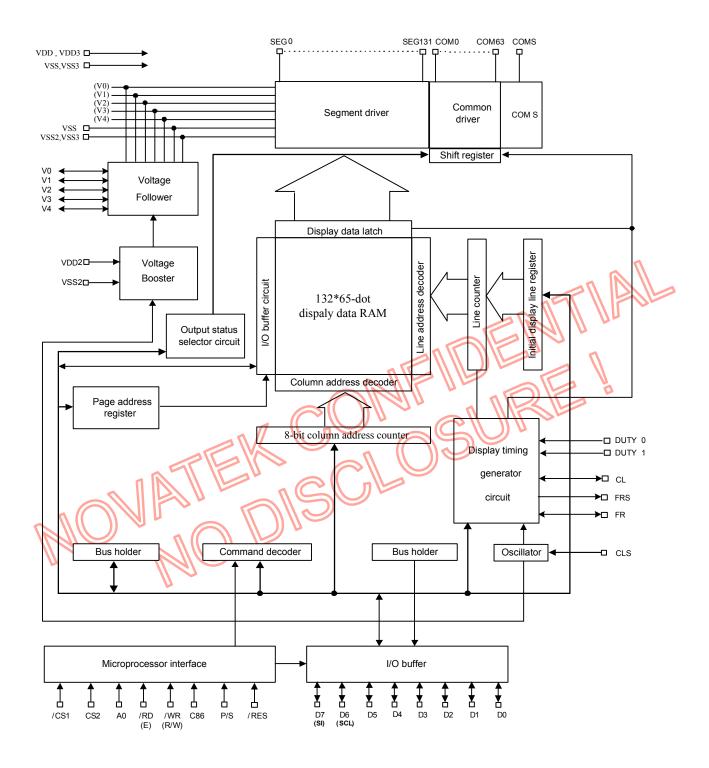
General Description


The NT75451 is a single-chip LCD driver for dot-matrix liquid crystal displays, which is directly connectable to a microcomputer bus. It accepts 8-bit parallel or serial display data directly sent from a microcomputer and stores it in an on-chip display RAM. It generates an LCD drive signal independent of the microprocessor clock.

The set of the on-chip display RAM of 65 x 132 bits and a one-to-one correspondence between LCD panel pixel dots and on-chip RAM bits permits implementation of displays with a high degree of freedom. The NT75451 contain 65 common output circuits and 132 segment output circuits, so that a single chip of NT75451 can make maximum 65 x 132 or 49 x 132 or 33 x 132 dots display with the pad option (DUTY1, DUTY0).

No external operation clock is required for RAM read/write operations. Accordingly, this driver can be operated with a minimum current consumption and its on-board low-current-consumption liquid crystal power supply can implement a high-performance handy display system with minimum current consumption and the smallest LSI configuration.

Pad Configuration



2007/07/18 5 Ver 0.02 With respect to the information represented in this document, Novatek makes no warranty, expressed or implied, including the warranties of merchantability, fitness for a particular purpose, non-infringement, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any such information.

NT75451

Block Diagram

2007/07/18 6 Ver 0.02 With respect to the information represented in this document, Novatek makes no warranty, expressed or implied, including the warranties of merchantability, fitness for a particular purpose, non-infringement, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any such information.

Pad Descriptions

Power Supply

Pad No.	Designati on	I/O	Description			
26~28	VDD	Supply	Power supply input. These pads must be connected to each other.			
32~35	VDD2	Supply	These are the power supply pads for the step-up voltage circuit for the LCD. These pads must be connected to each other.			
29~31	VDD3	Supply	Power supply input. These pads must be connected to each other.			
14,54	VDD_OPT	0	Power supply output for pad option			
36~38	VSS	Supply	Ground. These pads must be connected to each other.			
42~45	VSS2	Supply	Ground. These pads must be connected to each other.			
39~41	VSS3	Supply	Ground. These pads must be connected to each other.			
7,24,57	VSS_OPT	0	Ground output for pad option.			
3~4	OTP_PWR	Supply	Power supply input for OTP cells. One Time Programming			
			pin This pad must be no connect when unused.			
6	CP		H/W Select pump times 4x or 5x. (L=4x & H=5x). After H/W reset, the booster stage will be the setting value.			
M			Teser, me booster stage will be the setting value.			

LCD Power Supply

Pad No.	Designation	I/O	Description						
50~53	VLCD (V0)	LCD driver supplies voltages. The voltage determined by LCD cell is impedance-converted by a resistive driver or a operation amplifier for application. Voltages should be							
46	V1	according to the following relationship: $V0 \ge V1 \ge V2 \ge V3 \ge V4 \ge VSS2$ When the on-chip operating power circuit is on, the voltages are supplied to V1 to V4 by the on-chip pow Voltage selection is performed by the LCD Bias Set						power circuit.	
47	V2	I/O	LCD bias	V1	V2	V3	V4		
.,	V 2	1/0	1/4 bias	3/4V0	2/4V0	2/4V0	1/4V0		
			1/5 bias	4/5V0	3/5V0	2/5V0	1/5V0		
48	V3		1/6 bias	5/6V0	4/6V0	2/6V0	1/6V0		
			1/7 bias	6/7V0	5/7V0	2/7V0	1/7V0		
49	V4		1/8 bias	7/8V0	6/8V0	2/8V0	1/8V0		
49	V4		1/9 bias	8/9V0	7/9V0	2/9V0	1/9V0		
Configuration Pad									

Configuration Pad

Pad No. Designation I/O			Description	
	Select the m	naximum LC	D driver duty	
	DUTY1	DUTY0	LCD driver duty	
23 DUTYO	0	0	1/33	
25 DUTY1 (('))	0	1	1/49	
	1	*	1/65	

System Bus Connection

Pad No.	Designation	I/O	Description
15 16 17 18 19 20 21 22	D0 D1 D2 D3 D4 D5 D6 (SCL) D7 (SI)	I/O	This is an 8-bit bi-directional data bus that connects to an 8-bit or 16-bit standard MPU data bus. When the serial interface is selected (P/S="L"), then D7 serves as the serial data input terminal (SI) and D6 serves as the serial clock input terminal (SCL). When the serial interface is selected, fix D0~D5 pads to VDD or VSS level. When the chip select is inactive, D0 to D7 are set to high impedance.
11	A0	I	This is connected to the least significant bit of the normal MPU address bus, and it determines whether the data bits are data or a command. A0 = "H": Indicate that D0 to D7 are display data A0 = "L": Indicates that D0 to D7 are control data
10	/RES	Ι	When /RES is set to "L", the settings are initialized. The reset operation is performed by the /RES signal level
8 9	/CS1 CS2	I	This is the chip select signal. When /CS1="L" and CS2="H", then the chip select becomes active, and data/command I/O is enabled.
13	/RD (E)		When connected to an 8080 MPU, it is active LOW. This pad is connected to the /RD signal of the 8080MPU, and the NT75451 data bus is in an output status when this signal is "L". When connected to a 6800 Series MPU, this is active HIGH. This is used as an enable clock input of the 6800 series MPU
12	(RW)		When connected to an 8080 MPU, this is active LOW. This terminal connects to the 8080 MPU /WR signal. The signals on the data bus are latched at the rising edge of the /WR signal. When connected to a 6800 Series MPU, this is the read/write control signal input terminal. When R/W = "H": Read When R/W = "L": Write
56	C86	I	This is the MPU interface switch terminal C86 = "H": 6800 Series MPU interface C86 = "L": 8080 Series MPU interface

System Bus Connection (continuous)

Pad No.	Designation	I/O			Descriptio	n			
58	P/S	I	 This is the parallel data input/serial data input switch terminal P/S = "H": Parallel data input P/S = "L": Serial data input The following applies depending on the P/S status: 						
			P/S	Data/Command	Data	Read/Write	Serial Clock		
			"H"	A0	D0 to D7	/RD, /WR	-		
			"L"	A0	SI (D7)	Write only	SCL (D6)		
			(E) ai	n P/S = "L", fix D0 nd /WR (R/W) are nput, RAM display	fixed to eit	her "H" or "L	". With serial		
55	CLS	I	Terminal to select whether enable or disable the display clock internal oscillator circuit. CLS = "H": Internal oscillator circuit for display is enabled CLS = "L": Use external oscillator circuit for display (requires external input) When CLS = "L", input the display clock through the CL pad.						
5	CL	I/O	This is the display clock output/input terminal. When CLS = "H" : the clock will be output terminal; and when CLS="L" : the display requires external input clock.						
1	FRS		This is the output terminal for the static drive. This terminal is only enabled when the static indicator display is ON, and is used in conjunction with the FR terminal.						
2	FR	0	This i	s liquid crystal alte	ernating curi	ent signal ou	tput terminal.		
M	N								

Liquid Crystal Drive Pads

Pad No.	Designation	I/O	Description
92~223	SEG0 - 131	0	Segment signal output for LCD display.
59~90 224~255	COM31 – 0 COM32 – 63	0	Common signal output for LCD display. When in master/slave mode, the same signal is output by both master and slave
91,256	COMS	0	These are the COM output terminals for the indicator. Both terminals output the same signal. Do not connect these terminals if they are not used. When in master/slave mode, the same signal is output by both master and slave.

NOVATEK CONFIDENTIAL NOVATEK CONFIDEREI

2007/07/18 11 Ver 0.02 With respect to the information represented in this document, Novatek makes no warranty, expressed or implied, including the warranties of merchantability, fitness for a particular purpose, non-infringement, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any such information.

Functional Descriptions

Microprocessor Interface

Interface Type Selection

The NT75451 can transfer data via 8-bit bi-directional data bus (D7 to D0) or via serial data input (SI). When high or low is selected for the parity of P/S pad either 8-bit parallel data input or serial data input can be selected as shown in Table 1. When serial data input is selected, the RAM data cannot be read out.

P/S	Туре	/CS1	CS2	A0	/RD	/WR	C86	D7	D6	D0 to D5
Н	Parallel Input	/CS1	CS2	A0	/RD	/WR	C86	D7	D6	D0 to D5
L	Serial Input	/CS1	CS2	A0	-	-	-	SI	SCL	-

Table 1

Parallel Interface

When the NT75451 selects parallel input (P/S = high), the 8080 series microprocessor or 6800 series microprocessor can be selected by causing the C86 pad to go high or low as shown in Table 2.

C86	Туре	/CS1	CS2	A0	/RD	/WR	D0 to D7
Н	6800 microprocessor bus	/CS1	CS2	AO	E	R/W	D0 to D7
L	8080 microprocessor bus	/CS1	CS2	AO	/RD	/WR	D0 to D7

Data Bus Signals

The NT75451 identifies the data bus signal according to A0, E, R/W (/RD, /WR) signals.

Common	6800 processor	8080 pr	ocessor	Function
AO	(R/W)	/RD	WR	Function
		0	1	Reads display data
1	0	1	0	Writes display data
0	1	0	1	Reads status
0	0	1	0	Writes control data in internal register. (Command)

"-" Must always be high or low

Table 2

Serial Interface

When the serial interface has been selected (P/S = "L"), then when the chip is in active state (/CS1 = "L" and CS2 = "H"), the serial data input (SI) and the serial clock input (SCL) can be received. The serial data is read from the serial data input pin in the rising edge of the serial clocks D7, D6 through D0, in this order. This data is converted to 8 bits of parallel data in the rising edge of eighth serial clock for processing.

The A0 input is used to determine whether or not the serial data input is display data, and when A0 = "L" then the data is command data. The A0 input is read and used for detection of every 8th rising edge of the serial clock after the chip becomes active. Figure 1 is the serial interface signal chart.

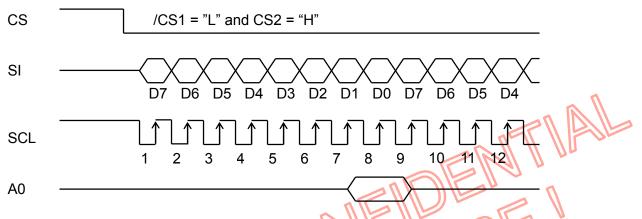


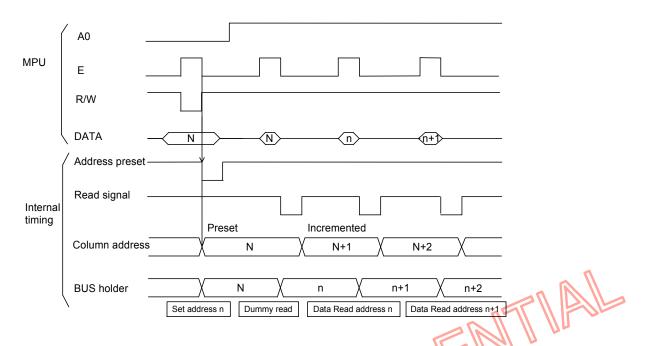
Figure 1

Note:

- 1. When the chip is not active, the shift registers and the counters are reset to their initial states.
- 2. Reading is not possible while in serial interface mode.
- 3. Caution is required on the SCL signal when it comes to line-end reflections and external noise. We recommend that the operation can be rechecked on the actual equipment.

Chip Select Inputs

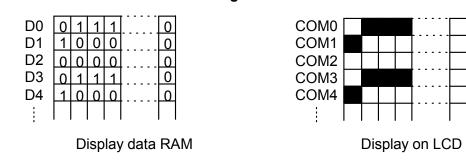
The NT75451 has two chip-select pads. /CS1 and CS2 can interface to a microprocessor when /CS1 is low and CS2 is high. When these pads are set to any other combination. D0 to D7 are high impedance and A0, E and R/W inputs are disabled. When serial input interface is selected, the shift register and counter are reset.


Access to Display Data RAM and Internal Registers

The NT75451 can perform a series of pipeline processing between LSI's using the bus holder of the internal data bus in order to match the operating frequency of display RAM and internal registers with the microprocessor. For example, the microprocessor reads data from display RAM in the first read (dummy) cycle, stores it in the bus holder, and outputs it onto the system bus in the next data read cycle. Also, the microprocessor temporarily stores display data in the bus holder, and stores it in display RAM until the next data write cycle starts.

When viewed from the microprocessor, the NT75451 access speed greatly depends on the cycle time rather than access time to the display RAM (tacc). This view shows that the data transfer speed to / from the microprocessor can increase. If the cycle time is inappropriate, the microprocessor can insert the NOP instruction that is equivalent to the wait cycle setup. However, there is a restriction in the display RAM read sequence. When an address is set, the specified address data is NOT output at the immediately following read instruction. The address data is output during the second data read. A single dummy read must be inserted after address setup and after the write cycle (refer to Figure 2).

Busy Flag


When the busy flag is "1" it indicates that the NT75451 chip is running internal processes, and at this time no command aside from a status read will be received. The busy flag is outputted to D7 pad with the read instruction. If the cycle time (tcrc) is maintained, it is not necessary to check for this flag before each command. This makes vast improvements in MPU processing capabilities possible.

Display Data RAM

The display data RAM is RAM that stores the dot data for the display. It has a 65 (8 page * 8 bit+1)*132 bit structure. It is possible to access the desired bit by specifying the page address and the column address. Because, as is shown in Figure 3, the D7 to D0 display data from the MPU corresponds to the liquid crystal display common direction, there are few constraints at the time of display data transfer when multiple NT75451 chips are used, thus display structures can be created easily with a high degree of freedom.

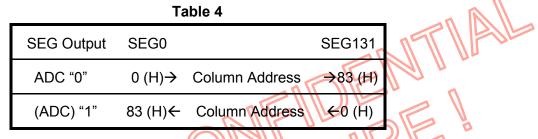
Moreover, reading from and writing to the display RAM from the MPU side is performed through the I/O buffer, which is an independent operation from signal reading for the liquid crystal driver. Consequently, even if the display data RAM is accessed asynchronously during the liquid crystal display, it will not cause adverse effects on the display (such as flickering).

Figure 3

2007/07/18

Ver 0.02

With respect to the information represented in this document, Novatek makes no warranty, expressed or implied, including the warranties of merchantability, fitness for a particular purpose, non-infringement, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any such information.


The Page Address Circuit

As shown in Figure 4, page address of the display data RAM is specified through the Page Address Set Command. The page address must be specified again when changing pages to perform access. Page address8 (D3, D2, D1, D0 = 1, 0, 0, 0,) is the page for the RAM region used; only display data D0 is used.

The Column Address

As shown in Figure 4, the display data RAM column address is specified by the Column Address Set command. The specified column address is incremented (+1) with each display data read / write command. This allows the MPU display data to be accessed continuously. Moreover, the incrimination of column addresses stops with 83H, because the column address is independent of the page address. Thus, when moving, for example, from page 0 column 83H to page 1 column 00H, it is necessary to specify both the page address and the column address.

Furthermore, as is shown in Table 4, the ADC command (segment driver direction select command) can be used to reverse the relationship between the display data RAM column address and the segment output. Because of this, the constraints on the IC layout when the LCD module is assembled can be minimized.

The Line Address Circuit

The line address circuit, as shown in Table 4, specifies the line address relating to the COM output when the contents of the display data RAM are displayed. Using the display start line address set command, what is normally the top line of the display can be specified. This is the COM0 output when the common output mode is normal and the COM63 output for NT75451, when the common output mode is reversed. The display area is a 65-line area for the NT75451 from the display start line address set command, screen scrolling, page swapping, etc. can be performed.

The Display Data Latch Circuit

The display data latch circuit is a latch that temporarily stores the display data that is output to the liquid crystal driver circuit from the display data RAM. Because the display normal/reverse status, display ON/OFF status, and display all points ON/OFF commands control only the data within the latch, they do not change the data within the display data RAM itself.

The Oscillator Circuit

This is a CR-type oscillator that produces the display clock. The internal oscillator circuit is only enabled when CLS = "H". When CLS = "L" the internal oscillation stops, and the input display clock is through the CL terminal.

Line COM Data Page Address Address output D0 D1 D2 00 COM0 01 COM1 02 COM2 D3, D2, D1, D0 D3 D4 03 04 COM3 Page0 0, 0, 0, 0 COM4 D5 05 COM5 D6 D7 06 COM6 07 COM7 D0 08 COM8 D1 09 COM9 D2 0A COM10 D3 0B 0, 0, 0, 1 Page1 COM11 D4 0C COM12 D5 0D COM13 D6 0E COM14 D7 0F COM15 D0 10 COM16 D1 D2 11 12 COM17 COM18 D3 13 14 0, 0, 1, 0 COM19 Page2 D4 D5 COM20 15 COM21 D6 16 COM22 D7 D0 D1 17 COM23 18 19 COM24 COM25 D2 D3 D4 1A COM26 1B 1C COM27 0, 0, 1, 1 Page3 COM28 D5 1D COM29 Start D6 1E COM30 COM31 D7 1F D0 20 COM32 21 22 D1 COM33 D2 COM34 D3 23 COM35 0, 1, 0, 0 Page4 D4 D5 24 COM₃₆ 25 COM37 D6 26 COM38 D7 27 COM39 D0 28 COM40 D1 29 COM41 D2 2A COM42 D3 2B COM43 Page5 0.1.0.1 D4 D5 2C 2D COM44 COM45 D6 2E COM46 D7 D0 D1 2F 30 COM47 COM48 31 COM49 D2 32 COM50 D3 D4 33 COM51 0, 1, 1, 0 Page6 34 COM52 D5 D6 35 COM53 36 COM54 D7 37 COM55 D0 D1 38 COM56 39 COM57 D2 3A COM58 D3 D4 3B COM59 0, 1, 1, 1 Page7 3C COM60 D5 3D COM61 D6 D7 3E COM62 3F COM63 1, 0, 0, 0 D0 Page8 COMS D=0 01 8 02 82 83 83 Column address ADC D0=1 83 82 8 00 02 SEG129 SEG130 SEG131 SEG0 SEG2 SEG1 0 UT

Figure 4. Relationship between display data RAM and address. (if initial display line is 1DH)

2007/07/18 16 Ver 0.02 With respect to the information represented in this document, Novatek makes no warranty, expressed or implied, including the warranties of merchantability, fitness for a particular purpose, non-infringement, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any such information.

Display Timing Generator Circuit

The display timing generator circuit generates the timing signal to the line address circuit and the display data latch circuit using the display clock. The display data is latched into the display data latch circuit synchronized with the display clock, and is output to the data driver output terminal. Reading to the display data liquid crystal driver circuits is completely independent of access to the display data RAM by the MPU. Consequently, even if the display data RAM is accessed asynchronously during liquid crystal display, there is absolutely no adverse effect (such as flickering) on the display.

Moreover, the display timing generator circuit generates the common timing and the liquid crystal alternating current signal (FR) from the display clock. It generates a drive waveform using a 2 frames alternating current drive method, as shown in Figure 5, for the liquid crystal drive circuit.

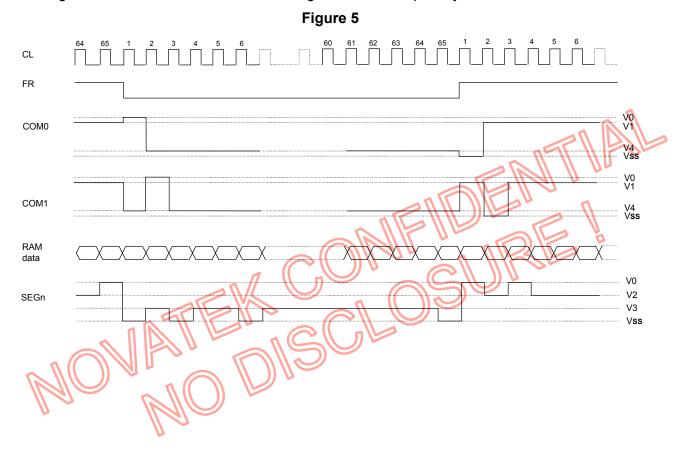


Table 5 shows the relationship between oscillation frequency and frame frequency. fOSC can be selected as 31.4K or 26.3KHz by using Oscilliation Frequency Select command.

Table 5

Duty	Item	fCL	fFR
1/65	On-chip oscillator is used	fOSC/6	fCL/(2 x 65)
1705	On-chip oscillator is not used	External input fCL	fCL/(2 x 65)
1/49	On-chip oscillator is used	fOSC/8	fCL/(2 x 49)
1/49	On-chip oscillator is not used	External input fCL	fCL/(2 x 49)
1/33	On-chip oscillator is used	fOSC/12	fCL/(2 x 33)
1/55	On-chip oscillator is not used	External input fCL	fCL/(2 x 33)
1/17	On-chip oscillator is used	fOSC/22	fCL/(2 x 17)
17 1 7	On-chip oscillator is not used	External input fCL	fCL/(2 x 17)
1/9	On-chip oscillator is used	fOSC/44	fCL/(2 x 9)
179	On-chip oscillator is not used	External input fCL	fCL/(2 x 9)

Common Output Control Circuit

This circuit controls the relationship between the number of common output and specified duty ratio. Common output mode select instruction specifies the scanning direction of the common output pads.

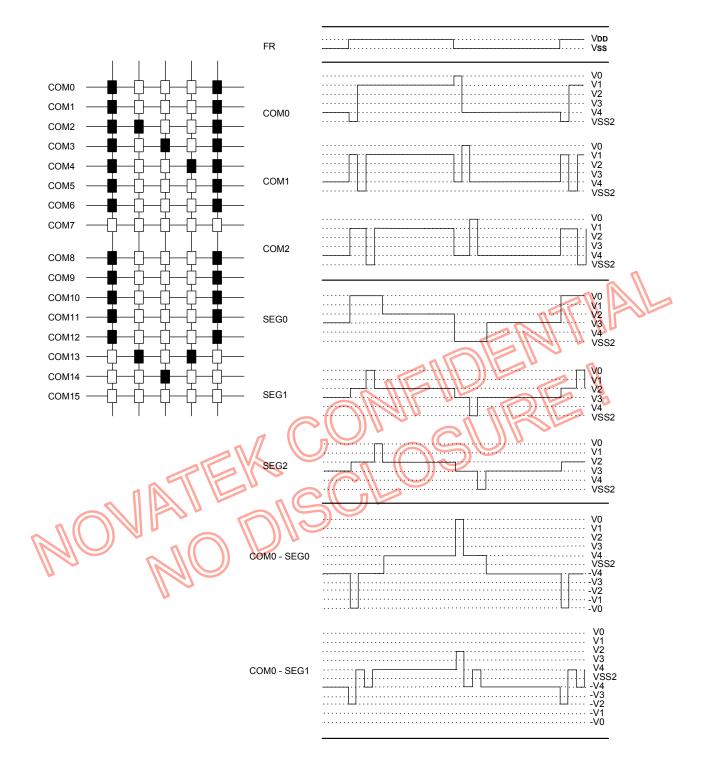
Table 6

	-						
			Common c	output pads		Dr	
Duty	Status	COM COM [0-15] [16-23]	COM COM [24-26] [27-36]	COM [37-39]	COM [40-47]	COM [48-63]	COMS
1/33	Normal	COM[0-15]				COM[16-31]	COMS
1/33	Reverse	COM[31-16]	NC			COM[15-0]	CONS
1/49	Normal	COM[0-23]	NC		CON	/[24-47]	COMS
1/49	Reverse	COM[47-24]	NC		COI	M[23-0]	CONS
1/65	Normal	4	COM[0-63	3]			COMS
1/05	Reverse		COM[63-0)]			CONS

The combination of the display data, the COM scanning signals, and the FR signal produces the liquid crystal drive voltage output. Figure 6 shows example of the SEG and COM output waveform.

Configuration Setting

The NT75451 has two optional configurations, configured by DUTY0, DUTY1.


DUTY1, DUTY0	Common	Segment	V1	V2	V3	V4
1, 0 or 1, 1	65	132	8/9V0, 6/7V0	7/9V0, 5/7V0	2/9V0, 2/7 V0	1/9V0, 1/7V0
0, 1	49	132	7/8V0, 5/6V0	6/8V0, 4/6V0	2/8V0, 2/6 V0	1/8V0, 1/6V0
0, 0	33	132	5/6V0, 4/5V0	4/6V0, 3/5V0	2/6 V0, 2/5V0	1/6V0, 1/5V0

2007/07/18

18 Ver 0.02 With respect to the information represented in this document, Novatek makes no warranty, expressed or implied, including the warranties of merchantability, fitness for a particular purpose, non-infringement, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any such information.

Figure 6

The Power Supply Circuit

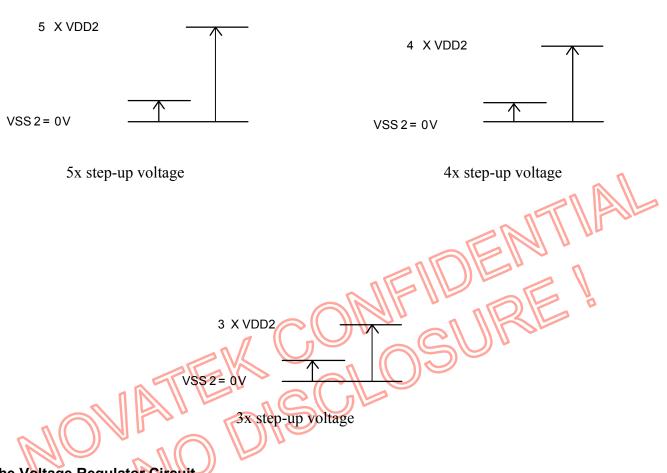
The power supply circuits are low-power consumption power supply circuits that generate the voltage levels required for the liquid crystal drivers. They comprise Booster circuits, and voltage follower circuits. They are only enabled in master operation.

The power supply circuits can turn the booster circuits, and the voltage follower circuits ON or OFF independently through the use of the Power Control Set command. Consequently, it is possible to make an external power supply and the internal power supply function somewhat in parallel. Table 7 shows the Power Control Set Command 2-bit data control functions, and Table 8 shows reference combinations.

Item		
	"1"	"0"
Booster (V/B) circuit control bit	ON	OFF
follower (V/F) circuit control bit	ON	OFF
follower (V/F) circuit control bit		ON

Table	7
-------	---

			Table 8				
Use Settings	D2	D0	V/B Circuit	V/F circuit	External voltage input	Step-up voltage system terminal	
Only the internal power supply is used	1		ON	ON	VDD2	Used	
Only the V/F circuit is used	0	1	OFF	ON	V0, VDD2	Open	
Only the external power supply is used	0	°Č	OFF	OFF	V0 to V4	Open	

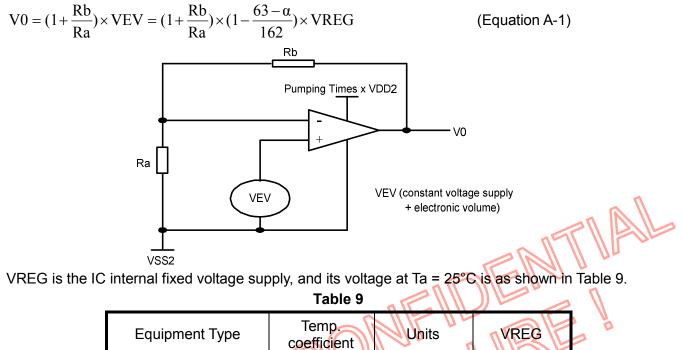

*While other combinations, not shown above, are also possible, these combinations are not recommended because they have no practical use.

The Internal Pumping Voltage

Using the step-up voltage circuits within the NT75451 chips it is possible to product 5X, 4X, 3X step-ups of the VDD2-VSS2 voltage levels by command (Ref 29. DC/DC Multiple Set). The internal pumping voltage, please keep the relationship: **Pumping Times * VDD2 > VLCD +** Temperature Compensation Voltage.

Figure 7

The Voltage Regulator Circuit


The function of the internal voltage regulator circuits is to determine liquid crystal operating voltage, V0. Because the NT75451 chips have an internal high-accuracy fixed voltage power supply with a 64-level electronic volume function and internal resistors for the V0 voltage regulator, systems can be constructed without having to include high-accuracy voltage regulator circuit components.

Otherwise, NT75451 has temperature coefficient is -0.05%/°C.

When the V0 Voltage Regulator Internal Resistors Are Used

Through the use of the V0 voltage regulator internal resistors and the electronic volume function the liquid crystal power supply voltage V0 can be controlled by commands alone (without adding any external resistors), making it possible to adjust the liquid crystal display brightness. The V0 voltage can be calculated using equation A-1 over the range where V0 < Pumping Times x VDD2.

Internal Power Supply -0.05 %/°C 1.4

 α is set to 1 level of 64 possible levels by the electronic volume function depending on the data set in the 6-bit electronic volume register. Table 10 shows the value for α depending on the electronic volume register settings. Rb/Ra is the V0 voltage regulator internal resistor ratio, and can be set to 8 different levels through the V0 voltage regulator internal resistor ratio set command. The (1+Rb/Ra) ratio assumes the values shown in Table 11 depending on the 3-bit data settings in the V0 voltage regulator internal resistor ratio set command.

_				-	٦	Table	10	
	D5	D4	D3	D2	D1	D0	α	V0
	0	0	0	0	0	0	0	Minimum
	0	0	0	0	0	1	1	:
	0	0	0	0	1	0	2	:
			:			:	:	:
	1	0	0	0	0	0	32	(default)
			:			:	:	:
	1	1	1	1	1	0	62	:
	1	1	1	1	1	1	63	Maximum

2007/07/18

22

Ver 0.02

With respect to the information represented in this document, Novatek makes no warranty, expressed or implied, including the warranties of merchantability, fitness for a particular purpose, non-infringement, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any such information.

V0 voltage regulator internal resistance ratio register value and (1+ Rb/Ra) ratio (Reference value) **Table 11**

	Register		Equipment Type by Temp. Cofficient [Units:%/°C]							
D2	D1	D0	-0.05							
0	0	0	4.50							
0	0	1	5.25							
0	1	0	6.00							
0	1	1	6.75							
1	0	0	7.50 (default)							
1	0	1	8.25							
1	1	0	9.00							
1	1	1	9.60							

The V0 voltage as a function of the V0 voltage regulator internal resistor ratio register and the electronic volumn register.

Note: When selecting external Rb/Ra resistors, Ra+Rb shoud be greater than 1.5MQ.

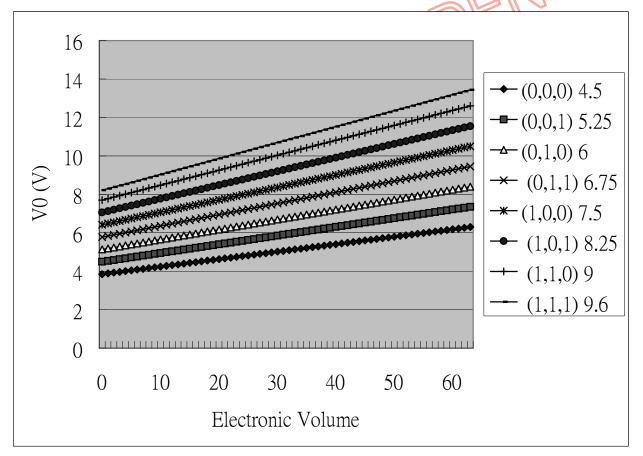


Figure 8. The Contrast Curve of V0 Voltage with internal resistors

2007/07/18 23 Ver 0.02 With respect to the information represented in this document, Novatek makes no warranty, expressed or implied, including the warranties of merchantability, fitness for a particular purpose, non-infringement, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any such information.

Setup example: When selecting Ta=25°C and V0=7V for a NT75451 model on which the temperture compensation is internal, using the equation A-1, the following setup is enable.

Table 12

Contents			Reg	ister		
Contents	D5	D4	D3	D2	D1	D0
For V0 voltage regulator	-	-	-	0	1	0
Electronic Volume	1	0	0	1	0	1

• When the V0 voltage regulator internal resistors or the electronic volume function is used, it is necessary to at least set the voltage regulator circuit and the voltage follower circuit to an operating mode using the power control set commands.

The Liquid Crystal Voltage Generator Circuit

The V0 voltage is produced by a resistive voltage divider within the IC, and can be produced at the V1, V2, V3, and V4 voltage levels required for liquid crystal driving. Moreover, when the voltage follower changes the impedance, it provides V1, V2, V3, and V4 to the liquid crystal drive circuit. 1/9 bias or 1/7 bias for NT75451 can be selected when the duty is 1/65. (Other applications, pleasse refer the LCD Bias set).

Reset Circuit

When the /RES input falls to "L", these LSIs reenter their default state. The default settings are shown below:

- 1. Display OFF
- 2. Normal display
- 3. ADC select: Normal display (ADC command D0 = "L")
- 4. Power control register (D2, D1, D0) = (0, *, 0,)
- 5. Register data clear in serial interface
- 6. LCD power supply bias ratio 1/9 (1/65 duty), 1/8 (1/49 duty), 1/6 (1/33 duty)
- 7. DC/DC Multiple Set (CP=L, 4X; CP=H,5x)
- 8. Read modify write OFF
- 9. Static indicator: OFF Static indicator register: (D1, D2) = (0, 0)
- 10. Display start line register set at first line
- 11. Column address counter set at address 0
- 12. Page address register set at page 0
- 13. Common output status normal
- 14. V0 voltage regulator internal power supply ratio set mode clear:
 V0 voltage regulator internal resistor ratio register: (D2, D1, D0) = (1, 0, 0)
- 15. Electronic volume register set mode clear
- Electronic volume register: (D5, D4, D3, D2, D1, D0) = (1, 0, 0, 0, 0, 0, 0, 0)
- 16. Test mode clear
- 17. Oscillation frequency 31.4 KHz
- 18. Normal display mode and frame inversion status (partial display and N-Line inversion release)
- 19. N-Line inversion register: (D4, D3, D2, D1, D0) = (0, 1, 1, 0, 0), 13-Line inversion
- 20. Partial start line register: (D5, D4, D3, D2, D1, D0) = (0, 0, 0, 0, 0, 0), the first line
- 21. Output condition of COM, SEG
 - COM: VSS SEG: VSS

On the other hand, when the reset command is used, only default settings 8 to 16 above are put into effect.

The MPU interface (Reference Example)", the /RES terminal is connected to the MPU reset terminal, making the chip reinitialize simultaneously with the MPU. At the time of power up, it is necessary to reinitialize using the /RES terminal. Moreover, when the control signal from the MPU is in a high impedance state, there may be an overcurrent condition; therefore, take measures to prevent the input terminal from entering a high impedance state.

In the NT75451, if the internal liquid crystal power supply circuit is not used, user has to supply the external liquid crystal power after the procedure of RESET has been finished (please refer to the timing chart of Reset). During the period of external liquid crystal power supply being supplied, the /RES must be kept "H". Even though the oscillator circuit operates while the /RES terminal is "L," the display timing generator circuit is stopped.

Commands

The NT75451 uses a combination of A0, /RD (E) and /WR (R/W) signals to identify data bus signals. As the chip analyzes and executes each command using internal timing clock only regardless of external clock, its processing speed is very high and its busy check is usually not required. The 8080 series microprocessor interface enters a read status when a low pulse is input to the /RD pad and a write status when a low pulse is input to the /WR pad. The 6800 series microprocessor interface enters a read status when a write status when a low pulse is input to the /WR pad. The 6800 series microprocessor interface enters a read status when a low pulse is input to the R/W pad and a write status when a low pulse is input to the R/W pad and a write status when a low pulse is input to the E pad, the command is activated. (For timing, see AC Characteristics.). Accordingly, in the command explanation and command table, /RD (E) becomes 1(high) when the 6800 series microprocessor interface reads status of display data. This is the only different point from the 8080 series microprocessor interface.

Taking the 8080 series microprocessor interface as an example, commands are explained below. When the serial interface is selected, input data starting from D7 in sequence.

1. Display ON/OFF

Alternatively turns the display on and off.

A0		R/W /WR		D6	D5	D4	D3	D2	D1	D0	Hex	Setting	AL
0	1	0	1	0	1	0	1	1	1	1	AFh	Display ON	
										0	AEh	Display OFF	

When the display OFF command is executed when in the display all points ON mode, power save mode is entered. See the section on the power saver for details.

2. Display Start Line Set

Specifies line address (refer to Figure 6) to determine the initial display line, or COM0. The RAM display data becomes the top line of LCD screen. The higher number of lines in ascending order, corresponding to the duty cycle follows it. When this command changes the line address, smooth scrolling or a page change takes place.

A0 F R/W	D7 D6	D5 D4	D3 D2	D 1	D0	Hex
0 1 0	0 1	A5 A4	A3 A2	A1	A0	40h to 7Fh

A5	A4	A3	A2	A1	A0	Line address
0	0	0	0	0	0	0
0	0	0	0	0	1	1
0	0	0	0	1	0	2
			:			:
1	1	1	1	1	0	62
1	1	1	1	1	1	63

2007/07/18 26 Ver 0.02 With respect to the information represented in this document, Novatek makes no warranty, expressed or implied, including the warranties of merchantability, fitness for a particular purpose, non-infringement, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any such information.

3. Page Address Set

Specifies page address to load display RAM data to page address register. Any RAM data bit can be accessed when its page address and column address are specified. The display remains unchanged even when the page address is changed. Page address 8 is the display RAM area dedicated to the indicator, and only D0 is valid for data change.

A0	E /RD	R/W /WR	D7	D6	D5	D4	D3	D2	D1	D0	Hex
0	1	0	1	0	1	1	A3	A2	A1	A0	B0h to B8h

A3	A2	A1	A0	Page address
0	0	0	0	0
0	0	0	1	1
0	0	1	0	2
	:	:		:
0	1	1	1	7
1	0	0	0	8

4. Column Address Set

Specifies column address of display RAM. Divide the column address into 4 higher bits and 4 lower bits. Set each of them succession. When the microprocessor repeats to access the display RAM, the column address counter is incremental by during each access until address 132 is accessed. The page address is not changed during this time.

А	0	E R/W RD /WR		06 D5	D4	D3 D2	PT	DO	Hex		
C		1 0	0	0 0	1	A7 A6	A5	A4	10h to 18h	High ni	bble
1					0	A3 A2	A1	A0	00h to 0Fh	Low nil	bble
V	0				ノ						_
A	47	A6	A5	A4	A3	A2	A1	AC) Column a	address	
	0	0	0	0	0	0	0	0	0		
	0	0	0	0	0	0	0	1	1		
	0	0	0	0	0	0	1	0	2		
									1		

2007/07/18 27 Ver 0.02 With respect to the information represented in this document, Novatek makes no warranty, expressed or implied, including the warranties of merchantability, fitness for a particular purpose, non-infringement, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any such information.

:

5. Read Status

A0		R/W /WR	D7	D6	D5	D4	D3	D2	D1	D0
0	0	1	BUSY	/ADC	OFF/ON	RESET	0	0	0	0

BUSY: When high, the NT75451 is busy due to internal operation or reset. Any command is rejected until BUSY goes low. The busy check is not required if enough time is provided for each cycle.

/ADC: Indicates the relationship between RAM column address and segment drivers. When low, the display is reversed and column address "131-n" corresponds to segment driver n. when high, the display is normal and column address corresponds to segment driver n.

OFF/ON: Indicates whether the display is on or off. When low, the display turns on. When high, the display turns off. This is the opposite of Display ON/OFF command.

RESET: Indicates the initialization is in progress by /RES signal or by reset command. When low, the display is on. When high, the chip is being reset.

6. Write Display Data

Write 8-bit data in display RAM. As the column address automatically increments by 1 after each write, the microprocessor can continue to write data of multiple words.

A0		R/W /WR	1117	D6	D5	D4	D3	D2	D1	D0
1	1	0			١	Nrite	Data		$\langle ($	\mathcal{I}

7. Read Display Data

Reads 8-bit data from display RAM area specified by column address and page address. As the column address automatically increments by 1 after each write, the microprocessor can continue to read data of multiple words. A single dummy read is required immediately after column address setup. Refer to the display RAM section of FUNCTIONAL DESCRIPTION for details. Note that no display data can be read via the serial interface.

A0	E /RD	R/W /WR	
1	0	1	Read Data

8. ADC Select

Changes the relationship between RAM column address and segment driver. The order of segment driver output pads could be reversed by software. This allows flexible IC layout during LCD module assembly. For details, refer to the column address section of Figure 4. When display data is written or read, the column address is incremented by 1 as shown in Figure 4.

A0		R/W /WR	D7	D6	D5	D4	D3	D2	D1	D0	Hex	Setting
0	1	0	1	0	1	0	0	0	0	0	A0h	Normal
										1	A1h	Reverse

2007/07/18

Ver 0.02

With respect to the information represented in this document, Novatek makes no warranty, expressed or implied, including the warranties of merchantability, fitness for a particular purpose, non-infringement, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any such information.

9. Normal/ Reverse Display

Reverses the Display ON/OFF status without rewriting the contents of the display data RAM.

A0		R/W /WR	D7	D6	D5	D4	D3	D2	D1	D0	Hex	Setting
0	1	0	1	0	1	0	0	1	1	0	A6h	RAM Data "H" LCD ON voltage (normal)
										1		RAM Data "L" LCD ON voltage (reverse)

10. Entire Display ON

Forcibly turns the entire display on regardless of the contents of the display data RAM. At this time, the contents of the display data RAM are held. This command has priority over the Normal/Reverse Display command. When D is low, the normal display status is provided.

A0		R/W /WR	D7	D6	D5	D4	D3	D2	D1	D0	Hex	Setting	Π
0	1	0	1	0	1	0	0	1	0	0	A4h	Normal display mode	
										1	A5h	Display all points ON	

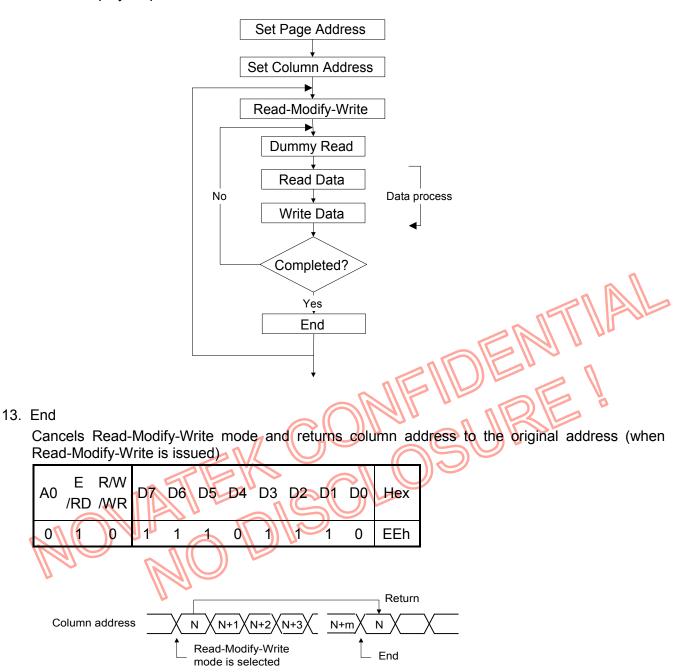
When D0 is high, the entire display ON status is provided. If the Entire Display ON command is executed in the display OFF status, the LCD panel enters Power save mode. Refer to the Power Save section for details.

11. LCD Bias Set

This command selects the voltage bias ratio required for the liquid crystal display.

A0 E R/W DZ D6 D5 D4 D3 D2 D1 D0	Hex		Duty	
/RD /WR		1/33	1/49	1/65
0 0 1 0 1 0 0 0 0 0	A2h	1/6 bias	1/8 bias	1/9 bias
	A3h	1/5 bias	1/6 bias	1/7 bias

12. Read-Modify-Write


A pair of Read-Modify-Write and End commands must always be used. Once Read-Modify-Write is issued, column address is not incremental by Read Display Data command but incremental by Write Display Data command only. It continues until End command is issued. When the End is issued, column address returns to the address when Read-Modify-Write is issued. This can reduce the microprocessor load when data of a specific display area is repeatedly changed during cursor blinking or other events.

A0	E /RD	R/W /WR	D7	D6	D5	D4	D3	D2	D1	D0	Hex
0	1	0	1	1	1	0	0	0	0	0	E0h

Note: Any command except Read/Write Display Data and Column Address Set can be issued during Read-Modify-Write mode.

Cursor display sequence

14. Reset

This command resets the Display Start Line register, Column Address counter, Page Address register, and Common output mode register, the V0 voltage regulator internal resistor ratio register, the Electronic Volume register, the static indicator mode register, the read-modify-write mode register, and the test mode. The Reset command does not affect on the contents of display RAM. Refer to the Reset circuit section of Function Description.

A0	E /RD	R/W /WR	D7	D6	D5	D4	D3	D2	D1	D0	Hex
0	1	0	1	1	1	0	0	0	1	0	E2h

The Reset command cannot initialize LCD power supply. Only the Reset signal to the /RES pad can initialize the supplies.

15. Output Status Select Register

When D3 is high or low, the scan direction of the COM output pad is selectable. Refer to Output Status Selector Circuit in Function Description for details. Λ

A0		R/W /WR	D7	D6	D5	D4	D3	D2	D1	D0	Hex	AFTIAL
0	1	0	1	1	0	0	0 1	*	*	*	C0h to C7h C8h to CFh	
	0: N	bit ormal evers										URE

16. Power Control Set

Select one of eight power circuit functions using 3-bit register. An external power supply and part of on-chip power circuit can be used simultaneously. Refer to Power Supply Circuit section of FUNCTIONAL DESCRIPTION for details.

A0	E /RD	R/W /WR	D7	D6	D5	D4	D3	D2	D1	D0	Hex
0	1	0	0	0	1	0	1	A2	*	A0	28h to 2Fh

When A0 goes low, voltage follower turns off. When A0 goes high, it turns on. When A2 goes low, voltage booster turns off. When A2 goes high, it turns on.

When A2, A0 go low, both voltage booster and follower turn off, and external power is needed.

17. V0 Voltage Regulator Internal Resistor Ratio Set

This command sets the V0 voltage regulator internal resistor ratio. For details, see explanation under "The Power Supply Circuits".

A0		R/W /WR	D7	D6	D5	D4	D3	D2	D1	D0	Hex	Rb/Ra Ratio
0	1	0	0	0	1	0	0	0	0	0	20h	Small
								0	0	1	21h	
								0	1	0	22h	
									:		:	:
								1	1	0	26h	
								1	1	1	27h	Large

18. The Electronic Volume (Double Byte Command)

This command makes it possible to adjust the brightness of the liquid crystal display by controlling the liquid crystal drive voltage V0 through the output from the voltage regulator circuits of the internal liquid crystal power supply. It is a two-byte command used as a pair with the electronic volume mode set command and the electronic volume register set command, and both commands must be issued one after the other.

(1) The Electronic Volume Mode Set

When this command is input, the electronic volume register set command is enabled. Once the electronic volume mode has been set, no other command except for the electronic volume register command can be used. Once the electronic volume register set command has been used to set data into the register, then the electronic volume mode is released.

A0 E R/W /RD /WR	D7 D6 D5 D4 D3 D2 D1 D0	Hex	V
0 1 0	1 0 0 0 0 0 1	81h	

(2) Electronic Volume Register Set

By using this command to set six bits of data to the electronic volume register, the liquid crystal voltage V0 assumes one of the 64 voltage levels. When this command is input, the electronic volume mode is released after the electronic volume register has been set.

A0	E /RD	R/W /WR	D7	D6	D5	D4	D3	D2	D1	D0	Hex	V0
0	1	0	*	*	0	0	0	0	0	1	XX	Small
					0	0	0	0	1	0	XX	
									:		:	:
					1	1	1	1	1	0	XX	
					1	1	1	1	1	1	XX	Large

When the electronic volume function is not used, set D5 - D0 to 100000.

19. Static Indicator (Double Byte Command)

This command controls the static drive system indicator display. The static indicator display is controlled by this command only, and is independent of other display control commands.

This is used when one of the static indicator liquid crystal drive electrodes is connected to the FR terminal, and the other is connected to the FRS terminal. A different pattern is recommended for the static indicator electrodes than for the dynamic drive electrodes. If the pattern is too close, it can result in deterioration of the liquid crystal and of the electrodes.

The static indicator ON command is a double bytes command paired with the static indicator register set command, and thus command must be executed one after the other. (The static indicator OFF command is a single byte command)

(1) Static Indicator ON/OFF

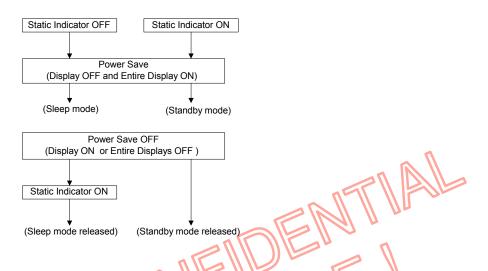
When the static indicator ON command is entered, the static indicator register set command is enabled. Once the static indicator ON command has been entered, no other command aside from the static indicator register set command can be used. This mode is cleared when data is set in the register by the static indicator register set command.

A0	E /RD	R/W /WR	D7	D6	D5	D4	D3	D2	D1	D0	Hex	Setting	
0	1	0	1	0	1	0	1	1	0	0	ACh	Static Indicator OFF	
										1	ADh	Static Indicator ON	V

(2) Static Indicator Register Set

This command sets two bits of data into the static indicator register and used to set the static indicator into a blinking mode.

A0 E R/V /RD /WF		00 Hex	Cindicator Display Status
0 1 0		0 XX 1 XX	OFF ON (blinking at approximately 1 second intervals)
NO		o xx	ON (blinking at approximately 0.5 second intervals)
v	1	1 XX	ON (constantly on)



20. Power Save (Compound Command)

When all displays are turned on during display off, the Power Save command is issued to greatly reduce current consumption.

If the static indicator is off, the Power Save command makes the system enter sleep mode. If the static indicator is on, this command makes the system enter standby mode.

Release the Sleep mode using the both Power Save OFF command (Display ON command or Entire Display OFF command) and Set Indicator On command.

Sleep Mode

This mode stops every operation of the LCD display system, and can reduce current consumption nearly to a static current value if no access is made from the microprocessor. The internal status in the sleep mode is as follows:

(1) Stops the oscillator circuit and LCD power supply circuit.

- (2) Stops the LCD driver and outputs the VSS level as the segment/common driver output.
- (3) Holds the display data and operation mode provided before the start of the sleep mode.
- (4) The MPU can access the built-in display data RAM.

Standby Mode

Stops the operation of the duty LCD displays system and turns on only the static drive system to reduce current consumption to the minimum level required for static drive. The ON operation of the static drive system indicates that the NT75451 is in standby mode. The internal status in the standby mode is as follows:

- (1) Stops the LCD power supply circuit.
- (2) Stops the LCD drive and outputs the VSS level as the segment / common driver output. However, the static drive system still operates.
- (3) Holds the display data and operation mode provided before the start of the standby mode.
- (4) The MPU can access the built-in display data RAM.

When the Reset command is issued in the standby mode, the sleep mode is set.

- When the LCD drive voltage level is given by an external resistive driver, the current of this resistor must be cut so that it may be fixed to floating or VSS level, prior to or concurrently with causing the NT75451 to go to the sleep mode or standby mode.
- When an external power supply is used, likewise, the function of this external power supply must be stopped so that it may be fixed to floating or VSS level, prior to or concurrently with causing the NT75451 to go to the sleep mode or standby mode.

21. NOP

Non-Operation Command.

A0	E /RD	R/W /WR	D7	D6	D5	D4	D3	D2	D1	D0	Hex
0	1	0	1	1	1	0	0	0	1	1	E3h

22. Oscillation Frequency Select

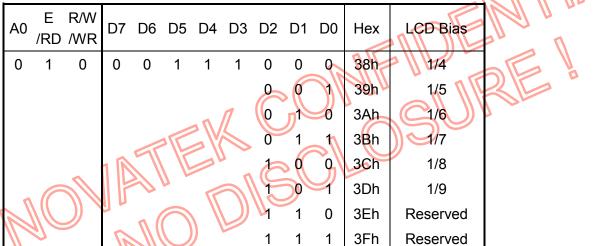
This command is to select the oscillation frequency of driver IC as below.

A0		R/W /WR	D7	D6	D5	D4	D3	D2	D1	D0	Hex	Oscillation Frequency
0	1	0	1	1	1	0	0	1	0	0	E4h	Typical 31.4 KHz
										1	E5h	Typical 26.3 KHz

23. Partial Display Mode Set

This command enables to select the display mode. When D0 is low, the IC is in normal display mode, the maximum display duty ratio is decided by pin connection of DUTY0 and DUTY1 and the command LCD Bias Set decides the LCD bias ratio. The IC enters into partial display mode when D0 is high, then the commands Partial Display Duty Set and Partial Display Bias Set decide the LCD display duty and bias ratios.

	E R/W D /WR	D7 D6 D5 D4	D3 D2 D	1 D0	Hex	Display Mode
0 1	0	1 0 0 0	0 0		82h	Normal Display
~ ~ (\mathcal{A}			1	83h	Partial Display
M		MO "				



24. Partial Display Duty and Bias Set

These two commands set the LCD display duty and bias ratios when the IC is in partial display mode. They are invalid when the IC is in normal display mode. When the partial display duty is set, the LCD bias for partial display is set simultaneous as below. The partial display duty will be kept at maximum duty (decided by pins DUTY0 and DUTY1) when setting duty is larger than maximum duty.

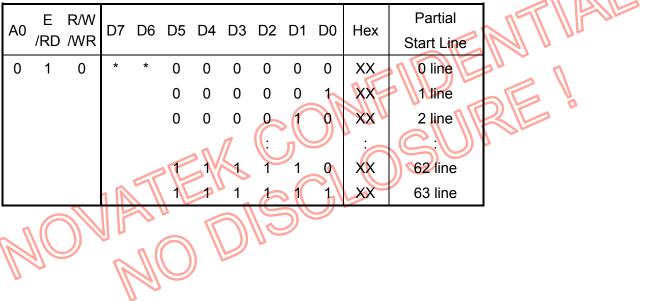
											•		
A0	E /RD	R/W /WR	D7	D6	D5	D4	D3	D2	D1	D0	Hex	Partial Duty	Scanning Line
0	1	0	0	0	1	1	0	0	0	0	30h	1/9 duty	Line [0:7], COMS
								0	0	1	31h	1/17 duty	Line [0:15], COMS
								0	1	0	32h	1/33 duty	Line [0:31], COMS
								0	1	1	33h	1/49 duty	Line [0:47], COMS
								1	0	0	34h	1/65 duty	Line [0:63], COMS
								1 1	0 1	1 *	35h 37h	Reserved	No effect

Using Partial Display Bias Set command to change the LCD bias in partial display mode.

Note: The COM waveform of no display area is non-select waveform.

25. Partial Start Line Set (Double Byte Command)

This command makes it possible to set the partial start line for partial display. It is a two-byte command used as a pair and the Number of Start Line Set command must be issued after the Partial Start Line Set command.


(1) Partial Start Line Set

When this command is input, no other command except for the Number of Start Line Set command can be used.

A0	E /RD	R/W /WR	D7	D6	D5	D4	D3	D2	D1	D0	Hex
0	1	0	1	1	0	1	0	0	1	1	D3h

(2) Number of Start Line Set

By using this command to set six bits of data to the Partial Start Line register. Once the Number of the Start Line Set command has been used to set data into the register, then the partial start line will affect on the LCD display. The number of partial start line is always equal to zero when the partial start line is larger than maximum duty ratio (decided by pins DUTY0 and DUTY1).

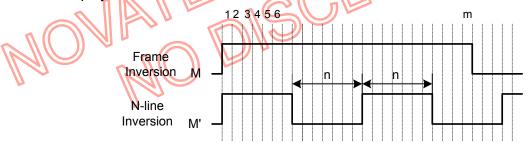
26. The N-Line Inversion (Double Byte Command)

This command makes it possible to adjust the number of scan lines for liquid crystal display inversion. It is a two-byte command used as a pair and the Number of Line Set command must be issued after the N-Line Inversion Set command.

(1) N-Line Inversion Set

When this command is input, no other command except for the Number of Line Set command can be used.

A0	E /RD	R/W /WR	D7	D6	D5	D4	D3	D2	D1	D0	Hex
0	1	0	1	0	0	0	0	1	0	1	85h


(2) Number of Line Set

By using this command to set five bits of data to the N-Line inversion register. Once the Number of Line Set command has been used to set the data into the register, then the N-Line inversion will affect on the LCD display.

A0		R/W /WR	D7	D6	D5	D4	D3	D2	D1	D0	Hex	Line Inversion	AL
0	1	0	*	*	*	0	0	0	0	0	XX	1 line	
						0	0	0	0	1	ΧХ	2 line	
								:		A L			
						1	1	1	1	7	XX	32 line	AL.

Note 1: The number of inversed scan line = register setting value + 1.

Note 2: When Partial Duty = 1/9 or 1/17, the N-line inversion function release and the LCD display scan line is back to frame inversion status.

27. Release N-Line Inversion

This command is used to exit the N-Line inversion function. The N-Line inversion function is released and the LCD display is set back to frame inversion status once this command is executed.

A0	E /RD	R/W /WR	D7	D6	D5	D4	D3	D2	D1	D0	Hex
0	1	0	1	0	0	0	0	1	0	0	84h

2007/07/18 38 Ver 0.02 With respect to the information represented in this document, Novatek makes no warranty, expressed or implied, including the warranties of merchantability, fitness for a particular purpose, non-infringement, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any such information.

29. Select DC-DC Set-Up (Double Byte Command) This command makes it possible to set up the DC/DC multiple factors. By using this command to select 4 types of DC/DC multiple factors. After H/W reset, the DC-DC set-up will be the CP setting value.

A0	E /RD	R/W /WR	D7	D6	D5	D4	D3	D2	D1	D0	Hex
0	1	0	1	0	0	0	1	0	0	1	89h
			*	*	*	*	*	*	DC	[1:0]	XX

A0	E /RD	R/W /WR	D7	D6	D5	D4	D3	D2	DC[1:0]	Hex	Select DC-DC converter circuit	
0	1	0	*	*	*	*	*	*	0	0	00h	5 times boosting circuit	
			*	*	*	*	*	*	0	1	01h	4 times boosting circuit	
			*	*	*	*	*	*	1	0	02h	3 times boosting circuit	
			*	*	*	*	*	*	1	1	03h	3 times boosting circuit	
One	Time	e Prog	Irami	ning	Set	(Dou	ble E	Byte C	Comm	nand)			
OTE	P_EN	nmano I=1→ S=1→	Enat	ole O	TP			te OT		ogram	iming.	AIRE	
						211		\mathcal{Y}	ァー				

Note: An Effective One Time Programming is OTP EN=1 and OTP PG=1.

31. Electronic Volume Calibration (Double Bytes Command)

This command makes it possible to calibrate the contrast value of the liquid crystal display by setting the electronic volume calibration register. Because the variation of LCD module in term of contrast level, the calibration function can be used to achieve the best visual contrast of every LCD module by adjusting VLCD (V0) voltage. By using this command to set 4 bits of data to the electronic volume calibration register; the V0 offset value assumes one of the +/- 7 steps.

A0	E /RD	R/W /WR	D7	D6	D5	D4	D3	D2	D1	D0	Hex
0	1	0	1	1	0	1	0	0	1	0	D2h
			*	*	*	*		OTP	9 [3:0]	XX

2007/07/18 40 Ver 0.02 With respect to the information represented in this document, Novatek makes no warranty, expressed or implied, including the warranties of merchantability, fitness for a particular purpose, non-infringement, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any such information.

32. Test Command

This is the dedicated IC chip test command. It must not be used for normal operation. If the Test command is issued inadvertently, set the /RES input to low or issue the Reset command to release the test mode.

A0	E /RD	R/W /WR	D7	D6	D5	D4	D3	D2	D1	D0	Hex
0	1	0	1	1	1	1	0	1	0	0	F0h to FFh

*: Invalid bit

Cautions: The NT75451 maintains an operation status specified by each command. However, the internal operation status may be changed by a high level of ambient noise. Users must consider how to suppress noise on the package and system or to prevent ambient noise insertion. To prevent a spike in noise, built-in software for periodical status refreshment is recommended. The test command can be inserted in an unexpected place. Therefore it is recommended to enter the test mode reset command F0h during the refresh sequence.

One Time Programming Notice

1. One Time Programming Steps:

Step	Instruction	Action	Note
1	H/W Reset	Set /RES	H/W reset sequence.
2	Initialization	Set initial	Send the original initialization settings to display properly (fix a specified electronic volume)
3	Enable One Time Programming(OTP)	Set OTP_EN=" 1 "	Set double byte command(DFh&01h)
4	Judge contrast	By judging the contrast with golden sample is the same or not	Set golden test patterns to judge the contrast is best or not by vision
5	Adjust EV by OTP	Set parameters to adjust contrast as golden sample	Set double byte command (D2h&Xx) and adjust the electronic volume value by One Time Programming Set command (OTP [3:0]), until there is the best visual contrast.
6	Connect OTP Power	Connect an external voltage to OTP_PWR pin	OTP_PWR = 7.5V
7	Execute One Time Programming(OTP)	Program OTP cells, and set OTP_PG= "1"	Set double byte command(DFh&03h)
8	-	Wait 2s	
9	Disable One Time Programming(OTP)	Exit OTP Programming Set OTP_EN= "0 " & OTP_PG=" 0 "	Set double byte command(DFh&00h)
10		<pre>Open OTP_PWR</pre>	OTP_PWR = Floating
11	H/W reset	Set /RES	H/W reset sequence.
12	End	Wait 5ms	

2. One Time Programming Flow Chart

2007/07/18 43 Ver 0.02 With respect to the information represented in this document, Novatek makes no warranty, expressed or implied, including the warranties of merchantability, fitness for a particular purpose, non-infringement, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any such information.

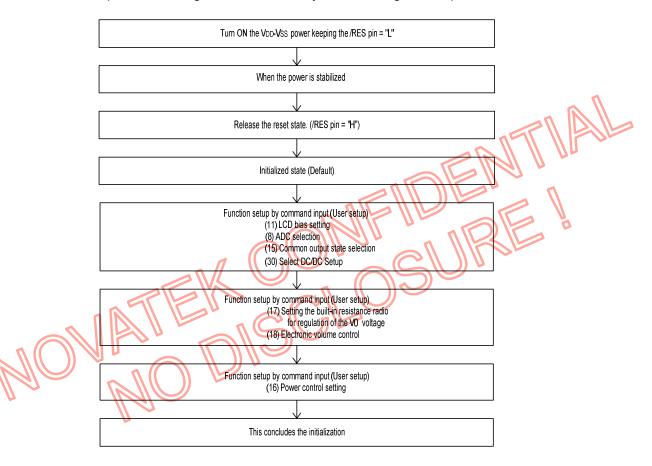
Table13. Command Table

. .								Code					_
Command	A 0	/RD	/WR	D7	D6	D5	D4	D3	D2	D1	D0	Hex	Function
(1) Display OFF	0	1	0	1	0	1	0	1	1	1	0 1	AEh AFh	Turn on LCD panel when high, and turn off when low
(2) Display Start Line Set	0	1	0	0	1		Displ	ay Sta	art Ado	dress		40h to 7Fh	Specifies RAM display line for COM0
(3) Page Address Set	0	1	0	1	0	1	1	F	age A	ddres	s	B0h to B8h	Set the display data RAM page in Page Address register
(4) Column Address Set	0	1	0	0	0	0	1	Н	•	Colurr ress	IN	00h to	Set 4 higher bits and 4 lower bits of column address of display data
(4) Column Address Set	0	1	0	0	0	0	0	L		Colum ress	n	18h	RAM in register
(5) Read Status	0	0	1		Sta	atus		0	0	0	0	XX	Reads the status information
(6) Write Display Data	1	1	0				Write	Data				XX	Write data in display data RAM
(7) Read Display Data	1	0	1				Read	Data				XX	Read data from display data RAM
(8) ADC Select	0	1	0	1	0	1	0	0	0	0	0 1		Set the display data RAM address SEG output correspondence
(9) Normal/Reverse Display	0	1	0	1	0	1	0	0	1	1	0 1		Normal indication when low, but full indication when high
(10) Entire Display ON/OFF	0	1	0	1	0	1	0	0	1	0	0 1	A5h	Select normal display (0) or entire display on
(11) LCD Bias Set	0	1	0	1	0	1	0	0	0	1	0 1	A2h A3h	Sets LCD driving voltage bias ratio
(12) Read-Modify-Write	0	1	0	1	1	1	0	0	0	0	0	E0h	Increments column address counter during each write
(13) End	0	1	0	1	1	1	0		A	1	0	EEh	Releases the Read-Modify-Write
(14) Reset	0	1	0	1	1	1	0	0	0	1	0	E2h	Resets internal functions
(15) Common Output Mode Select	0	1	0	V	1	0	D ₀	0 1	*	*		C0h to CFh	Select COM output scan direction *: invalid data
(16) Power Control Set	0	1	0	0	0		0	J	Opera	ation S	Status	28h to 2Fh	Select the power circuit operation mode
(17) V0 Voltage Regulator Internal Resistor ratio Set	0	1	0	0	0	1	0	0	Res	istor F	Ratio	20h to 27h	Select internal resistor ratio Rb/Ra mode
(18) Electronic Volume mode Set	0		9	1	0	0	0	0	0	0	1	81h	
Electronic Volume Register Set	0	1	0	*	*		Electro	onic C	ontrol	Value		xx	Sets the V0 output voltage electronic volume register
(19) Set Static indicator ON/OFF	0	1	0	1	0	1	0	1	1	0	0 1		Sets static indicator ON/OFF 0: OFF, 1: ON
Set Static Indicator Register	0	1	0	*	*	*	*	*	*	Мо	de	xx	Sets the flash mode
(20) Power Save	0	1	0	-	-	-	-	-	-	-	-	-	Compound command of Display OFF and Entire Display ON
(21) NOP	0	1	0	1	1	1	0	0	0	1	1	E3h	Command for non-operation

				00		and	Tabl	0 (0	Jintin	iue)			
0	•••	(DD						Code					
Command	A0	/RD	/WR	D7	D6	D5	D4	D3	D2	D1	D0	Hex	Function
(22)Oscillation Frequency Select	0	1	0	1	1	1	0	0	1	0	0 1	E4h E5h	Select the oscillation frequency
(23)Partial Display mode Set	0	1	0	1	0	0	0	0	0	1	0 1	82h 83h	Enter/Release the partial display mode
(24)Partial Display Duty Set	0	1	0	0	0	1	1	0	Dı	uty Ra	tio	30h 37h	Sets the LCD duty ratio for partial display mode
(25)Partial Display Bias Set	0	1	0	0	0	1	1	1	Bi	as Ra	tio		Sets the LCD bias ratio for partial display mode
(26)Partial Start Line Set	0	1	0	1	1	0	1	0	0	1	1	D3h	Enter Partial Start Line Set
Partial Start Line Set	0	1	0	1	1		Pa	artial S	tart Li	ne		хх	Sets the LCD Number of partial display start line
(27)N-Line Inversion Set	0	1	0	1	0	0	0	0	1	0	1	85h	Enter N-Line inversion
Number of Line Set	0	1	0	*	*	*		Num	ber of	Line		хх	Sets the number of line used for N-Line inversion
(28)N-Line Inversion Release	0	1	0	1	0	0	0	0	1	0	0	84h	Exit N-Line Inversion
(29)DC/DC Multiple Set	0	1	0	1	0	0	0	1	0	0	1	89h	Select the step-up of the internal
	0	1	0	*	*	*	*	*	*	DC[1:0]	xx	voltage converter
(30)One Time Programming	0	1	0	1	1	0	1	1	1	1	1	DFh	Enable and Programming OTP
set	0	1	0	*	*	*	*	*	*	OTP_ PG	OTP_ EN	xx	
(31)Electronic Volume	0	1	0	1	1	0	1	0	0	1	0	D2h	Set V0 output voltage electronic
Calibration	0	1	0	*	*	*	*	\sum	OTP	[3:0]		XX	volume for calibration(One Time programming)
(32)Test Command	0	1	0		1	1		ノ	* (*	C	F1h to FFh	IC test command. Do not use!
(33)Test Mode Reset	0	1	0		7	1	1	0	0	0	0	F0h	Command of test mode reset

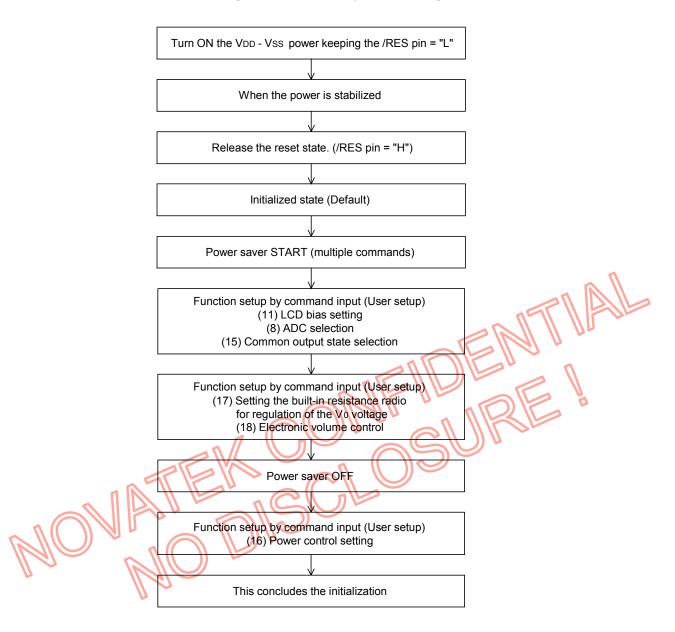
Command Table (continue)

Note: Do not use any other command, or system malfunction may result.

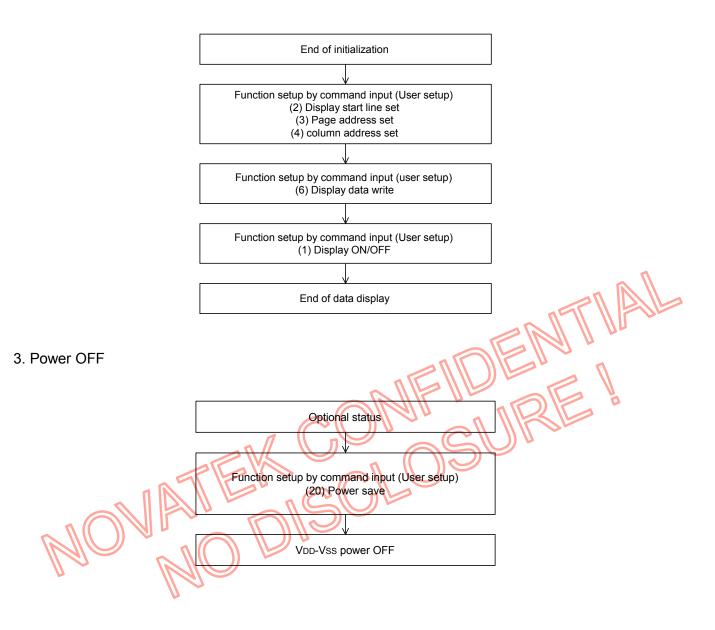

Command Description

Instruction Setup: Reference

1. Initialization


Note: With this IC, when the power is applied, LCD driving non-selective potentials V2 and V3 (SEG pin) and V1 and V4 (COM pin) are output through the LCD driving output pins SEG and COM. When electric charge is remaining in the smoothing capacitor connecting between the LCD driving voltage output pins (V0 - V4) and the VDD pin, the picture on the display may instantaneously become totally dark when the power is turned on. To avoid such failure, we recommend the following flow sequence when turning on the power.

1.1. When the built-in power is being used immediately after turning on the power:



1.2. When the built-in power is not being used immediately after turning on the power

2. Data Display

Absolute Maximum Rating

DC Supply Voltage (VDD, VDD2, VDD3)	-0.3V to +4.0V
DC Supply Voltage (V0)	0.3V to +15.0V
Input Voltage (Vin)	0.3V to VDD+0.3V
Operating Ambient Temperature	40°C to +85°C
Storage Temperature	55°C to +125°C

*Comments

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to this device. These are stress ratings only. Functional operation of this device under these or any other conditions above those indicated in the operational sections of this specification is not implied or intended. Exposure to the absolute maximum rating conditions for extended periods may affect device reliability.

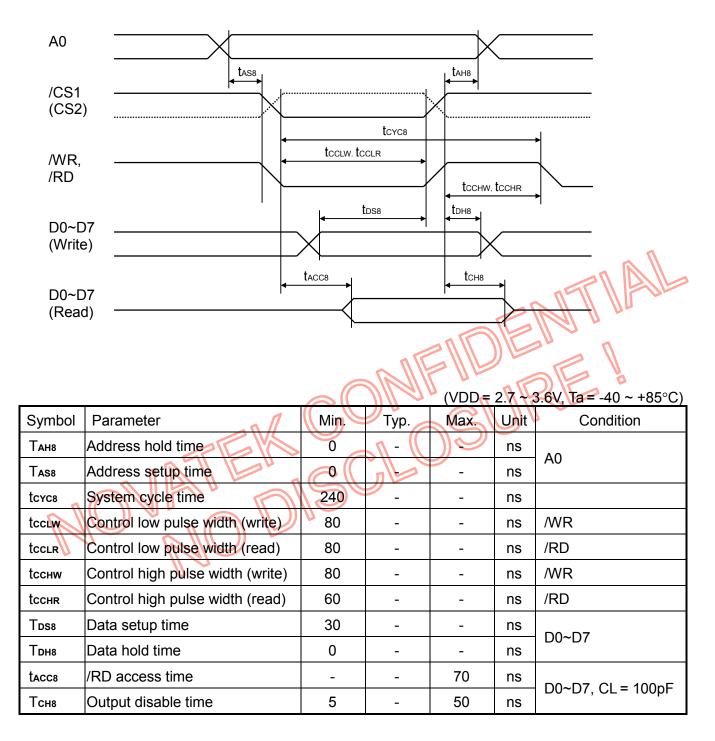
Electrical Characteristics

DC Characteristics (VSS = 0V, VDD = 1.8 ~ 3.6V, Ta = -40 ~ +85°C unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Unit	Condition
VDD	Operating Voltage	1.8	-	3.6	V	
VDD3	Operating Voltage	2.4	-	3.6	V	
VDD2	Operating Voltage	2.6	-	3.6	Y	3X~ 5X boosting
V0	Voltage Regulator Operating Voltage	4.0	<u>/</u>	14.2	V	<u>S</u> U ¹
VREG	Reference Voltage	1.36	1.40	1.44	V	Ta = 25°C, -0.05%/°C
M			20	35	μA	VDD = 3V, V0 = 9V, built-in boosting power supply off, display on, display data = checker and no access, Ta = 25°C
IDD	Current Consumption		150	200	μΑ	VDD, VDD2, VDD3 = 3V, V0 = 9V, 5X built-in boosting power supply, display on, display data = checker and no access, temperature coefficient is -0.05%/ °C, Ta = 25°C.

2007/07/18 49 Ver 0.02 With respect to the information represented in this document, Novatek makes no warranty, expressed or implied, including the warranties of merchantability, fitness for a particular purpose, non-infringement, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any such information.

DC Characteristics (continued)


Symbol	Parameter	Min.	Тур.	Max.	Unit	Condition		
ISP	Sleep Mode Current Consumption	-	0.01	5	μA	During sleep, Ta = 25°C		
ISB	Standby Mode Current Consumption	-	-	12	μA	During standby, Ta = 25°C		
VIHC	High-Level Input Voltage	0.8 x VDD	-	VDD	V	A0, D0 - D7, /RD (E), /WR (R/W), /CS1, CS2, CLS, CL, FR, C86, P/S, /RES and		
VILC	Low-Level Input Voltage	VSS	-	0.2 x VDD	V	CP		
VOHC	High-Level Output Voltage	0.8 x VDD	-	VDD	V	IOH = -0.5mA (D0 - D7, FR, FRS and C		
VOLC	Low -Level Output Voltage	VSS	-	0.2 x VDD	V	IOL = 0.5mA (D0 - D7, FR, FRS and CL)		
ILI	Input Leakage Current	-1.0	-	1.0	μA	Vin = VDD or VSS (A0, /RD (E), /WR (R/W), /CS1, CS2, CLS, M/S, C86, P/S and /RES)		
IHZ	HZ Leakage Current	-3.0	-	3.0	μA	When the D0 - D7, FR and CL are in high impedance		
RON1	LCD Driver ON Resistance	-	2.0	3.5	KΩ	Ta = 25° C, These are the resistance values for when a 0.1V voltage is applied between		
RON2	LCD Driver ON Resistance		3.2	5.4	KΩ	$V_0 = 8.0V$ the output terminals SEGn or COMn and the various power supply terminal (V0, V1, V2, V3, V4)		
CIN	Input Pad Capacity		5.0	8.0	pF	Ta = 25°C, f = 1MHz		
fFRM		78.0	80.5	83.0	Hz	fOSC = 31.4 KHz, 1/65duty VDD = 1.8~3.6V		
	Frame Frequency	64.9	67.4	69.9	Hz	fOSC = 26.3 KHz, 1/65duty VDD = 1.8~3.6V		

Notes: 1. Voltages $V0 \ge V1 \ge V2 \ge V3 \ge V4 \ge VSS2$ must always be satisfied.

AC Characteristics

1. System Buses Read/Write Characteristics (for 8080 Series MPU)

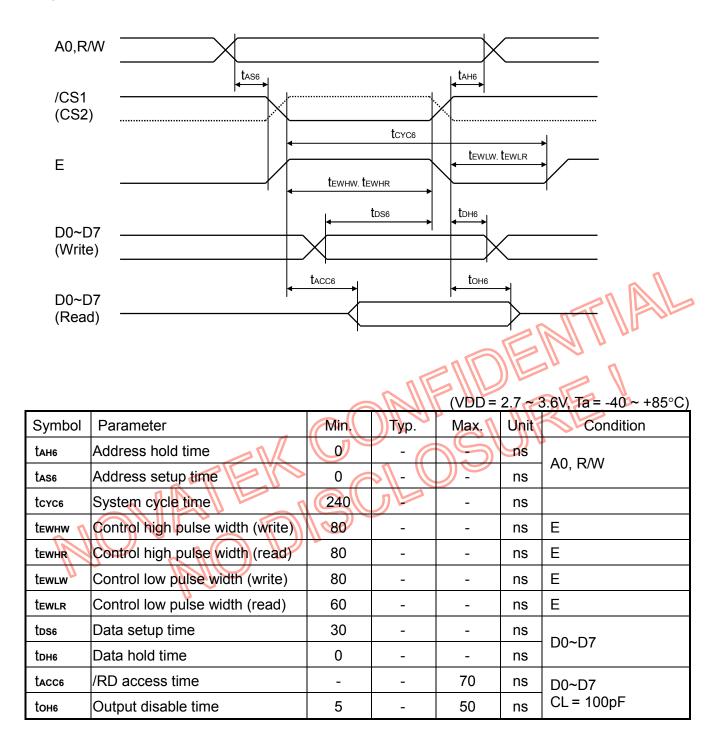
2007/07/18 51 Ver 0.02 With respect to the information represented in this document, Novatek makes no warranty, expressed or implied, including the warranties of merchantability, fitness for a particular purpose, non-infringement, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any such information.

40

System Buses Read/Write Characteristics (for 8080 Series MPU) (continued)

	(VDD = 1.8 ~ 2.7V, Ta = -40 ~ +85°C)						
Symbol	Parameter	Min.	Тур.	Max.	Unit	Condition	
tан8	Address hold time	0	-	-	ns	- A0	
tas8	Address setup time	0	-	-	ns	AU	
tcyc8	System cycle time	400	-	-	ns		
tcc∟w	Control low pulse width (write)	150	-	-	ns	/WR	
tcclr	Control low pulse width (read)	150	-	-	ns	/RD	
tсснw	Control high pulse width (write)	120	-	-	ns	/WR	
tссня	Control high pulse width (read)	120	-	-	ns	/RD	
tos8	Data setup time	80	-	-	ns	D0 D7	
tdн8	Data hold time	0	-	-	ns	D0~D7	
tacc8	/RD access time	-	-	240	ns		
tснв	Output disable time	10	-	100	ns	D0~D7, CL = 100pF	

(1/DD - 4.0)


0.7 / T_o

*1. The input signal rise time and fall time (tr, tr) is specified at 15ns or less.

- $(tr + t_f) < (t_{CYC8} t_{CCLW} t_{CCHW})$ for write, $(tr + t_f) < (t_{CYC8} t_{CCLR} t_{CCLR})$ for read.
- *2. All timing is specified using 20% and 80% of VDD as the reference.
- *3. tccLw and tccLR are specified as the overlap interval when /CS1 is low (CS2 is high) and /WR or /RD is low.

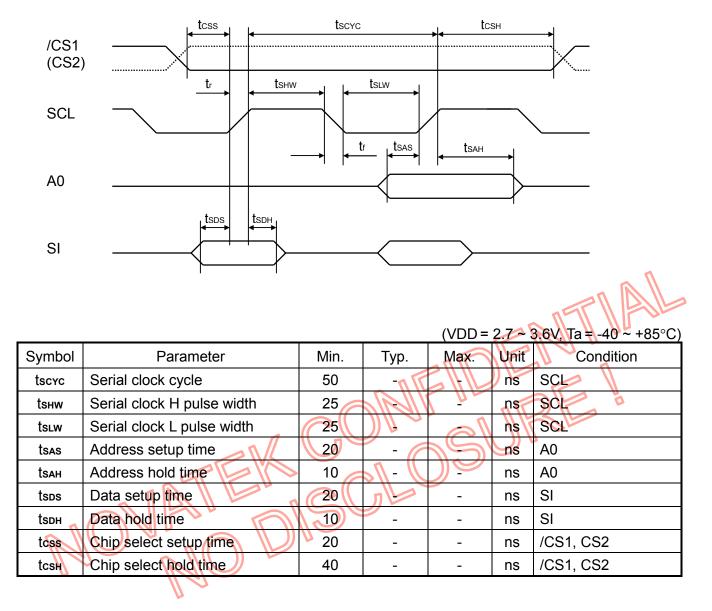
2. System Buses Read/Write Characteristics (for 6800 Series MPU)

10

System Buses Read/Write Characteristics (for 6800 Series MPU) (continued)

		r		(\UD=	1.8~4	2.7V, Ta = -40 ~ +85°C)
Symbol	Parameter	Min.	Тур.	Max.	Unit	Condition
tah6	Address hold time	0	-	-	ns	A0, R/W
tas6	Address setup time	0	-	-	ns	AU, N/V
tcyc6	System cycle time	400	-	-	ns	
tеwнw	Control high pulse width (write)	150	-	-	ns	E
tewhr	Control high pulse width (read)	150	-	-	ns	E
tewlw	Control low pulse width (write)	120	-	-	ns	E
tewlr	Control low pulse width (read)	120	-	-	ns	E
tds6	Data setup time	80	-	-	ns	D0~D7
tdн6	Data hold time	0	-	-	ns	
tacc6	/RD access time	-	-	240	ns	D0~D7
tоне	Output disable time	10	-	100	ns	CL = 100pF

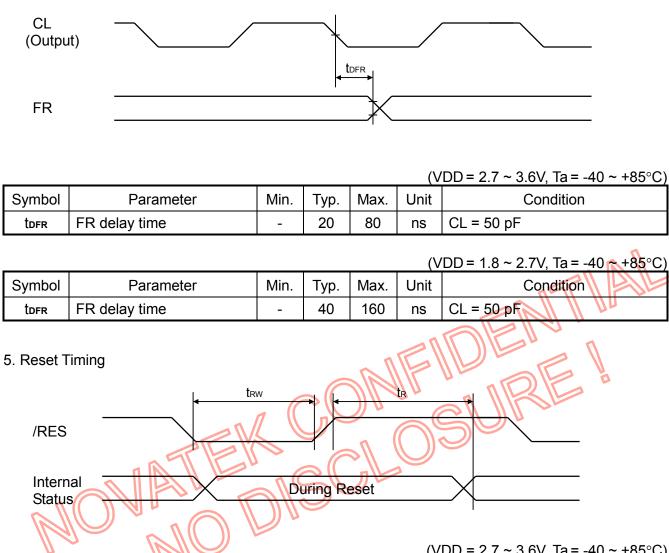
(1/DD - 4.0)


 $0.7)/T_{-}$

*1. The input signal rise time and fall time (tr, tr) is specified at 15ns or less.

- $(t_r + t_f) < (t_{CYC6} t_{EWLW} t_{EWHW})$ for write, $(t_r + t_f) < (t_{CYC6} t_{EWLR} t_{EWHR})$ for read.
- *2. All timing is specified using 20% and 80% of VDD as the reference.
- *3. tewhw and tewhe are specified as the overlap interval when /CS1 is low (CS2 is high) and E is high.

3. Serial Interface Timing



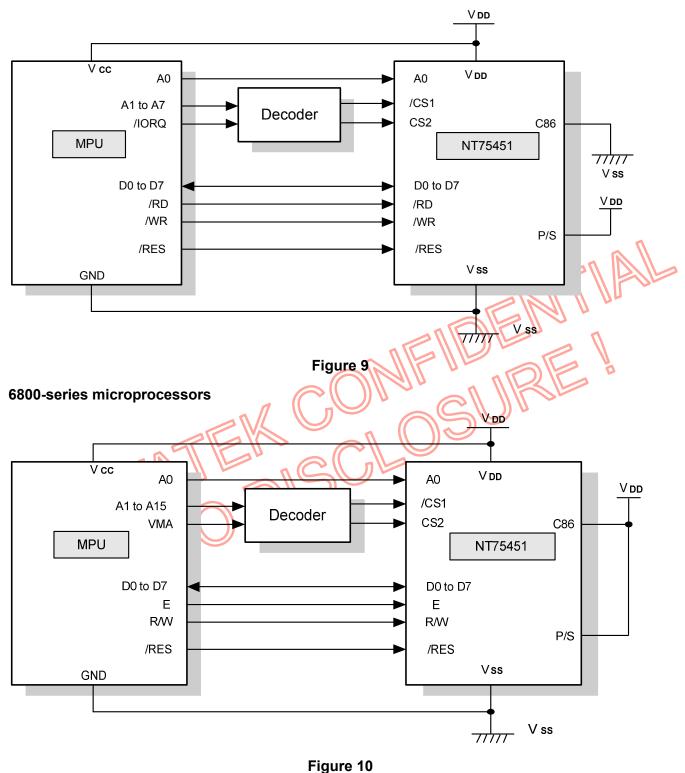
Serial Interface Timing (continued)

Symbol	(VDD = 1.8 ~ 2.7V, Ta = -40 ~					
•	Parameter	Min.	Тур.	Max.	Unit	Condition
tscyc	Serial clock cycle	200	-	-	ns	SCL
tsнw	Serial clock H pulse width	80	-	-	ns	SCL
ts∟w	Serial clock L pulse width	80	-	-	ns	SCL
tsas	Address setup time	60	-	-	ns	A0
tsah	Address hold time	30	-	-	ns	A0
tsds	Data setup time	60	-	-	ns	SI
tsdн	Data hold time	30	-	-	ns	SI
tcss	Chip select setup time	40	-	-	ns	/CS1, CS2
tcsн	Chip select hold time	100	-	-	ns	/CS1, CS2
		CC				

4. Display Control Timing

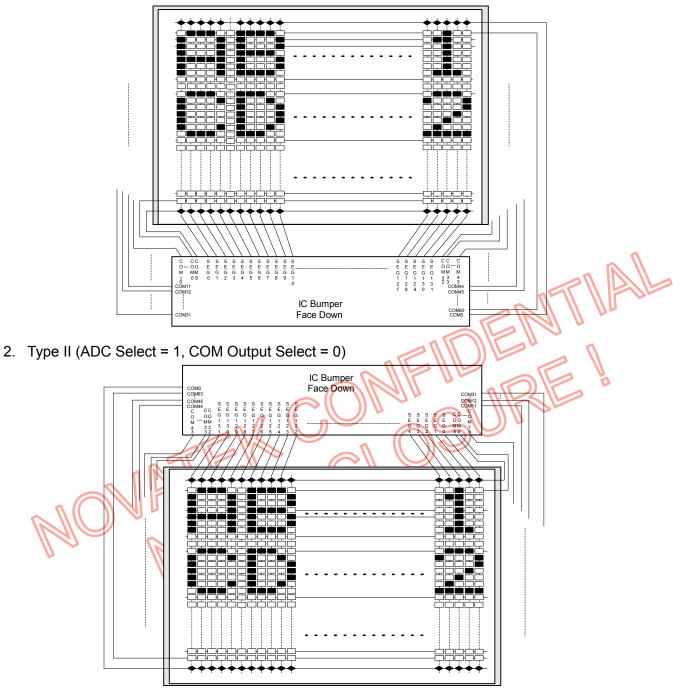
					(•	700 - 2.7 0.00, 10 - 40 0.000
Symbol	Parameter	Min.	Тур.	Max.	Unit	Condition
tĸ	Reset Time	-	-	1.0	μs	
trw	Reset low pulse width	10	-	-	μs	/RES

(VDD = 1.8 ~ 2.7V, Ta = -40 ~ +85°C)

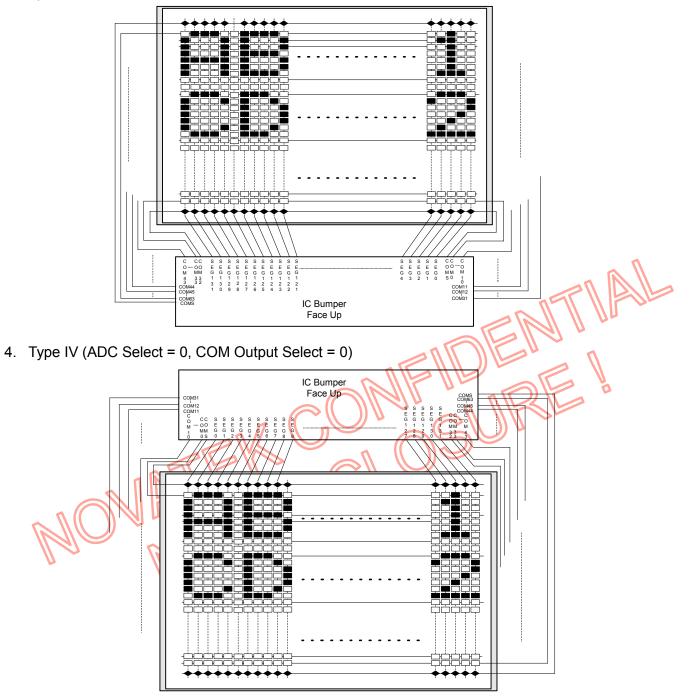

Symbol	Parameter	Min.	Тур.	Max.	Unit	Condition
tĸ	Reset Time	-	-	2.0	μs	
trw	Reset low pulse width	20	-	-	μs	/RES

2007/07/18 57 Ver 0.02 With respect to the information represented in this document, Novatek makes no warranty, expressed or implied, including the warranties of merchantability, fitness for a particular purpose, non-infringement, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any such information.

Microprocessor Interface (for reference only)

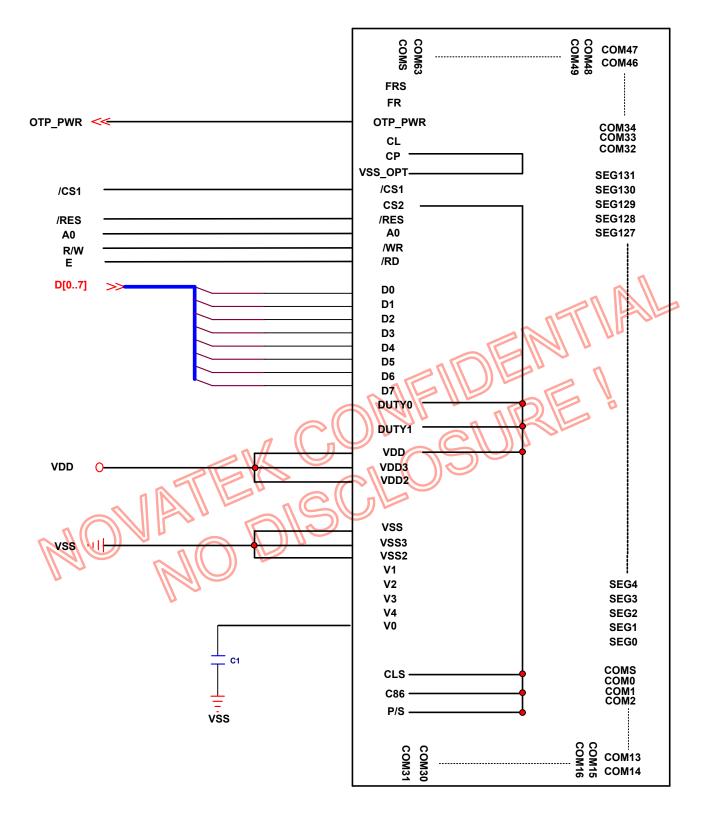

8080-series microprocessors

Application information for LCD panel (for reference only)


1. Type I (ADC Select = 0, COM Output Select = 1)

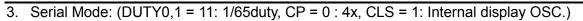
2007/07/18 59 Ver 0.02 With respect to the information represented in this document, Novatek makes no warranty, expressed or implied, including the warranties of merchantability, fitness for a particular purpose, non-infringement, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any such information.

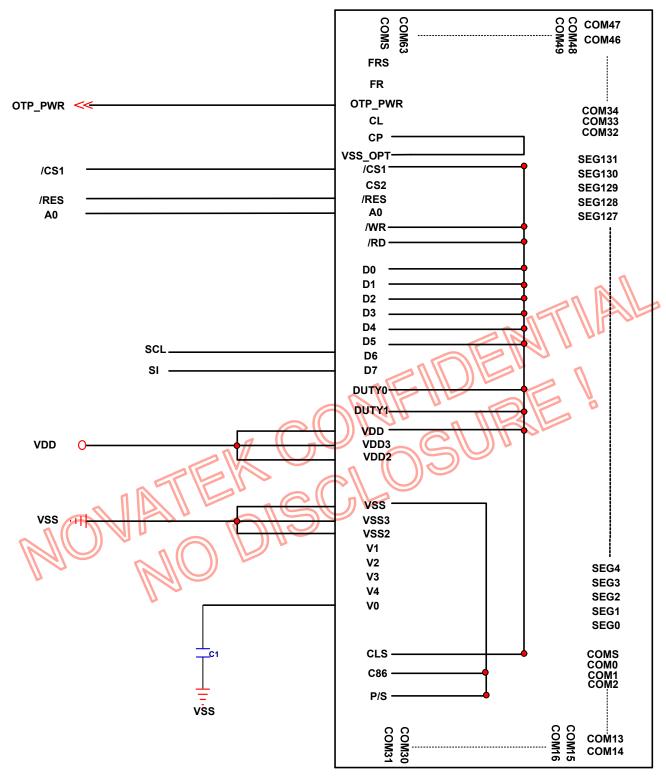
3. Type III (ADC Select = 1, COM Output Select = 1)


1. 8080 MPU Mode: (DUTY0,1 = 11: 1/65duty, CP= 0 : 4x , CLS = 1: Internal display OSC) COM63 COM48 COM49 COM47 COM46 FRS FR OTP_PWR OTP_PWR < COM34 COM33 CL СР COM32 VSS OPT /CS1 /CS1 SEG131 CS2 **SEG130** /RES /RES **SEG129** A0 A0 **SEG128** /WR /WR **SEG127** /RD /RD D[0..7] D0 D1 D2 D3 D4 D5 D6 D7 DUTY0 DUTY1 VDD VDD VDD3 VDD2 VSS VSS3 VSS VSS2 V1 V2 V3 SEG4 V4 SEG3 V0 SEG2 SEG1 SEG0 CLS C1 COMS C86 COM0 P/S COM1 vss COM15 COM16 COM30 COM13 COM14

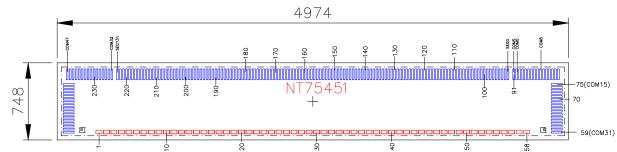
2007/07/18 61 Ver 0.02 With respect to the information represented in this document, Novatek makes no warranty, expressed or implied, including the warranties of merchantability, fitness for a particular purpose, non-infringement, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any such information.

Application information for Pin Connection to MPU (for reference only)




2. 6800 MPU Mode: (DUTY0,1 = 11: 1/65duty, CP = 0 : 4x, CLS = 1: Internal display OSC.)

2007/07/18 62 Ver 0.02 With respect to the information represented in this document, Novatek makes no warranty, expressed or implied, including the warranties of merchantability, fitness for a particular purpose, non-infringement, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any such information.



2007/07/18 63 Ver 0.02 With respect to the information represented in this document, Novatek makes no warranty, expressed or implied, including the warranties of merchantability, fitness for a particular purpose, non-infringement, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any such information.

Bonding Diagram

4	FRS FR OTP_PWR OTP_PWR	-2080.5 -2007.5	-297.5	30	VDD3	00 F	
3 4	OTP_PWR		207 F		vDD3	36.5	-297.5
4	_		-297.5	31	VDD3	109.5	-297.5
		-1934.5	-297.5	32	VDD2	182.5	-297.5
	OIF_FWK	-1861.5	-297.5	33	VDD2	255.5	-297.5
5	CL	-1788.5	-297.5	34	VDD2	328.5	-297.5
6	CP	-1715.5	-297.5	35	VDD2	401.5	-297.5
7	VSS_OPT	-1642.5	-297.5	36	VSS	474.5	-297.5
8	/CS1	-1569.5	-297.5	37	VSS	547.5	-297.5
9	CS2	-1496.5	-297.5	38	VSS	620.5	-297.5
10	/RES	-1423.5	-297.5	39	VSS3	693.5	[©] -297.5
11	A0	-1350.5	-297.5	40	VSS3	766.5	-297.5
12	/WR	-1277.5	-297.5	41	VSS3	839.5	-297.5
13	/RD 🧹	-1204.5	297.5	42	VSS2	912.5	-297.5
14		-1131.5	-297.5	n 43	VSS2	985.5	-297.5
15	D0	-1058.5	-297.5	44	VSS2	1058.5	-297.5
16	DI	-985.5	-297.5	45	VSS2	1131.5	-297.5
17	D2	-912.5	-297.5	46	V1	1204.5	-297.5
18	D3	-839.5	-297.5	47	V2	1277.5	-297.5
19	D4	-766.5	-297.5	48	V3	1350.5	-297.5
20	D5	-693.5	-297.5	49	V4	1423.5	-297.5
21	D6	-620.5	-297.5	50	V0	1496.5	-297.5
22	D7	-547.5	-297.5	51	V0	1569.5	-297.5
23	DUTY0	-474.5	-297.5	52	V0	1642.5	-297.5
24	VSS_OPT	-401.5	-297.5	53	V0	1715.5	-297.5
25	DUTY1	-328.5	-297.5	54	VDD_OPT	1788.5	-297.5
26	VDD	-255.5	-297.5	55	CLS	1861.5	-297.5
27	VDD	-182.5	-297.5	56	C86	1934.5	-297.5
28	VDD	-109.5	-297.5	57	VSS_OPT	2007.5	-297.5
29	VDD3	-36.5	-297.5	58	P/S	2080.5	-297.5

2007/07/18

Ver 0.02

With respect to the information represented in this document, Novatek makes no warranty, expressed or implied, including the warranties of merchantability, fitness for a particular purpose, non-infringement, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any such information.

Pad No.	Designation	Х	Y	Pad No.	Designation	Х	Y
59	COM31	2375	-298.65	95	SEG3	1812.5	262
60	COM30	2375	-269.65	96	SEG4	1783.5	262
61	COM29	2375	-240.65	97	SEG5	1754.5	262
62	COM28	2375	-211.65	98	SEG6	1725.5	262
63	COM27	2375	-182.65	99	SEG7	1696.5	262
64	COM26	2375	-153.65	100	SEG8	1667.5	262
65	COM25	2375	-124.65	101	SEG9	1638.5	262
66	COM24	2375	-95.65	102	SEG10	1609.5	262
67	COM23	2375	-66.65	103	SEG11	1580.5	262
68	COM22	2375	-37.65	104	SEG12	1551.5	262
69	COM21	2375	-8.65	105	SEG13	1522.5	262
70	COM20	2375	20.35	106	SEG14	1493.5	262
71	COM19	2375	49.35	107	SEG15	1464.5	262
72	COM18	2375	78.35	108	SEG16	1435.5	262
73	COM17	2375	107.35	109	SEG17	1406.5	262
74	COM16	2375	136.35	110	SEG18	1377.5	262
75	COM15	2375	165.35	111	SEG19	1348.5	262
76	COM14	2389.5	262	112	SEG20	1319.5	262
77	COM13	2360.5	262	113	SEG21	1290.5	262
78	COM12	2331.5	262	114	SEG22	1261.5	262
79	COM11 🧹	2302.5	262	115	SEG23	1232.5	262
80	COM10	2273.5	262	116	SEG24	1203.5	262
81	COM9	2244.5	262	117	SEG25	1174.5	262
82	COM8	2215.5	262	118	SEG26	1145.5	262
83	COM7	2186.5	262	119	SEG27	1116.5	262
84	COM6	2157.5	262	120	SEG28	1087.5	262
85	COM5	2128.5	262	121	SEG29	1058.5	262
86	COM4	2099.5	262	122	SEG30	1029.5	262
87	COM3	2070.5	262	123	SEG31	1000.5	262
88	COM2	2041.5	262	124	SEG32	971.5	262
89	COM1	2012.5	262	125	SEG33	942.5	262
90	COM0	1983.5	262	126	SEG34	913.5	262
91	COMS	1954.5	262	127	SEG35	884.5	262
92	SEG0	1899.5	262	128	SEG36	855.5	262
93	SEG1	1870.5	262	129	SEG37	826.5	262
94	SEG2	1841.5	262	130	SEG38	797.5	262

2007/07/18

Ver 0.02

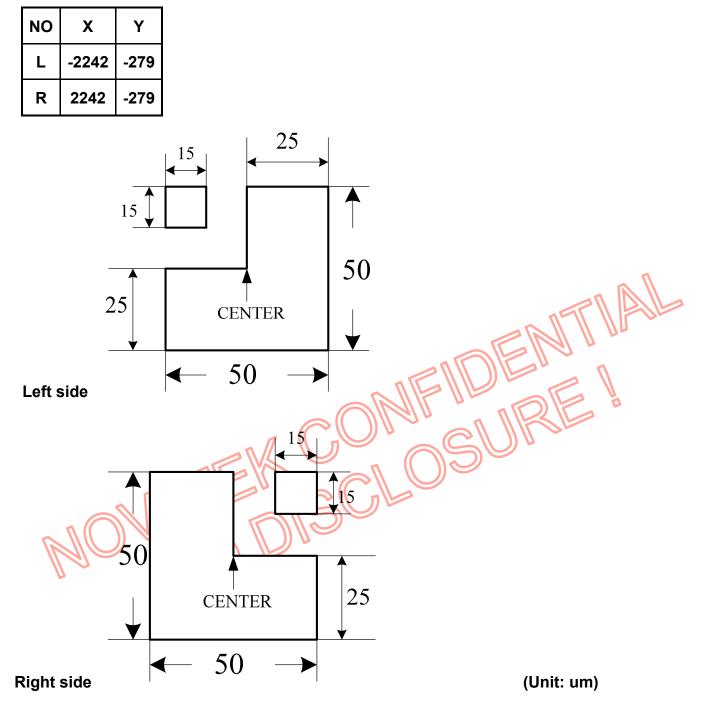
With respect to the information represented in this document, Novatek makes no warranty, expressed or implied, including the warranties of merchantability, fitness for a particular purpose, non-infringement, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any such information.

Pad No.	Designation	Х	Y	Pad No.	Designation	Х	Y
131	SEG39	768.5	262	167	SEG75	-275.5	262
132	SEG40	739.5	262	168	SEG76	-304.5	262
133	SEG41	710.5	262	169	SEG77	-333.5	262
134	SEG42	681.5	262	170	SEG78	-362.5	262
135	SEG43	652.5	262	171	SEG79	-391.5	262
136	SEG44	623.5	262	172	SEG80	-420.5	262
137	SEG45	594.5	262	173	SEG81	-449.5	262
138	SEG46	565.5	262	174	SEG82	-478.5	262
139	SEG47	536.5	262	175	SEG83	-507.5	262
140	SEG48	507.5	262	176	SEG84	-536.5	262
141	SEG49	478.5	262	177	SEG85	-565.5	262
142	SEG50	449.5	262	178	SEG86	-594.5	262
143	SEG51	420.5	262	179	SEG87	-623.5	262
144	SEG52	391.5	262	180	SEG88	-652.5	262
145	SEG53	362.5	262	181	SEG89	-681.5	262
146	SEG54	333.5	262	182	SEG90	-710.5	262
147	SEG55	304.5	262	183	SEG91	-739.5	262
148	SEG56	275.5	262	184	SEG92	-768.5	5 262
149	SEG57	246.5	262	185	SEG93	-797.5	262
150	SEG58	217.5	262	186	SEG94	-826.5	262
151	SEG59 🥖	188.5	262	187	SEG95	-855.5	262
152	SEG60	159.5	262	188	SEG96	-884.5	262
153	SEG61	130.5	262	189	SEG97	-913.5	262
154	SEG62	101.5	262	190	SEG98	-942.5	262
155	SEG63	72.5	262	191	SEG99	-971.5	262
156	SEG64	43.5	262	192	SEG100	-1000.5	262
157	SEG65	14.5	262	193	SEG101	-1029.5	262
158	SEG66	-14.5	262	194	SEG102	-1058.5	262
159	SEG67	-43.5	262	195	SEG103	-1087.5	262
160	SEG68	-72.5	262	196	SEG104	-1116.5	262
161	SEG69	-101.5	262	197	SEG105	-1145.5	262
162	SEG70	-130.5	262	198	SEG106	-1174.5	262
163	SEG71	-159.5	262	199	SEG107	-1203.5	262
164	SEG72	-188.5	262	200	SEG108	-1232.5	262
165	SEG73	-217.5	262	201	SEG109	-1261.5	262
166	SEG74	-246.5	262	202	SEG110	-1290.5	262

2007/07/18

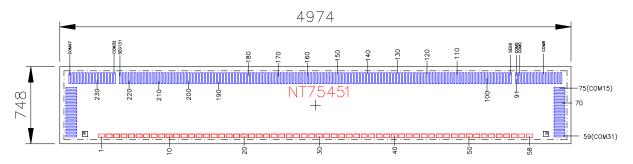
Ver 0.02

With respect to the information represented in this document, Novatek makes no warranty, expressed or implied, including the warranties of merchantability, fitness for a particular purpose, non-infringement, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any such information.



NT75451

Pad No.	Designation	Х	Y	Pad No.	Designation	Х	Y
203	SEG111	-1319.5	262	230	COM38	-2128.5	262
204	SEG112	-1348.5	262	231	COM39	-2157.5	262
205	SEG113	-1377.5	262	232	COM40	-2186.5	262
206	SEG114	-1406.5	262	233	COM41	-2215.5	262
207	SEG115	-1435.5	262	234	COM42	-2244.5	262
208	SEG116	-1464.5	262	235	COM43	-2273.5	262
209	SEG117	-1493.5	262	236	COM44	-2302.5	262
210	SEG118	-1522.5	262	237	COM45	-2331.5	262
211	SEG119	-1551.5	262	238	COM46	-2360.5	262
212	SEG120	-1580.5	262	239	COM47	-2389.5	262
213	SEG121	-1609.5	262	240	COM48	-2375	165.35
214	SEG122	-1638.5	262	241	COM49	-2375	136.35
215	SEG123	-1667.5	262	242	COM50	-2375	107.35
216	SEG124	-1696.5	262	243	COM51	-2375	78.35
217	SEG125	-1725.5	262	244	COM52	-2375	49.35
218	SEG126	-1754.5	262	245	COM53	-2375	20.35
219	SEG127	-1783.5	262	246	COM54	-2375	-8.65
220	SEG128	-1812.5	262	247	COM55	-2375	0 -37.65
221	SEG129	-1841.5	262	248	COM56	-2375	-66.65
222	SEG130	-1870.5	262	249	COM57	-2375	-95.65
223	SEG131 🥢	-1899.5	262	250	COM58	-2375	-124.65
224	COM32	-1954.5	262	251	COM59	-2375	-153.65
225	COM33	-1983.5	262	252	COM60	-2375	-182.65
22 6	COM34	-2012.5	262	253	COM61	-2375	-211.65
227	COM35	-2041.5	262	254	COM62	-2375	-240.65
228	COM36	-2070.5	262	255	COM63	-2375	-269.65
229	COM37	-2099.5	262	256	COMS	-2375	-298.65



Alignment Mark Location (Total: 2 pins)

Package Information

Pad Dimensions

ltem		Pad No.	$ \begin{array}{c c c c c c c } \hline Size \\ \hline X & Y \\ \hline 4974 & 748 \\ \hline 525 \\ \hline 73 \\ \hline 29 \\ \hline 55 \\ \hline 39 \\ 17 \\ 106 \\ \hline \end{array} $	ze	Unit	
item		Fau NO.	Х	Y	Unit um um µm	n
Chip size		-	4974	748	μm	
Chip thickness		-	52	25	μm	
		1~58		3	л Г	
	59~7	75,76~91				
Pad pitch	92	2~223	2	9 RE	μm μm	
	224~23	39,240~256				
	91~92	2,223~224		5		
	Output Pad	76~91,224~239 92~223	17	106		
Bump size	Output rad	59~75 240~256	106	17	μm	
	Input Pad	1~58	58	35	um um	
Bump height	AI	ll pads	15	± 3	μm	

Ordering Information

Part No.	Packages
NT75451H-D/3E	Gold Bump on Chip Tray

Cautions

1. The contents of this document will be subjected to change without notice.

VAIEKO

- 2. Precautions against light projection: Light has the effect of causing the electrons of semiconductor to move; so light projection may change the characteristics of semiconductor devices. For this reason, it is necessary to take account of effective protection measures for the packages (such as COB and COG, etc.) causing chip to be exposed to a light environment in order to isolate the projection of light on any part of the chip, including top, bottom and the area around the chip. Observe the following instructions in using this product:
 - a. During the design stage, it is necessary to notice and confirm the light sensitivity and
 - preventive measures for using IC on substrate (PCB, Glass or Film) or product.
 - b. Test and inspect the product under an environment free of light source penetration.
 - c. Confirm that all surfaces around the IC will not be exposed to light source.