

RA8815

128x33 Character/Graphic LCD Driver Specification

Version 2.2 July 1, 2006

RAIO Technology Inc. @Copyright RAiO Technology Inc. 2005, 2006

Update History							
Version	Date	Description					
1.0	November 26, 2004	First Release					
1.5	June 23, 2005	Modify the sequence of signals EL_CHRG and EL_DCHG.					
	June 23, 2003	Add Table 8-1: Bump Szie and Pitch					
		Update the Power Range and Table 9-2.					
	September 1, 2005	Modify the description of PBK_EN of REG[13h]BLTR.					
1.7		Modify the description of AUTO)SCR of REG[0Eh]SCCR.					
1.7		Modify Section 9-3-2 Serial Interface, the unit of Access Time					
		should be μs.					
		Modify the Figure A-7 and A-8 : ITO Layout Example.					
2.0	November 11, 2005	Update Figure 6-29					
		Modify Figure 6-15 and Figure 6-16: Memory Write/Read on					
2.1	January 10, 2006	6800(8-Bit) I/F.					
		Modify Table 6-2: Power Circuit Setup					
		Modify Table 8-1: Bump Size and Pitch					
2.2	July 1, 2006	Modify Figure 8-2 : Gold Bump PAD Dimension					
		Modify Figure 6-27: 4x5 Key Matrix Curcuit					

Chapter

Contents

Page

	General Description	
	Feature	
	Block Diagram	
4	Pin Definition	. 6
	4-1 MPU Interface	6
	4-2 LCD Panel Interface	7
	4-3 Clock and Power	8
	4-4 Misc	
5	Registers Description	10
	5-1 Register Table	10
	5-2 Register Contents	
6	Function Description	23
	6-1 MPU Interface	23
	6-1-1 Parallel Interface	23
	6-1-2 Serial Interface	24
	6-1-3 Register Read/Write	25
	6-1-4 Memory Read/Write	27
	6-2 Memory	29
	6-3 System Clock	29
	6-4 LCD Driver and Power Circuit	30
	6-4-1 Booster Circuit	31
	6-4-2 Voltage Regulator	32
	6-4-3 Voltage Follower	33
	6-4-4 LCD Driver	33
	6-5 Interrupt	34
	6-6 Key-Scan	34
	6-7 I/O Port	35
	6-8 EL Signals	35
	6-9 ASCII Block	36
	6-10 Power Control	37
7	Display Functions	38
	7-1 Text Mode	38
	7-2 Graphic Mode	38
	7-3 Cursor Setting	39
	7-3-1 Cursor Position and Shift	39
	7-3-2 Cursor Display and Blink	39
	7-3-3 Cursor Height	40
	7-4 Display Window.	40
	7-5 Horizontal Scroll	41

7-6 Vertical Scroll	
8. Pin Diagram	
8-1 COG Pad	
8-2 Pad X/Y Coordinate	
9. Electrical Characteristic	
9-1 Absolute Maximum Ratings	50
9-2 DC Characteristic	50
9-3 Timing Characteristic	
9-3-1 Parallel Interface	
9-3-2 Serial Interface	
9-3-3 Reset Interface	
Appendix A	56
A-1 COG Application	
A-1-1 Basic Connection of Serial I/F	
A-1-2 Basic Connection of Parallel I/F	
A-1-3 FPC Connection for Other Functions	
A-2 ITO	

1. General Description

The RA8815 is a Dot-Matrix LCD Driver that supports both character and graphic mode. It built-in a 256Kbyte character ROM that consists of Chinese, English and ASCII fonts. The embedded 528Byte display RAM supports up to 128x33 dots LCD panel. The RA8815 also provides a scrolling buffer memory for scrolling functions. It supports up, down, left and right scrolling features, and all of the scrolling is execute by hardware.

In character mode, the RA8815 supports Chinese BIG5 code or GB code. The system(MPU) does not need take a lot of time to show the Chinese font in graphic mode. It also provides small ASCII(8x8) and big ASCII(8x16) font for English character, Japanese, European and Latin. The RA8815 integrates much powerful hardware that including Contrast adjustment, 4x5 Key-Scan, eight General Purpose I/O and EL Backlight signals for EL driver.

The RA8815 is a high integration chip of LCD Controller. It reduce a lot of time for system develop, and save much cost for hardware system that due to it provides many features for related LCD display application.

2. Feature

- Support both Character and Graphic Mode
- Support 8080/6800 8/4-bit Parallel Interface and 3-Wire/4-Wire Serial Interface
- Built-in 256KB Font ROM: Chinese, English, ASCII, Japanese, Latin, Latin-ext A, Latin-ext B
- Support ASCII 8x8/8x16 Half Size Font, 16x16 Full Size Chinese Font
- Support Maximum 128Seg x 33Com LCD Panel. 2 x 8 Chinese Fonts(16x16), or 4 x 16 English Fonts(8x8)
- Built-in 528 Bytes Display RAM and 354Byte Scrolling Buffer
- Built-in 2X~3X(Voltage Booster), Voltage

Regulator, Voltage Follower

- Support 1/33 Duty, 1/6~1/4 Bias Panel
- Eight General Purpose I/O
- Built-in 4x5 Key-scan Circuit
- Support Horizontal/Vertical Scrolling Functions
- Built-in 256Byte SRAM for Create Font
- Provide Signals for EL Driver
- Provide 32-Steps Contrast Adjust
- Build-in RC Oscillator
- Voltage Operation: Chip → 2.5~3.6V , COG Module → 2.7~3.8V
- Package: Gold Bump Die

3. Block Diagram

The RA8815 is consist of Display RAM, 256Kbyte Font ROM, Command Registers, LCD Controller, LCD Driver, Voltage Booster, Voltage Regulator, MPU Interface and Key-Scan circuit.

Figure 3-2: Internal Block

4. Pin Definition

4-1 MPU Interface

Pin Name	I/O	Description
DB[70] DB0: SCK DB1: SDA/SDO DB2: RS/SDI DB3: CS DB[7:6]: SMOD	I/O	Data Bus When the MPU uses parallel mode and 8-bit then all of the DB[7:0] are valid. When use 4-bit then only DB[4:0] are valid, and DB[7:4] have to keep floating. When P/S is "0", then the interface between MPU and RA8815 is Serial Mode. The pins DB[7:6](SMOD[1:0]) are used to select which serial mode: SMOD: Serial Mode 0 X : 3-Wire, SCK, SDA, CS are used. 1 0 : 4-Wire, SCK, SDA, RS, CS are used. 1 1 : 4-Wire, SCK, SDO, SDI, CS are used.

r	1	
		In serial mode, all of the related signals are defined by DB[3:0]: SCK(DB0) : Serial Clock. SDA(DB1) : Bi-direction Mode Serial Data. SDO(DB1) : Data Out. RS(DB2) : Memory/Register Cycle Select. SDI(DB2) : Serial Data In. \overline{CS} (DB3) : Chip Select, active low. The unused pin must keep NC for serial mode.
		Read Control or Enable
RD EN	I	When use 8080 series interface, $\overline{\text{RD}}$ is the read signal and active low. When use 6800 series interface, EN is the Enable signal and active high. This pin must keep NC for serial mode.
		Write Control or Read-Write Control
WR		When use 8080 series interface, WR is the write signal and active low.
R/W	I	When use 6800 series interface, this pin is R/W, active high for read cycle and active low for write cycle. This pin must keep NC for serial mode.
		Data/Command Select or Register Select)
D/ C RS	I	When use 8080 series interface, this is Data or Command signal. When D/\overline{C} is "0", means Register Cycle(or Command Cycle). When D/\overline{C} is "1", means Data Access Cycle(Data Cycle). When use 6800 series interface, this is the RS signal. When RS is "0", means Register Cycle and "1" means Data Access Cycle. This pin must keep NC for serial mode.
CS	I	Chip Select This is a chip enable for RA8815. This pin must keep NC for serial mode.
INT	0	Interrupt Signal This is an interrupt output for MPU. Active low ∘
C86	I	 MPU Select C86 = 0 → The MPU interface is 8080 series. C86 = 1 → The MPU interface is 6800 series(Default). This pin must keep NC for serial mode.
BIT4	I	Data Bit Select BIT4 = 0→ The parallel mode is use 8-bit data bus. BIT4 = 1→ The parallel mode is use 4-bit data bus(Default). This pin must keep NC for serial mode.
P/S	I	Parallel/Serial Select P/ \overline{S} = 0 → The MPU interface is serial mode(Default). See the setting of DB[7:6]. P/ \overline{S} = 1 → The MPU interface is parallel mode.
1		

4-2 LCD Panel Interface

Pin Name	I/O	Description
SEG0 ~ SEG127	0	Segment Signals for Panel
COM0 ~ COM31	0	Common Signals for Panel

COMS_A[1:0] COMS_B[1:0]	0	Icon Common Signals for Panel
DUM_L DUM_R	0	Dummy PAD

4-3 Clock and Power

Pin Name	I/O	Description
RA, RB	I	Resister Input These are used to connect a resistor for internal oscillator.
V0~V4	0	Voltage Source of LCD Driver The relationship of the power is VLCD>VREG \geq V0 \geq V1 \geq V2 \geq V3 \geq V4 \geq VSS \circ
C1P, C1M	I	Capacitor Input These are used to connect a capacitor for internal Booster.
C2P, C2M	I	Capacitor Input These are used to connect a capacitor for internal Booster.
VLCD	0	Booster Output
VREF	I	Reference Voltage Input This is the refeence voltage input when use an external regulator.
VREG	I	Voltage Regulator Output When the internal voltage regulator is disable, this pin is connect to VLCD and used to generate V0~V4.
CLK_SEL	I	Clock Select This pin is used to select the clock source. When CLK_SEL "1", the clock is generated by internal oscillator and the external resistor that connect on RA and RB. When CLK_SEL is "0", the system clock is drive by external pin - EXT_CLK.
EXT_CLK	I	External Clock When CLK_SEL is "0", this pin is the external clock input. When CLK_SEL is "1", this pin do not used and has to connect VDD or GND.
VDD VDDP	Р	VDD Power
GND GNDP	Ρ	Ground

4-4 Misc.

Pin Name	I/O	Description					
KST[30]	0	Key Strobe Output					
KIN[40]	I	ey Data Input he unused pins keep floating(NC).					
IO[70]	I/O	General Purpose I/O					
EL_CHRG	0	EL Charge Signal					
EL_DCHG	0	EL Discharge Signal					
RST	I	Reset					
TEST[2:0]		Test Pins					
S[1:0], FG		These pins must keep NC for normal mode.					

			Parall	el Mode		Serial Mod	e	
Pin Name	I/O	8	8080		300	3-Wire	4-Wire	4-Wire
		8Bit	4Bit	8Bit	4Bit	3-wire	(A-Typ)	(B-Typ)
DB7	I/O	DB7		DB7		0	1	1
DB6	I/O	DB6		DB6		Х	0	1
DB5	I/O	DB5		DB5				
DB4	I/O	DB4		DB4				
DB3	I/O	DB3	DB3	DB3	DB3	CS	CS	CS
DB2	I/O	DB2	DB2	DB2	DB2		RS	SDI
DB1	I/O	DB1	DB1	DB1	DB1	SDA	SDA	SDO
DB0	I/O	DB0	DB0	DB0	DB0	SCK	SCK	SCK
RD , EN	Ι	RD	RD	EN	EN			
\overline{WR} , R/ \overline{W}	Ι	WR	\overline{WR}	R/W	R/W			
D/\overline{C} , RS	Ι	D/C	D/ C	RS	RS			
CS	Ι	CS	CS	CS	CS			
C86	Ι	0	0	1	1			
BIT4	I	0	1	0	1			
P/S	I	1	1	1	1	0	0	0

Table 4-1: Pin Definition of Parallel/Serial Mode of MPU

"X" : 0 or 1(Do not care).

"--" : Not used, keep floating(NC).

5. Registers Description

5-1 Register Table

ID	Name	D7	D6	D5	D4	D3	D2	D1	D0	Description	
0	DWFR	B/C		NW5	NW4	NW3	NW2	NW1	NW0	Wave Form Select	
1	PWRR	SRST	MCLR			KWK	IOWK	DOFF_Z	SLP	Power Control	
2	SYSR	LS3	LS2	LS1	LS0	GB_EN		RS1	RS0	System Setting	
3	MWMR	BMOD1	BMOD0	BIEN	ASCS	BOLD	INV	MD1	MD0	Memory Mode	
4	CURCR	H3	H2	H1	H0		BLK	CR	CUR_E N	Cursor Control	
5	X-CUR			X5	X4	X3	X2	X1	X0	Cursor X Position	
6	Y-CUR		Y6	Y5	Y4	Y3	Y2	Y1	Y0	Cursor Y Position	
7	KEYR	KSB	KDB1	KDB0	KSTB_S EL	K_AUTO	IRE	KF1/ KSTB1	KF0/ KSTB0	Key-scan Control	
1	KSDR	SIRQ	KSTB1	KSTB0	KSD4	KSD3	KSD2	KSD1	KSD0	Key-scan Data	
	NODR	SIRQ	AKD6	AKD5	AKD4	AKD3	AKD2	AKD1	AKD0	Rey-scan Data	
8	SWSXR				SSX4	SSX3	SSX2	SSX1	SSX0	X-Scroll Start	
9	SWSYR			SSY5	SSY4	SSY3	SSY2	SSY1	SSY0	Y-Scroll Start	
А	SWRXR				SRX4	SRX3	SRX2	SRX1	SRX0	X-Scroll Range	
В	SWRYR			SRY5	SRY4	SRY3	SRY2	SRY1	SRY0	Y-Scroll Range	
С	SCOR	SL7	SL6	SL5/SR5	SL4/SR4	SL3/SR3	SL2/SR2	SL1/SR1	SL0/SR0	Scroll Unit	
D	ASCR	SPD3	SPD2	SPD1	SPD0	STP3	STP2	STP1	STP0	Auto Scroll Control	
Е	SCCR	SCR_IM D1	SCR_IM D0	SCR_M D	SBUF	SCR_DI R1	SCR_DI R0	SCR_IN TEN	AUTO_S CR	Scroll Control	
F	ISR	BF		-	-	-	SCR_I	KI	BI	Interrupt Status	
10	CSTR	BR2	BR1	BR0	CT4	CT3	CT2	CT1	CT0	Contrast	
11	DRCR_A	BOFF	EN_R	EN_G	ROFF		TMPS	CDIR	SDIR	Driver Control	
12	DRCR_B	CK_BS1	CK_BS0	RR2	RR1	RR0	HD2	HD1	HD0	Driver Control	
13	BLTR	BLK_EN	PBK_EN		GINV	BLT3	BLT2	BLT1	BLT0	Blink Setting	
14	IODR	OE7	OE6	OE5	OE4	OE3	OE2	OE1	OE0	IO Port Direction	
15	IODAR	IOD7	IOD6	IOD5	IOD4	IOD3	IOD2	IOD1	IOD0	IO Port Data	
16	ELCR	EL_EN				ELT3	ELT2	ELT1	ELT0	EL Control	
17	CGMI						UMI2	UMI1	UMI0	Create Font Select	
18	CGMD	CGMD7	CGMD6	CGMD5	CGMD4	CGMD3	CGMD2	CGMD1	CGMD0	Create Font Data	

Table 5-1: Register Table

5-2 Register Contents

The RA8815 accept two Command Cycle from MPU. One is Register Cycle(RS = 0) and the other is Memory Cycle(RS = 1). The MPU has to assign the register number of RA8815 that before access these registers. Therefore, the first byte that MPU pass to RA8815 will be store into Index Register. And RA8815 will assume the next byte is read from or write into the register which Index Register assigned.

IR (Index Register)

RW	RS	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	ID4	ID3	ID2	ID1	ID0

ID[4:0]: These bits are used to store the register number that MPU want to access on next cycle.

The ID[[4:0] provide 32 register number(00h~1Fh). But currently the RA8815 only used 25 registers (00h~18h). All of these registers are be initially to "00h" after RESET.

Memory Data (RAMD)

RW	RS	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0/1	1	D7	D6	D5	D4	D3	D2	D1	D0

If RS is "1", It means MPU execute the Memory Cycle for RA8815. When RW is "0", MPU will write data to Display RAM or ICON RAM that according the setting of MD[1:0](REG[03h] bit1-0). For example, MPU write Big5/CG code to memory in Text Mode, or write bitmap data to display memory in Graphic mode. When RW is "1", the MPU read data from different paths of RA8815. It depend on the operation mode as following:

- 1. Full Size Text Mode: From up to down of Left side(16-Bytes), and then up to down of Right side(16-Bytes), total is 32-Bytes.
- 2. Half Size Text Mode: From up to down, total 16-Bytes data.
- 3. Small ASCII Text Mode: From up to down, total 8-Bytes data.
- 4. Graphics Mode: From left to right, each reading is one byte(8-Pixels).

[00h] Driver Waveform Register (DWFR)

RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	B/C		NW5	NW4	NW3	NW2	NW1	NW0

B/C: Select waveform of drive. $0 \rightarrow B$ -Type waveform. $1 \rightarrow C$ -Type waveform.

NW[5:0]: These bits are used to assign the Segment/Row number that when internal Frame signals can to it and want to change the state. This function support only when B/C is "1" (C-Type wave form).

[01h] Power Control Register (PWRR)

RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	SRST	MCLR			KWK	IOWK	DOFF_Z	SLP

SRST: S/W reset. 1 \rightarrow All of the register will be initialed again except the display memory. 0 \rightarrow No action. **MCLR:** Clear memory. 1 \rightarrow Clear the Display RAM data to "00h". 0 \rightarrow No action. If both MCLR and SRST

set to "1" then RA8815 will clear the display RAM and then Reset.

KWK: Key-scan wake up Setting. $0 \rightarrow$ Key-scan Wake up function off. $1 \rightarrow$ Key-scan wake up function on. **IOWK:** I/O wake up Setting. $0 \rightarrow$ IO port wake up function off. $1 \rightarrow$ IO port wake up function on.

DOFF_Z: Display off. 0 \rightarrow LCD driver and display off. 1 \rightarrow LCD driver and display on.

SLP: Sleep mode setting. 1 → Enter sleep mode, and turn off the clock. 0 → RA8815 wake up. This bit was clear to "0" when wake up from I/O port or Key-scan.

[02h] System Register (SYSR)

RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	LS3	LS2	LS1	LS0	GB_EN		RS1	RS0

LS[3:0]: Setup the segment number. The maximum segment of RA8815 is 128.

LS3	LS2	LS1	LS0	Line No.
0	0	0	0	16
0	0	0	1	32
0	0	1	0	48
0	0	1	1	64
0	1	0	0	80
0	1	0	1	96
0	1	1	0	112
0	1	1	1	128
1	0	0	0	Reserved
				Reserved
1	1	1	1	Reserved

GB_EN: Setup the GB code or BIG5 code. $1 \rightarrow$ GB Code. $0 \rightarrow$ BIG5 Code.

RS[1:0]: Setup the common number. The maximum common of RA8815 is 32(Not including Icon).

RS1	RS0	Row No.
0	0	16
0	1	32
1	0	Reserved
1	1	Reserved

[03h] Memory Write Mode Register (MWMR)

ſ	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
	0	BMOD1	BMOD0	BIEN	ASCS	BOLD	INV	MD1	MD0

BMOD[1:0]: Setup the range for memory written.

BMOD1	BMOD0	Memory Range of Write
0	0	Normal Display Range
0	1	Display Range + Scroll-Buffer
1	х	Scroll-Buffer

BIEN: Busy interrupt control. 1 → Busy interrupt enable (After write data to memory). 0 → Busy interrupt disable.

ASCS: Select ASCII Table ∘ 0 → Select ASCII Table-1. 1 → Select ASCII Table-2. Refer Chapter 6-9.

BOLD: Select Bold Font to write Display RAM. $0 \rightarrow$ Normal font. $1 \rightarrow$ Bold font.

INV: Select reverse font to write Display RAM. $0 \rightarrow$ Normal font. $1 \rightarrow$ Reverse font.

MD[1:0]: Select operation mode for Display RAM.

MD1	MD0	Operation Mode
0	0	Graphic Mode
0	1	Small ASCII (8X8)
1	0	Big ASCII(8X16)

When Full-Size mode(MD[1:0] = 11), if the first byte data is less than 80h, RA8815 will assume it's an ASCII code and show the Big ASCII font. But if want to show the Big ASCII font that code is large than 80h, then the operation mode has to change to Big ASCII mode(MD[1:0] = 10).

[04h] Cursor Control Register (CURCR)

RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	H3	H2	H1	H0	-	BLK	CR	CUR_EN

H[3:0]: Setup the cursor height.

H3	H2	H1	H0	Height (Pixel)
0	0	0	0	1
0	0	0	1	2
0	0	1	0	3
0	0	1	1	4
0	1	0	0	5
0	1	0	1	6
0	1	1	0	7
0	1	1	1	8
1	0	0	0	9
1	0	0	1	10
1	0	1	0	11
1	0	1	1	12
1	1	0	0	13
1	1	0	1	14
1	1	1	0	15
1	1	1	1	16

In Small ASCII mode(8X8), the H3 is reserved. The setting of cursor height is only form $1\sim8pixels(H[3:0] = x000b\simx111b)$.

BLK: Cursor blink select. $0 \rightarrow$ No Blinking. $1 \rightarrow$ Cursor Blinking. **CR:** Cursor return. $0 \rightarrow$ No action. $1 \rightarrow$ Cursor return. Cursor will return to the left of panel. **CUR_EN:** Cursor display select. $0 \rightarrow$ Cursor hides. $1 \rightarrow$ Cursor Display.

[05h] Cursor Position Register of X (X-CUR)

RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0			X5	X4	X3	X2	X1	X0

X[5:0]: Setup the cursor position on segment. The unit is 8-pixels. Because maximum segment of RA8815 is 128-pixels, therefore the range of X[5:0] is 0~Fh. When the X[5:0] is 20h or 21h, then the cursor position is assign to horizontal Scroll-Buffer.

[06h] Cursor Position Register of Y (Y-CUR)

_		-	-	-				
RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0		Y6	Y5	Y4	Y3	Y2	Y1	Y0

Y[6:0]: Setup the cursor position on common. The unit is 1-pixels. Because maximum common of RA8815 is 32-pixels, therefore the range of Y[6:0] is 0~1Fh. When the Y[6:0] is 40h~4Fh, then the cursor position is assign to vertical Scroll-Buffer. When Y[6:0] is 50h then cursor is located at COMS(Icon).

[07h] Key-scan Control Register (KEYR) (Write Only)

RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	KOD			KSTB_SE		וסר	KF1/	KF0/
0	KSB	KDB1	KDB0	L	K_AUTO	IRE	KSTB1	KSTB0

KSB: Key-scan control. $0 \rightarrow$ Key-scan disable. $1 \rightarrow$ Key-scan enable.

KDB[1:0]: Setup the de-bounce times of Key-scan in Auto-Mode. The one time means the time that Keyscan for one loop.

KDB1	KDB0	Times
0	0	8
0	1	16
1	0	32
1	1	64

- **KSTB_SEL:** In non-Auto-mode, 0 → the DB[1:0] are defined as KF[1:0]. 1 → The DB[1:0] are defined as KSTB[1:0] In Auto-Mode, the DB[1:0] is also defined as KF[1:0].
- K_AUTO: Setup the scan mode. 1 → Auto-Mode. The RA8815 will auto detect the key and store the code into AKD[6:0] for MPU reading. 0 → Non-Auto-Mode. The RA8815 will not store the code to AKD[6:0]. The MPU has to read data from KSTB[1:0] and KSD[4:0] to make sure which key was pressed. Of course, MPU could know if not only one key pressed at the same time In Non-Auto-Mode.
- **IRE:** Setup the Interrupt of Key-scan. 0 → Hardware Interrupt disable while key was pressed. 1 → Generate hardware interrupt while key was pressed.
- **KF[1:0]:** Setup the frequency of Key-scan.

KF1	KF0	Pulse Width	Key-scan Cycle Time (4x5)
0	0	256us	1.024ms
0	1	512us	2.048ms
1	0	1.024ms	4.096ms
1	1	2.048ms	9.182ms

KSTB[1:0]: In Non-Auto-Mode, These two bits are used to setup the strobe for the Row of key matrix. If any key pressed, the MPU can read data from KSTB[1:0] and KSD[4:0] to make sure which key was pressed. The strobe data are also readable from Bit[6:5] of register KSDR.

[07h] Key-scan Data Register (KSDR) (Read Only)

If K_AUTO = 0:

RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
1	SIRQ	KSTB1	KSTB0	KSD4	KSD3	KSD2	KSD1	KSD0

SIRQ: Indicate the interrupt of Key-scan. This bit was clear when REG[0Fh] bit 1 write "0".

KSTB[1:0]: These two bit show which pin of KST[3:0] active.

KSD[4:0]: KIN Return Data. These bits are used in Non-Auto-Mode. The MPU can read data from KSTB[1:0] and KSD[4:0] to make sure which key was pressed.

If K_AUTO = 1:

RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
1	SIRQ	AKD6	AKD5	AKD4	AKD3	AKD2	AKD1	AKD0

SIRQ: Indicate the interrupt of Key-scan. This bit was clear when REG[0Fh] bit 1 write "0".

AKD[6:0]: Scan Data(Code). In Auto–Mode, the MPU read data from this register to know the status of key matrix. The RA8815 supports 4x5 key matrix -- total 20Keys. The BCD number of 0~19h are mapping to these keys.

AKD[6:0]	Scan Data
0~19h	Key No. Input
20~39h	Long Key No. Input
42	Key Release
Other	Reserved

[08h] Scroll Window Start X Register (SWSXR)

RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0				SSX4	SSX3	SSX2	SSX1	SSX0

SSX[4:0]: When the shift direction is from right to left, then these bits are used to setup Segment (X) start point of scroll window. The unit is half size width(8-Pixels).

Note: When the shift direction is from left to right, these bits have to set 0.

[09h] Scroll Window Start Y Register (SWSYR)

RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0			SSY5	SSY4	SSY3	SSY2	SSY1	SSY0

SSY[5:0]: Setup the Common (Y) start point of scroll window. The unit is pixel.

[0Ah] Scroll Window Rang X Register (SWRXR)

RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0				SRX4	SRX3	SRX2	SRX1	SRX0

SRX[4:0]: Setup Segment (X) offset of scroll window. The unit is half size width(8-Pixels).

Note:

1. SRX must large or equal than 1, that means the minimum scroll range of X is 16 pixels.

2. The "SSX+SRX" can not exceed the range of Segment (X) of LCD panel. For example, if the panel resolution is 96x32, then SSX+SRX must less than 96/8=12. That means the maximum of "SSX+SRX" is 11.

[0Bh] Scroll Window Rang Y Register (SWRYR)

RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0			SRY5	SRY4	SRY3	SRY2	SRY1	SRY0

SRY[5:0]: Setup the Common (Y) offset of scroll window. The unit is pixel.

Note:

1. SRY must large or equal than 1, that means the minimum scroll range of Y is 2 pixels.

2. The "SSY+SRY" can not exceed the range of Common (Y) of LCD panel. For example, if the panel

resolution is 96x32, then SSY+SRY must less than 32. That means the maximum of "SSY+SRY" is 31.

[0Ch] Scroll Offset Register (SCOR)

RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	SL7	SL6	SL5/SR5	SL4/SR4	SL3/SR3	SL2/SR2	SL1/SR1	SL0/SR0

SL[7:0]: Setup the shift unit of horizontal scroll. The unit is pixel and active when register SCR_MD1 (REG[0Eh]bit 3) is clear to "0".

SR[5:0]: Setup the shift unit of vertical scroll. The unit is pixel and active when register SCR_MD1 (REG[0Eh]bit 3) is set to "1".

In auto scroll mode, this register is also used to setup the start position of scroll of Common or Segment.

[0Dh] Auto-Scroll Control Register (ASCR)

RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	SPD3	SPD2	SPD1	SPD0	STP3	STP2	STP1	STP0

SPD[3:0]: Setup the speed of auto scroll.

SPD3	SPD2	SPD1	SPD0	Scroll Time
0	0	0	0	1 Unit
0	0	0	1	3 Units
0	0	1	0	5 Units
0	0	1	1	7 Units
0	1	0	0	17 Units
0	1	0	1	19 Units
0	1	1	0	21 Units
0	1	1	1	23 Units
1	0	0	0	129 Units
1	0	0	1	131 Units
1	0	1	0	133 Units
1	0	1	1	135 Units
1	1	0	0	145 Units
1	1	0	1	147 Units
1	1	1	0	149 Units
1	1	1	1	151 Units

1 Unit = 1 Frame Times

STP[3:0]: Setup the shift unit on auto scroll mode.

STP3	STP2	STP1	STP0	Shift Pixel
0	0	0	0	1
0	0	0	1	2
0	0	1	0	3
0	0	1	1	4
0	1	0	0	5
0	1	0	1	6
0	1	1	0	7
0	1	1	1	8
1	0	0	0	9
1	0	0	1	10
1	0	1	0	11
1	0	1	1	12
1	1	0	0	13
1	1	0	1	14
1	1	1	0	15
1	1	1	1	16

[0Eh] Scroll Control Register (SCCR)

RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	SCR_IM	SCR_IM	SCR_MD	SBUF	SCR_DI	SCR_DI	SCR_INT	AUTO_S
0	D1	D0			R1	R0	EN	CR

SCR_IMD[1:0]: The definition is as following and they are available at Auto–Scroll-Mode.

0X: Setup 1-pixel shift to caused interrupt(SCR_INTEN must be 1).

10: Setup 8-pixel shift to caused interrupt(SCR_INTEN must be 1)

11: Setup 16-pixel shift to caused interrupt(SCR_INTEN must be 1)

SCR_MD: Scroll Mode Select. 0 → Non-Auto-Scroll, the scroll offset clear to "0". 1→ Auto-Scroll Mode.
 SBUF: Scroll-Buffer Control. 0 → Scroll-Buffer disable. The scroll will not including the Scroll-Buffer, only for display area. 1→ Scroll-Buffer enable. The scroll area is including the display and Scroll-Buffer.
 SCR_DIR[1:0]: Select the direction of scroll.

SCR_DIR1	SCR_DIR0	Direction of Scroll			
0	0	Left to Right(Horizontal)			
0	1	Right to Left(Horizontal)			
1	0	Up to Down(Vertical)			
1	1	Down to Up(Vertical)			

SCR_INTEN: Setup the scroll interrupt. 0 → Scroll interrupt disable. 1 → In auto scroll mode, when scroll 1, 8 or 16-pixels generate an interrupt to MPU.

AUTO_SCR: Auto-Scroll control. $0 \rightarrow$ Stop the Auto-Scroll. If want to close the Auto-Scroll mode or display new data on the screen, then the Bit5 - SCR_MD must clear to 0 first. $1 \rightarrow$ Auto-Scroll going.

[0Fh] Interrupt Status Register (ISR)

RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
1	BF					SCR_I	KI	BI

BF: Busy Flag. 1 → Display RAM is in busy(Data Write). 0 → Display RAM is idle(Write complete).

SCR_I: Scroll interrupt. 1 \rightarrow Interrupt for scroll complete $, 0 \rightarrow$ No scroll Interrupt.

KI: Key-scan interrupt. 1 \rightarrow Interrupt for key pressed. 0 \rightarrow No Key pressed Interrupt.

BI: Busy Interrupt. 1 → Interrupt for the activity of writing data to display RAM completed. 0 → No busy Interrupt

[10h] Contrast Adjust Register (CSTR)

RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	BR2	BR1	BR0	CT4	CT3	CT2	CT1	CT0

BR[2:0]: Setup the LCD Bias(Base on 128x33).

BR2	BR1	BR0	Bias
0	0	0	1/4
0	0	1	1/4.5
0	1	0	1/5
0	1	1	1/5.5
1	0	0	1/6
1	0	1	1/6.5
1	1	Х	1/7

CT[4:0]: Setup the Contrast(32 Level). Normally depend on the liquid, power and panel size to adjust the best display quality.

CT4	CT3	CT2	CT1	СТ0	Contrast
0	0	0	0	0	Light
0	0	0	I		
		:			
		▼			
1	1	1	1	1	Dark

[11h] Driver Control Register1 (DRCR_A)

RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	BOFF	EN_R	EN_G	ROFF	-	-	CDIR	SDIR

- **BOFF:** Booster control. 1 → Internal Booster enable. 0→ Internal Booster disabled and used external voltage.
- EN_R: Reference voltage control. 1 → Internal reference voltage enable for Regulator. 0 → Disable the internal reference voltage. The Regulator use external reference voltage.
- EN_G: VREG control. 1 → The VREG is generated by internal Regulator. 0 → Use external VREG, and the EN_R and BOFF have to clear "0"(Off) to reduce power consumption.
- **ROFF:** Voltage Follower control. 1 → Internal Voltage Follower enable for LCD Bias voltage. 0 → Disable

internal Voltage Follower, and use external voltage to generate LCD Bias voltage. If use external Voltage Follower, then EN_G, EN_R and BOFF have to clear "0"(Off) to reduce power consumption.

- **CDIR:** Common sequency select. 0 → Pins COM0~31 are mapping to Common 0~31. 1→ Pins COM0~31 are mapping to Common 31~0.
- SDIR: Segment sequency select. 0 → Pins SEG0~127 are mapping to Segment 0~127. 1→ Pins SEG0~127 are mapping to Segment 127~0.

[12h]	1 Driver	Control	Register	(DRCR	B)
L				(=	/

			0	. –	,				
ſ	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
	0	CK_BS1	CK_BS0	RR2	RR1	RR0	HD2	HD1	HD0

CK_BS[1:0]: Select the clock of Booster. Assume the RC oscillator clock is 45KHz.

CK_BS1	CK_BS0	Clock of Booster
0	0	SYS_CLK/2 → 22.5KHz
0	1	SYS_CLK/4 → 11.25KHz
1	0	SYS_CLK/6 → 7.5KHz
1	1	SYS_CLK/8 → 5.625KHz

RR[2:0]: Setup the Resistor Ratio of Regulator. The ratio is V_{REF} : V_{REG} .

RR2	RR1	RR0	Resistor Ratio
0	0	0	X2
0	0	1	X2.5
0	1	0	X3
0	1	1	X3.5
1	0	0	X4
1	0	1	X4.5
1	1	0	X5
1	1	1	

Note: The VREF is 1.6V.

HD[2:0]: Setup the LCD driving current. Normally big panel use bigger driving current to void bad display quality.

HD2	HD1	HD0	Driving Current
0	0	0	Min
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	↓ ↓
1	1	1	Max

[13h] Blink Timer Register (BLTR)

RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	BLK_EN	PBK_EN		GINV	BLT3	BLT2	BLT1	BLT0

BLK_EN: Blinking. $0 \rightarrow$ Blinking off. $1 \rightarrow$ Blinking on.

PBK_EN: Whole or Partial Blinking selection. 0 → Whole screen Blinking. 1 → Partial screen Blinking. The blinking area is depending on the scroll window. That means the partial area is setting by register SWSXR, SWSYR, SWRXR and SWRYR. When the Partial Blinking off, the above four registers had better clear to 0. Note, only BLK_EN set to "1" when blink is active.

GINV: Setup display reverse. $0 \rightarrow$ Normal display. $1 \rightarrow$ Display reverse.

BLT[3:0]: Setup blinking time.

BLT3	BLT2	BLT1	BLT0	Blink Time (Unit: Frames)
0	0	0	0	8
0	0	0	1	16
0	0	1	0	24
0	0	1	1	32
0	1	0	0	40
0	1	0	1	48
0	1	1	0	56
0	1	1	1	64
1	0	0	0	72
1	0	0	1	80
1	0	1	0	88
1	0	1	1	96
1	1	0	0	104
1	1	0	1	112
1	1	1	0	120
1	1	1	1	128

[14h] IO Direction Control Register (IODR)

ſ	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
	0	OE7	OE6	OE5	OE4	OE3	OE2	OE1	OE0

OE[7:0]: Select the I/O port direction. $0 \rightarrow$ Input. $1 \rightarrow$ Output.

[15h] IO Data Register (IODAR)

RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	IOD7	IOD6	IOD5	IOD4	IOD3	IOD2	IOD1	IOD0

IO[7:0]: This register stores the input data of I/O port when I/O port is input mode.

[16h] EL Control Register (ELCR)

RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	EL_EN				ELT3	ELT2	ELT1	ELT0

EL_EN: EL signals output . $0 \rightarrow \text{Off. } 1 \rightarrow \text{On.}$

ELT[3:0]: Setup the output time of EL signals. The following table is base on the RC oscillator fix at 45KHz. The output time is longer when RC oscillator clock is slower.

ELT3	ELT2	ELT1	ELT0	Output Time(Sec)
0	0	0	0	1
0	0	0	1	2
0	0	1	0	4
0	0	1	1	6
0	1	0	0	8
0	1	0	1	10
0	1	1	0	12
0	1	1	1	14
1	0	0	0	16
1	0	0	1	18.
1	0	1	0	20
1	0	1	1	22
1	1	0	0	24
1	1	0	1	26
1	1	1	0	28
1	1	1	1	30

[17h] CGRAM Register (CGMI)

RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0			-	-	-	UMI2	UMI1	UMI0

UMI[2:0]: Select the create font number. The RA8815 allow user create eight 16x16 full size font. The mapping font code is FFF0h~FFF7h.

UMI2	UMI1	UMI0	Font Code
0	0	0	FFF0h
0	0	1	FFF1h
0	1	0	FFF2h
0	1	1	FFF3h
1	0	0	FFF4h
1	0	1	FFF5h
1	1	0	FFF6h
1	1	1	FFF7h

[18h] CGRAM Data Register (CGMD)

RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	CGMD7	CGMD6	CGMD5	CGMD4	CGMD3	CGMD2	CGMD1	CGMD0

CGMD[7:0]: This register is used to transfer or read the data of 16x16 full size font. The MPU write

continuous 32-bytes data of bit-map of 16x16 full size font into this register that after program the REG[17h]. If user want to show the self-create font, just write the two bytes font code to RA8815.

6. Function Description

6-1 MPU Interface

6-1-1 Parallel Interface

The MPU interface of RA8815 supports both 8080 and 6800 series with in 4-Bit or 8-bit bus width. If the "C86" connects to GND, then the MPU is defined as 8080 type interface. If pin "C86" connects to VDD, then it's defined as 6800 type interface. Refer to the Figure 6-2.

If the pin "BIT4" connects to GND, then the bus width of MPU interface is 8-Bit. If the pin "BIT4" connects to VDD, then the bus width is 4-Bit. And only the DB[3:0] of data bus are available.

Figure 6-1: 8080 (4/8-Bit) MPU Interface

Figure 6-2: 6800 (4/8-Bit) MPU Interface

6-1-2 Serial Interface

The RA8815 aslo support three type serial interface. One is 3-Wires and the others are 4-Wires(A-Type, B-Type). This feature is control by the pin "P/ \overline{S} " and DB[7:6]. Refer to Table 4-1. In serial mode the DB[7:6] are used as SMOD[1:0] to select the different serial mode. Please also refer to Table 6-1. The Figure 6-3 to 6-5 are the interface diagram of MPU and RA8815 which in serial mode.

SMOD	Serial Mode Interface					
0 X	3-Wires. Use signals SCK, SDA and \overline{CS} .					
1 0	4-Wires (A-Type). Use signals SCK, SDA, RS and $\overline{\text{CS}}$.					
1 1	4-Wires (B-Type). Use signals SCK, SDO, SDI and $\overline{\text{CS}}$.					

Table 6-1

Figure 6-3: 3-Wires MPU interface

Figure 6-5: 4-Wires(B-Type) MPU interface

6-1-3 Register Read/Write

The RA8815 accepts two access cycles from MPU. One is read data from register or write data to register. Another is read data from memory or write data to memory. As description of Chapter 5-2, MPU must tell the RA8815 that which register will be access. Therefore the first data that write to RA8815 is to select the register number. And the second data is the exact data that writing into or reading from this register.

Because the features of RA8815 are controlled by the contents of internal registers, so if we write data to register is like to give a command to RA8815. Therefore we can say that the Register Access Cycle is same as Command Cycle.

The Figure 6-6 and 6-7 show the register access timing of 8080 MPU(8-Bit) with RA8815. Figure 6-8 and 6-9 show the register access timing of 6800MPU(8-Bit) interface. Figure 6-10 to 6-12 show the register access timing of serial interface.

Figure 6-6: Register Wrie on 8080(8-Bit) I/F

DATA

Figure 6-8: Register Write on 6800(8-Bit) I/F

Figure 6-9: Register Read on 6800(8-Bit) I/F

Figure 6-10: Register Read/Write Access on 3-Wires I/F

Figure 6-11: Register Read/Write Access on 4-Wires(A-Type) I/F

Figure 6-12: Register Read/Write Access on 4-Wires(B-Type) I/F

6-1-4 Memory Read/Write

Another cycle for MPU to RA8815 is memory Read/Write cycle. Normally it used to show information on the LCD screen. A memory writes means write a data into the mapping address that cursor located. After a memory write complete, the cursor will auto increase. And the data of next memory write will fill into the new memory address that new curser position located. Because all of the memory read/write cycles are transfer the display data, so we can abbreviate the name of Memory Access Cycle to Data Cycle.

The Figure 6-13 and 6-14 show the memory access timing of 8080 MPU(8-Bit) with RA8815. Figure 6-15 and 6-16 show the memory access timing of 6800MPU(8-Bit) interface. Figure 6-17 to 6-19 show the memory access timing of serial interface.

Figure 6-13: Memory Write on 8080(8-Bit) I/F

Figure 6-15: Memory Write on 6800(8-Bit) I/F

Figure 6-17: Memory Read/Write Access on 3-Wries I/F

Figure 6-18: Memory Read/Write Access on 4-Wires(A-Type) I/F

Figure 6-19: Memory Read/Write Access on 4-Wires(B-Type) I/F

6-2 Memory

The RA8815 built-in three memory:

- 1. 256Kbyte Font ROM
- 2. 528Byte Display RAM
- 3. Character Generator RAM(CGRAM)

The 256Kbyrte Font ROM stores bit map data of Chinese font. It also including English, Japaness, Europen, Latin(Latin-ext A, Latin-ext B) and ASCII. In text mode, RA8815 will read the bit map data from Font ROM and pass to display RAM that when RA8815 received the standard code from MPU. The LCD control citcuit will read data of display RAM continuous and send to driver circuit. So the text will show on the LCD screen. Therefore, the MPU will save a lot of time to caculate the position of cursor and read mant bit map data from font ROM then write to display RAM. The MPU will promote the display efficiency to handle Chinese text display. And it will reduce the system develope time.

The display range of RA8815 is 128x33 dots. So it needs 528Byte(128*33/8) display RAM. In addition, RA8815 also built-in a scroll buffer to provide the scrlling and shifting functions.

The Character Generator RAM(CGRAM) is used for user to create special fonts. There are eight space of full size font to reserved for user. Their codes are fixed from FFF0h to FFF7h. The MPU could write the mapping code to RA8815 and show the bit map font on screen that after the user font(writing 32 byte to CGRAM) was created.

6-3 System Clock

The clock of RA8815 is generated by the internal circuit and resister that between pin RA and RB. Normally the resistor is vaule is 270Kohm and the clock frequency is around 55KHz. When the bit0(SLP) of register PWRR set to "1", then the clock will be stop.

Whe the input pin "CLK_SEL" set to "0", then system clock can also input from external clock through pin "EXT_CLK".

6-4 LCD Driver and Power Circuit

The driver circuit of RA8815 is a low power design. The power supply circuit is consist of Booster, Voltage Regulator and Voltage Follower. For different requirement of power, the Driver Control Register(REG[11h]) is used to enable or disaable for related circuit.

Figure 6-20: LCD Driver and Power Supply Circuit Block

The user could use the setting of register REG[11h] to select the internal or external power. Please refer to the following of Table 6-2 and Table 6-3.

Driver Control Register (DRCR_A)	Functions	State '1' '0'
Bit7	Booster Circuit Control Bit	ON OFF
Bit6	Reference Voltage Circuit Control Bit	ON OFF
Bit5	Voltage Regulator Circuit Control Bit	ON OFF
Bit4	Voltage Follower Circuit Control Bit	ON OFF

Table 6-2: Power Circuit Setup

Table 6-3:	Setting	Table of	Power	Circuit
------------	---------	----------	-------	---------

Driver Control Register (DRCR_A) D7 D6 D5 D4		Booster	Voltage Regulator	Reference Voltage(VREF) of Voltage Regulator	Voltage Follower	External Power		
1	1	1	1	ON	ON	Internal	ON	VDD
0	1	1	1	OFF	ON	Internal	ON	VLCD, VDD
1	0	1	1	ON	ON	External	ON	VREF, VDD
0	0	1	1	OFF	ON	External	ON	VLCD, VREF, VDD
0	0	0	1	OFF	OFF	Don't Need	ON	VREG, VDD
0	0	0	0	OFF	OFF	Don't Need	OFF	V0~V4, VDD

6-4-1 Booster Circuit

The RA8815 built-in a Booster which create 3-times or 2-times of " V_{DD} - V_{SS} " that we called "VLCD". The VLCD is supply the power for next stage curcuit – Voltage Regulator and internal Driver cuicuit. If connect an 1uF capacitor on pin C1P and C1M, then the VLCD is eaual to 2*VDD. If the pin C2P and C2Malso connect n 1uF capacitor then the VLCD is 3*VDD. Refer to the following description of Figure 6-21.

Because the RA8815 supports maximumn LCD panel is 128x33. Therefore sometimes you can get the good display quality that base on lower power such as 5V only. In that case, user only need to connect 5V to VDD, VLCD, C1P and C2P. And you do not need to add capacitor on C1P/C1M and C2P/C2M.

Figure 6-21: Application Circuit of Booster

The clock source of Booster is also control by register DRCR_B. Please refer to the description of REG[12h] in Chapter 5-2. Normally, if use the internal Driver Power, then the application circuit is follow Figure 6-22. If use external VLCD, that means do not use the internal Booster, then the connection is show as Figure 6-23.

Figure 6-22: Internal VLCD(3*VDD)

Figure 6-23: External VLCD

Note: The capacitor value of C1 is 1uF and C2 is 0.1uF.

6-4-2 Voltage Regulator

The Voltage Regulator is consists of Band-Gap and OP-Amp. The purpose is used to generated a stable power - V_{REG} for Voltage Follower. The RA8815 also built-in a fixed reference power - V_{REF} for Voltage Regulator to generated V_{REG} . The basic formula is as following:

 $V_{REG} = (1 + R_1/R_2) \times V_{REF}$

Figure 6-24: Voltage Regulator

The resistor ratio(V_{REF} and V_{REG}) of Voltage Regulator is adjustable by register DRCR_B. There are total seven cases - 2/2.5/3/3.5/4/4.5/5X. Refer to the description of Bit[5:3] of register RCR_B on Chapter 5-2. The Voltage Regulator also provide -0.05% auto adjust for temperature compensation.

The internal V_{REF} of RA8815 value is 1.6V. It's also could supply from external circuit. Please refer to Table 6-3 and Table 6-4:

Table 6-4: Select VREF

Register DRCR_A Bit6(EN_R)	V _{REF}		
0	1.60V (Ta=25°C)		
1	External		

6-4-3 Voltage Follower

The internal Voltage Follower provides V0~V4 power for LCD Driver circuit. Of course, the user could select internal or external Voltage Follower. The relationship of V0~V4 and LVLCD is as following:

VLCD > V0 > V1 > V2 > V3 > V4 > GND

Figure 6-25A shows the circuit of using internal Voltage Follower. For external V0~V4, the connection is show as Figure 6-25B.

6-4-4 LCD Driver

The Segment/Common Driver of RA8815 is used to latch the data of pre-stage, then send to Level Shifter for combination. The combined data will follow the Timing Generator to control the switchs then pass the V0~V4 to Common and Segment.

The LCD Bias of RA8815 is adjustable by register CSTR that from 1/4 to 1/7. The user can also adjust the display quality from this register. Meanwhile, the driving current is also adjustable by register DRCR_B that in order to meet different panel.

As Figure 6-26, the RA8815 provides 128 Segment and 33 Common signals. One of the Common signal – COMS is provide for the Icon of LCD Panel. The COMS_A[1:0] and COMS_B[1:0] are located on the both side of RA8815 that in order to easier layout for COG panel. The COMS_A[1:0]

and COMS_B[1:0] have independent buffers, so if the area of Icon is bigger, then you can connect the COMS_A0 and COMS_A1 together. Or connect COMS_B0 and COMS_B1 together.

Figure 6-26: The Driver of Segment and Common

The DOFF_Z of register PWRR is used to cotrol the On/Off of LCD Panel, When DOFF_Z is set to "0" then LCD Driver was closed. At this state, the driver output signals COM0~COM31 and SEG0~SEG127 are connect to GND, and the screen of LCD Panel was Off.

6-5 Interrupt

The RA8815 provide a interrupt signal(INT) to response three possible interrupt:

- Busy Interrupt– When the data write to display RAM was complete.
- Scroll Interrupt When the scroll window shifted 1, 8 or 16-pixels.
- Key-scan Interrupt When a key was pressed.

The interrupt of above can be enabled or disable by register. The MPU can read the interrupt message form interrupt status register. The \overline{INT} is active low, so when MPU detect the interrupt happen then must clear interrupt status for \overline{INT} return to high. If user do not use the hardware interrupt(\overline{INT}), then MPU can get the interrupt message by reading the status register.

6-6 Key-Scan

The RA8815 built-in 4x5 key-scan circuit for extra key board function to help user integrate a key matrix application. In auto-mode, MPU can read the key code from register to know the key was short-press, long-presee or key released. Use can also adjust the cycle time of key-scan. Figure 6-27 is the simple application curcuit. Table 6-5 is the mapping keyboard code of key matrix as Figure 6-27. So MPU knows which ket be pressed by reading register – KSDR.

Figure 6-27: 4x5 Key Matrix Curcuit

	Short-Press				Long-Press			
	КЅТ3	KST2	KST1	KST0	КЅТ3	KST2	KST1	KST0
KIN0	15h	10h	05h	00h	35h	30h	25h	20h
KIN1	16h	11h	06h	01h	36h	31h	26h	21h
KIN2	17h	12h	07h	02h	37h	32h	27h	22h
KIN3	18h	13h	08h	03h	38h	33h	28h	23h
KIN4	19h	14h	09h	04h	39h	34h	29h	24h

Table 6-5: Keyboard Code of Auto-Mode

In Auto-Mode of Key-Scan function, if the key pressed over one second, then the RA8815 will cause interrupt and change the data of register – KSDR to a long-press code. Therefore MPU knows which key was pressed ove one second.

6-7 I/O Port

The RA8815 provide eight Igeneral purpose I/O pins. Each I/O pin is easy to setup as input or output. They can use to drive LED, wakeup the RA8815 or provide information for whole system.

6-8 EL Signals

The RA8815 provide two special signals for EL driver circuit. The signals active time can also setup by register ELCR. The waveform and application are show as Figure 6-28 and 6-29.

Figure 6-28: Control Signals for EL Driver

Figure 6-29: EL Driver Circuit

6-9 ASCII Block

Figure 6-30: SamII ASCII(Table 0)

The RA8815 built-in three ASCII block which contines ASCII and special symbol for user to show on display directly in text mode. Actually these three ASCII block are store in 256Kbyte Font ROM(see

Chapter 6-2). As the Figures 6-30~6-32, the left of each table is the High Nibble, and the right is the Low Nibble. The selection of these block is by MD0 and MD1 of register MWMR.

The Figure 6-30 is the table of small ASCII. Each character size is 8x8 dots. Therefore if the LCD panel size is 128Segx33Com then it can show four rows, and each row has 16 samll ASCII font. Figure 6-31 and 6-32 are the table of big ASCII. For the same panel size, it can show two row, and each row has 16 character.

Figure 6-31: Big ASCII (Table 1)

Figure 6-32: Big ASCII (Table 2)

6-10 Power Control

The RA8815 supports Normal Mode and Sleep Mode for operation. If write "0" to bit0 of register PWRR, then RA8815 will enter sleep mode. The functions of LCD display and driver will stop. All of the signals of COM and SEG will keep low, Key Strobe signals will keep high, and I/O keep the original state. Because the RC clock was stop, so the power consumption is very samll.

The RA8815 provide three way to wake up the system:

- 1. Write "1" to the bit0 of register PWRR.
- 2. Key-scan to wake up
- 3. I/O wake up

In wake up phase, the RA8815 will wake up the RC oscillator first, and it will take around 250ms. Then the RA8815 is enable to accept the command from MPU and LCD driver wake up for activity.

The VDD power operation range of RA8815 is 2.5~3.6V. But on the COG module, some power consumption will lose on the connection of FPC and chip that due to the ITO layout issue. So normally the VDD power range of COG module on the FPC side is around V2.7~3.8V.

7. Display Functions

7-1 Text Mode

The RA8815 built-in a 256KB Font ROM that includung Traditional Chinese or Simpled Chinese, English, Japaness, ASCII, Europen and Latin(Latin-ext A, Latin-ext B). In text mode, it supports full-size font(Chinese or English) display or half-size(Dnglish) display. The full-size font is consist of 16x16 bit map. And half-size is consist of 8x16 or 8x8. Refer to the following Figure 7-1:

Figure 7-1: Full-Size and Half-Size Font

The Chinese display is operating at text mode. So if the RA8815 received two Chinese codes(BIG5 or GB) then the mapped font will show on the cursor position. Because each Chinese code including two bytes data, therefore the MPU has to send the code twice – High byte and Low byte. For English or Numeric, only one byte is need. The maximum supports panel size of RA8815 is 128x33dots. So in text mode it could show 2x8 Chinese fonts and 4x16 English fonts.

The register MWMR is used to setup the font size for display. The user can also select the different display mode such as bold, inverse or normal mode in this register.

7-2 Graphic Mode

In the graphics mode, the RA8815 is fill the bit map data into display memory directly. So if the [MD1, MD0] of register is set to "00" (Graphics Mode), then write the data into memory, the data will show on the screen that cursor pointed.

Figure 7-2: Graphics Mode Display

The display RAM size of RA8815 is 528Byte(128*33/8). Each memory bit is mapping to the LCD panel. If the data is "1" then the mapped dot is turn on. Please refer the Figure 7-3.

Figure 7-3: Display Data Mapping to the Screen

The RA8815 also provide a clean feature to clear all of the display RAM. If the "MCLR" of register PWRR is set to "1", then all of contents of Display RAM will be clear to "0". In the graphics mode, the user could select the blinking or inverse through register BLTR. The blinking are is assigned by the size of Scroll Window.

7-3 Cursor Setting

7-3-1 Cursor Position and Shift

The unit of Segment Address is 8-Bit, Commom is 1-Bit. For example, if user want to show a font "制" on the third position(full-size) of top, then the register X-CUR has to set 04h and Y-CUR set to 00h. If the second row wan to show "器" as Figure 7-4, then the X-CUR set to 00h and Y-CUR set to 10h.

Both of text mode and graphics mode, the cursor position are use the same resgidter - X-CUR and Y-CUR. If fill data to display RAM or show a Chinese font on the screen, the cursor will auto increase, and the boundry is the display window.

128(Segment) x 32(Common)

Figure 7-4: An Example for Cursor Setting

7-3-2 Cursor Display and Blink

The RA8815 provide cursor On/Off and blinking features. These functions are control by register CURCR. The cycle time of blinking is depend on the setting of register BLTR. The range is from 8 to 128 frames.

7-3-3 Cursor Height

The cursor height is also setting by register CURCR. For full-size mode the cursor height is adjustable from 1 to 16 pixels, and half size is form 1 to 8 pixels. Please refer to Figure 7-5.

Figure 7-5: Cursor Height

7-4 Display Window

Normally, the Display Window size is same as LCD panel. It's setting by register SYSR. The maximumnis range is 128(Segment)x32(Common). The RA8815 provide a extran Common(Com-S) as the selection of Icon. Therefore the total 128 Icon for usage. Before access the Com-S, the register Y-CUR has set to 50h, then program the X-CUR to select Icon.

The RA8815 provides two positions for the panel layout of COM-S. It's convenient for user to deisgn the position of Icon fro their application. Refer to the Figure 7-6.

7-5 Horizontal Scroll

The RA8815 provide Horizontal Scroll feature. User could assign the range of srolling, scroll unit and speed. Refer to the following example as Figure 7-7. The scroll unit is set to 2 pixels.

Figure 7-7: Horizontal Scroll

The RA8815 allows horizontal scroll for right or left way. The user could use the scrolling buffer to show the Shift funtion. For example, store the data or text on the Horizontal Scroll Buffer first, then fill the new data/text into the buffer that after the screen shift 16pixels. You can repeat these action and find the screen is shift like caption of advertisement. The Figure 7-8 is an example to show he Horizontal Shift. The shift unit is 8pixels and the gray area is the scroll buffer. The displat data will not show on the screen.

Please refer to application note for the related horizontal scroll feature.

Figure 7-8: Horizontal Shift

7-6 Vertical Scroll

The RAS8815 alos provides the Vertical Scroll and Shift features that like horizontal function. User could assign the range of srolling, scroll unit and speed. Refer to the following example as Figure 7-9. The vertical scroll unit is set to 2 pixels.

The RA8815 allows vertical scroll for up or down way. The user could use the scrolling buffer to show the Shift funtion. For example, store the data or text on the Vertical Scroll Buffer first, then fill the new data/text into the buffer that after the screen shift 16pixels. Please refer to application note for the related vertical scroll features.

Figure 7-9: Vertical Scroll

8. Pin Diagram

8-1 COG Pad

Figure 8-1 : Pin Diagram

Chip Size	9065 µ m x 1586 µ m	
	PAD 1~18, PAD 117~134 (COM Pads)	74μm x 38μm
Bump Size	PAD 135~264 (SEG Pads),	
	PAD 19~116 (MCU/Power Pads)	$38\mu\mathrm{m}\mathrm{x}74\mu\mathrm{m}$
	PAD 161-1 ~ 161-3 (S0, FG, S1)	
	PT1: PAD 1~18, PAD 117~134	57 µ m
	PT2: PAD 135~143, 144~159, 160~175, 176~191, 192~199, 200~207, 208~223, 224~239, 240~255, 256~264	64.8 µ m
	PT3: PAD 19~32, PAD 33~42	57 µ m
	PT4: PAD 32 to 33	63.3 µ m
	PT5: PAD 42 to 43	84.2 µ m
	PT6: PAD 43 to 67, PAD 68 to 70	100 µ m
Bump Pitch	PT7: PAD 67 to 68	500 µ m
	PT8: PAD 70 to 112	80 µ m
	PT9: PAD 112 to 116	60 µ m
	PT10: PAD 116 to 116-1	63.2 µ m
	PT11: PAD 116-1 to 116-3	55 µ m
	PT12: PAD 143 to 144, 159 to 160, 175 to 176, 191 to 192, 199 to 200, 207 to 208, 223 to 224, 239 to 240, 255 to 256	74.6 µ m
	PT13: 199 to 200	89 µ m
Bump Height	$15\pm3\mu$ m	

Table 8-1: Bump Size and Pitch

Figure 8-2 : Gold Bump PAD Dimension

Figure 8-3 : Fixed Point Dimension

8-2 Pad X/Y Coordinate

Pad No.	Pad Name	ime X Y	
1	COMS_A0	-4437.9	491.3
2	COMS_A1	-4437.9	434.3
3	COM0	-4437.9	377.3
4	COM1	-4437.9	320.3
5	COM2	-4437.9	263.3
6	COM3	-4437.9	206.3
7	COM4	-4437.9	149.3
8	COM5	-4437.9	92.3
9	COM6	-4437.9	35.3
10	COM7	-4437.9	-35.3
11	COM8	-4437.9	-92.3
12	COM9	-4437.9	-149.3
13	COM10	-4437.9	-206.3
14	COM11	-4437.9	-263.3
15	COM12	-4437.9	-320.3
16	COM13	-4437.9	-377.3
17	COM14	-4437.9	-434.3
18	COM15	-4437.9	-491.3
19	VLCD	-4212.9	-698.3
20	VLCD	-4155.9	-698.3
21	VLCD	-4098.9	-698.3
22	VLCD	-4041.9	-698.3
23	VLCD	-3984.9	-698.3
24	VLCD	-3927.9	-698.3
25	C2M	-3870.9	-698.3
26	C2M	-3813.9	-698.3
27	C2P	-3756.9	-698.3
28	C2P	-3699.9	-698.3
29	C1M	-3642.9	-698.3
30	C1M	-3585.9	-698.3
31	C1P	-3528.9	-698.3
32	C1P	-3471.9	-698.3
33	GNDP	-3408.6	-698.3
34	GNDP	-3351.6	-698.3
35	GND	-3294.6	-698.3

Pad No.	Pad Name	Х	Y
36	GND	-3237.6	-698.3
37	GND	-3180.6	-698.3
38	GND	-3123.6	-698.3
39	VDD	-3066.6	-698.3
40	VDD	-3009.6	-698.3
41	VDD	-2952.6	-698.3
42	VDDP	-2895.6	-698.3
43	V0	-2811.4	-698.3
44	V0	-2711.4	-698.3
45	V0	-2611.4	-698.3
46	V0	-2511.4	-698.3
47	V1	-2411.4	-698.3
48	V1	-2311.4	-698.3
49	V1	-2211.4	-698.3
50	V1	-2111.4	-698.3
51	V2	-2011.4	-698.3
52	V2	-1911.4	-698.3
53	V2	-1811.4	-698.3
54	V2	-1711.4	-698.3
55	V3	-1611.4	-698.3
56	V3	-1511.4	-698.3
57	V3	-1411.4	-698.3
58	V3	-1311.4	-698.3
59	V4	-1211.4	-698.3
60	V4	-1111.4	-698.3
61	V4	-1011.4	-698.3
62	V4	-911.4	-698.3
63	VREF	-811.4	-698.3
64	VREF	-711.4	-698.3
65	VREG	-611.4	-698.3
66	VREG	-511.4	-698.3
67	VREG	-411.4	-698.3
68	GND	88.6	-698.3
69	VDD	188.6	-698.3
70	RA	288.6	-698.3

Pad No.	Pad Name	X	Y
71	RB	368.6	-698.3
72	DB7	448.6	-698.3
73	DB6	528.6	-698.3
74	DB5	608.6	-698.3
75	DB4	688.6	-698.3
76	DB3	768.6	-698.3
77	DB2	848.6	-698.3
78	DB1	928.6	-698.3
79	DB0	1008.6	-698.3
80	RD	1088.6	-698.3
81	WR	1168.6	-698.3
82	D/C	1248.6	-698.3
83	CS	1328.6	-698.3
84	C86	1408.6	-698.3
85	BIT4	1488.6	-698.3
86	P/S	1568.6	-698.3
87	ĪNT	1648.6	-698.3
88	EXT_CLK	1728.6	-698.3
89	CLK_SEL	1808.6	-698.3
90	KST3	1888.6	-698.3
91	KST2	1968.6	-698.3
92	KST1	2048.6	-698.3
93	KST0	2128.6	-698.3
94	KIN4	2208.6	-698.3
95	KIN3	2288.6	-698.3
96	KIN2	2368.6	-698.3
97	KIN1	2448.6	-698.3
98	KIN0	2528.6	-698.3
99	107	2608.6	-698.3
100	IO6	2688.6	-698.3
101	IO5	2768.6	-698.3
102	IO4	2848.6	-698.3
103	IO3	2928.6	-698.3
104	102	3008.6	-698.3
105	IO1	3088.6	-698.3
106	100	3168.6	-698.3
107	EL_CHRG	3248.6	-698.3

Pad No.	Pad Name	X	Y
108	EL_DCHG	3328.6	-698.3
109	RST	3408.6	-698.3
110	TEST2	3488.6	-698.3
111	TEST1	3568.6	-698.3
112	TEST0	3648.6	-698.3
113	GND	3708.6	-698.3
114	GND	3768.6	-698.3
115	VDD	3828.6	-698.3
116	VDD	3888.6	-698.3
116-1	S0	3951.8	-698.3
116-2	FG	4006.8	-698.3
116-3	S1	4061.8	-693.3
117	COMS_B1	4437.9	-491.3
118	COMS_B0	4437.9	-434.3
119	COM31	4437.9	-377.3
120	COM30	4437.9	-320.3
121	COM29	4437.9	-263.3
122	COM28	4437.9	-206.3
123	COM27	4437.9	-149.3
124	COM26	4437.9	-92.3
125	COM25	4437.9	-35.3
126	COM24	4437.9	35.3
127	COM23	4437.9	92.3
128	COM22	4437.9	149.3
129	COM21	4437.9	206.3
130	COM20	4437.9	263.3
131	COM19	4437.9	320.3
132	COM18	4437.9	377.3
133	COM17	4437.9	434.3
134	COM16	4437.9	491.3
135	DUM_R	4230.9	698.3
136	SEG127	4166.1	698.3
137	SEG126	4101.3	698.3
138	SEG125	4036.5	698.3
139	SEG124	3971.7	698.3
140	SEG123	3906.9	698.3
141	SEG122	3842.1	698.3

Pad No.	Pad Name	X	Y
142	SEG121	3777.3	698.3
143	SEG120	3712.5	698.3
144	SEG119	3637.9	698.3
145	SEG118	3573.1	698.3
146	SEG117	3508.3	698.3
147	SEG116	3443.5	698.3
148	SEG115	3378.7	698.3
149	SEG114	3313.9	698.3
150	SEG113	3249.1	698.3
151	SEG112	3184.3	698.3
152	SEG111	3119.5	698.3
153	SEG110	3054.7	698.3
154	SEG109	2989.9	698.3
155	SEG108	2925.1	698.3
156	SEG107	2860.3	698.3
157	SEG106	2795.5	698.3
158	SEG105	2730.7	698.3
159	SEG104	2665.9	698.3
160	SEG103	2591.3	698.3
161	SEG102	2526.5	698.3
162	SEG101	2461.7	698.3
163	SEG100	2396.9	698.3
164	SEG99	2332.1	698.3
165	SEG98	2267.3	698.3
166	SEG97	2202.5	698.3
167	SEG96	2137.7	698.3
168	SEG95	2072.9	698.3
169	SEG94	2008.1	698.3
170	SEG93	1943.3	698.3
171	SEG92	1878.5	698.3
172	SEG91	1813.7	698.3
173	SEG90	1748.9	698.3
174	SEG89	1684.1	698.3
175	SEG88	1619.3	698.3
176	SEG87	1544.7	698.3
177	SEG86	1479.9	698.3
178	SEG85	1415.1	698.3

Pad No.	Pad Name	х	Y
179	SEG84	1350.3	698.3
180	SEG83	1285.5	698.3
181	SEG82	1220.7	698.3
182	SEG81	1155.9	698.3
183	SEG80	1091.1	698.3
184	SEG79	1026.3	698.3
185	SEG78	961.5	698.3
186	SEG77	896.7	698.3
187	SEG76	831.9	698.3
188	SEG75	767.1	698.3
189	SEG74	702.3	698.3
190	SEG73	637.5	698.3
191	SEG72	572.7	698.3
192	SEG71	498.1	698.3
193	SEG70	433.3	698.3
194	SEG69	368.5	698.3
195	SEG68	303.7	698.3
196	SEG67	238.9	698.3
197	SEG66	174.1	698.3
198	SEG65	109.3	698.3
199	SEG64	44.5	698.3
200	SEG63	-44.5	698.3
201	SEG62	-109.3	698.3
202	SEG61	-174.1	698.3
203	SEG60	-238.9	698.3
204	SEG59	-303.7	698.3
205	SEG58	-368.5	698.3
206	SEG57	-433.3	698.3
207	SEG56	-498.1	698.3
208	SEG55	-572.7	698.3
209	SEG54	-637.5	698.3
210	SEG53	-702.3	698.3
211	SEG52	-767.1	698.3
212	SEG51	-831.9	698.3
213	SEG50	-896.7	698.3
214	SEG49	-961.5	698.3
215	SEG48	-1026.3	698.3

Pad No.	Pad Name X		Y
216	SEG47	-1091.1	698.3
217	SEG46	-1155.9	698.3
218	SEG45	-1220.7	698.3
219	SEG44	-1285.5	698.3
220	SEG43	-1350.3	698.3
221	SEG42	-1415.1	698.3
222	SEG41	-1479.9	698.3
223	SEG40	-1544.7	698.3
224	SEG39	-1619.3	698.3
225	SEG38	-1684.1	698.3
226	SEG37	-1748.9	698.3
227	SEG36	-1813.7	698.3
228	SEG35	-1878.5	698.3
229	SEG34	-1943.3	698.3
230	SEG33	-2008.1	698.3
231	SEG32	-2072.9	698.3
232	SEG31	-2137.7	698.3
233	SEG30	-2202.5	698.3
234	SEG29	-2267.3	698.3
235	SEG28	-2332.1	698.3
236	SEG27	-2396.9	698.3
237	SEG26	-2461.7	698.3
238	SEG25	-2526.5	698.3
239	SEG24	-2591.3	698.3
240	SEG23	-2665.9	698.3
241	SEG22	-2730.7	698.3
242	SEG21	-2795.5	698.3
243	SEG20	-2860.3	698.3
244	SEG19	-2925.1	698.3
245	SEG18	-2989.9	698.3
246	SEG17	-3054.7	698.3
247	SEG16	-3119.5	698.3
248	SEG15	-3184.3	698.3
249	SEG14	-3249.1	698.3
250	SEG13	-3313.9	698.3
251	SEG12	-3378.7	698.3
252	SEG11	-3443.5	698.3

120x33 Character/Graphic LCD Driver						
Pad Name	Х	Y				
SEG10	-3508.3	698.3				
SEG9	-3573.1	698.3				
SEG8	-3637.9	698.3				
SEG7	-3712.5	698.3				
SEG6	-3777.3	698.3				
SEG5	-3842.1	698.3				
SEG4	-3906.9	698.3				
SEG3	-3971.7	698.3				
SEG2	-4036.5	698.3				
SEG1	-4101.3	698.3				
SEG0	-4166.1	698.3				
DUM_L	-4230.9	698.3				
	Pad Name SEG10 SEG9 SEG8 SEG7 SEG6 SEG5 SEG5 SEG3 SEG3 SEG2 SEG1 SEG0	Pad Name X SEG10 -3508.3 SEG9 -3573.1 SEG8 -3637.9 SEG7 -3712.5 SEG6 -3777.3 SEG5 -3842.1 SEG4 -3906.9 SEG3 -3971.7 SEG3 -4036.5 SEG1 -4101.3 SEG0 -4166.1				

9. Electrical Characteristic

9-1 Absolute Maximum Ratings

Table 9-1

Parameter	Symbol	Rating	Unit
Supply Voltage Range	V _{DD}	-0.3 to 6.5	V
Input Voltage Range	V _{IN}	-0.3 to V _{DD} +0.3	V
External VLCD Voltage Range	V_{LCD}	-0.3 to 8.0	V
Operation Temperature Range	T _{OPR}	-20 to 80	°C
Storage Temperature Range	T _{ST}	-45 to 125	°C

9-2 DC Characteristic

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition
Operating Voltage	V_{DD}	2.5	3.3	3.6	V	Bare Die
Operating Voltage	V _{DD}	2.7	3.3	3.8	V	COG Module
VLCD Voltage	V _{LCD}		5~7	7.8	V	
Input High Voltage	V _{IH}	$0.8 \times V_{DD}$		V_{DD}	V	
Input Low Voltage	V _{IL}	Gnd		$0.2 \times V_{DD}$	V	
Output High Voltage	V _{OH}	$0.8 \times V_{DD}$		V _{DD}	V	
Output Low Voltage	V _{OL}	Gnd		$0.2 \times V_{DD}$	V	
Input Leakage Current	IIL	-1		+1	μA	VIN = VDD to Vss
Output Leakage Current	I _{OL}	-3		+2	μA	VIN = VDD to Vss
			56			V _{DD} =3.3V, R = 270K
Oscillator Frequency	F_{CL}		55		KHz	V _{DD} =3.0V, R = 270K
			47			V _{DD} =2.4V, R = 270K
Standby Mode Current (Normal Mode Current)	I _{SB}		70		μA	No MPU I/F Access V_{DD} =3.3V, F_{CL} = 55KHz Segment=128, Common=32 FRM = 60Hz T_A =25°C
Display Off Current	IDISPLAY		25		μA	The same as above
Sleep Mode Current	I _{SLEEP}		0.2	0.5	μA	The same as above

Table 9-2

 V_{DD} = 2.4 to 3.6V, Gnd = 0V, Ta = -20 to $80^\circ\!\mathrm{C}$

9-3 Timing Characteristic

9-3-1 Parallel Interface

Figure 9-1 : 6800 MPU Timing

6800 MPU Interface

ltem	Signal Symbol	Condition	Rating		Unit	
nem	Signal	Symbol Condition		Min.	Max.	Onit
Address Setup Time	RS, \overline{CS}	tcsw6		0		
Read/Write Setup Time	R/W	twen6		10		
Read/Write Hold Time	K/ VV	trwh6		10		
Enable Access Time		t _{AC6}		90		
Access Cycle Time	EN	tcyc6	Command Cycle	200		ns
Access Cycle Time		LCTCO	Data Cycle	400		-
Write Data Setup Time		t _{DS6}		0		
Write Data Hold Time	DB[7:0]	t _{DH6}		10		
Read Data Access Time	00[7.0]	tos6			0	
Read Data Hold Time		tон6		10		

Figure 9-2: 8080 MPU Timing

8080 MPU Interface

ltem	Signal	Symbol	Condition	Rating		Unit
				Min.	Max.	onne
Address Setup Time	RS, CS	Tcsw8		10		
Address Hold Time		Тсѕн		10		
Read/Write Access Time	RD, WR	t _{AC8}		90		
Access Cycle Time		TCYC8	Command Cycle	200		
			Data Cycle	400		ns
Write Data Setup Time	DB[7:0]	t _{DS6}		0		
Write Data Hold Time		t _{DH6}		10		
Read Data Setup Time		tos6			0	
Read Data Setup Time		toh6		10		

9-3-2 Serial Interface

Figure 9-3 : 3-Wire Timing

3-Wire Serial Interface

ltem	Signal	Symbol	Condition	Rating		Unit
				Min.	Max.	
Access Time	CS	tcyc3		3.6		μs
CS Setup Time		tcsнз		20		
Clock Low Pulse Width	SCK	tcĸl3		100		
Clock High Pulse Width		t скнз		100		ns
Data Setup Time	SDA	t DS3		20		
Data Hold Time	CDA	tонз		10		

Figure 9-4 : 4-Wire(A-Type) Timing

4-Wire(A-Type) Serial Interface

ltem	Signal	Symbol	Condition	Rating		Unit
				Min.	Max.	•••••
Access Time	CS	tcyc4A		3.4		μs
CS Setup Time		tcsH4		20		
Clock Low Pulse Width	SCK	tcĸ∟₄		100		
Clock High Pulse Width		t скн4		100		ns
Data Setup Time	SDA, RS	t _{DS4}		20		
Data Hold Time		t _{DH4}		10		

Figure 9-5 : 4-Wire(B Type) Timing

4-Wire(B-Type) Serial Interface

ltem	Signal	Symbol	Condition	Rating		Unit
				Min.	Max.	•
Access Time	CS	tcyc4A		3.6		μs
CS Setup Time	CS	tcsH4		20		
Clock Low Pulse Width	SCK	tckl4		100		
Clock High Pulse Width		t скн4		100		
Data Write Setup Time	SDI	t _{DS4}		20		ns
Data Write Hold Time		t _{DH4}		10		
Data Read Setup Time	SDO	tos4B		20		
Data Read Hold Time	000	t он4в		10		

9-3-3 Reset Interface

Figure 9-6: Reset Timing

ltem	Signal	ınal Symbol	Condition	Rating		Unit
	eignai			Min.	Max.	•••••
Reset Pulse Width	RST	t rst		100		ms
Reset Complete Hold Time	RST	t rsth	F _{CL} = 55KHz	150	250	ms

Appendix A.

A-1 COG Application

A-1-1 Basic Connection of Serial I/F

Figure A-1 : COG Module

Figure A-1b: Basic Connection of Serial I/F

The RA8815 provide many interfaces for MPU that including parallel, 3-Wire serial and 4-Wire serial, and some useful I/O interface like I/O and Key-scan. Therefore there are many options for user to connect the COG die to FPC. The Figure A-1b is the basic connection of serial mode in COG module. If the MPC interface is serial mode, then these signals are necessary for FPC.

A-1-2 Basic Connection of Parallel I/F

Figure A-1c: Basic Connection of Parallel I/F

The figure A-1c is the basic connection of parallel mode in COG module. If the MPC interface is parallel mode, then these signals are necessary for FPC.

A-1-3 FPC Connection for Other Functions

Figure A-2 : Example(A) of FPC Connection

As previous mention, the RA8815 provides many interfaces for MPU that including parallel, 3-Wire serial and 4-Wire serial, and some useful I/O interface like I/O and Key-scan. The Figure A-2 is an example for RA8815 COG die that connect all of the signals to FPC.

The RA8815 also provides two common outputs for Icon that let the panel layout easier to meet their application.

The Figure A-3 is a simple example that use serial 3-Wires, 2 times VDD, internal RC oscillator and interrupt signal. Therefore only 18pins used. But in this case, some signals($P/S \\ \cdot CLK_SEL \\ \cdot EXT_CLK$) have to connect to VDD or GND directly through ITO resistance. If the system wants to use another features such as Key-scan, then the user have to connect the KIN[4:0] and KST[3:0] to FPC.

The pad number 68, 69, 113, 114, 115, 116 are VDD or GND. Their purposes are used to pull-up or pull-down for some signals on panel. They do not need to connect to FPC.

Figure A-3 : Example(B) of COG Module

The Figure A-4 is another example that uses 8080/8bit MPU, 2-times VDD, internal RC Oscillator, EL driver and interrupt signal. In this case, the FPC only uses 29pins. Some configure pin are connect to VDD or GND through ITO resistance, such as C86, BIT4, P/S, CLK_SEL and EXT_CLK.

Figure A-4 : Example(C) of COG Module

The Figure A-5 is an example for RA8815 to connect the driver signals(COM/SEG) to LCD panel. In this case, the panel size is 128x32. If the Common of panel is less than 32, then care for the selection of Common. Because RA8815 supports text mode, so the user cannot separate the common willfully and connect them to panel.

Please note the COG is reverse and stamp on the glass, so the point of COM0/SEG0 is on the right-bottom corner. Refer to Figure A-5.

Figure A-5: The Connection of RA8815 with LCD Panel(128x32)

Figure A-6: The Connection of RA8815 with LCD Panel(96x24)

The Figure A-6 is an example of connection that use 96x24 panel. In this case, it supports one row for full size(16x16) and half-size(8x8) font. Or three rows for half-size(8x8) fonts. If the application of user is on graphics mode, then separate the common signal for same number and each size is 13 common signals.

A-2 ITO

PAD Name	ITO(Ohm)	PAD Name	ITO(Ohm)	PAD Name	ITO(Ohm)
VDD, VDDP	150	C2P	200	P/S	600
GND, GNDP	150	C2M	200	CLK_SEL	600
VREF	200	RA	200	EXT_CLK	600
VLCD	200	RB	200	KST[30]	600
VREG	200	DB[7:0]	600	KIN[40]	600
V4	200	RD , EN	600	IO[7:0]	600
V3	200	\overline{WR} , R/ \overline{W}	600	EL_CHRG	600
V2	200	D/\overline{C} , RS	600	EL_DCHG	600
V1	200	CS	600	RST	600
V0	200	ĪNT	600	TEST[20]	600
C1P	200	C86	600		
C1M	200	BIT4	600		

Table A-1: ITO Resistance of COG

Figure A-7 : ITO Layout Example - VLCD(2*VDD)

The RA8815 power signals (such as VDD, GND, VLCD, V[4:0], C1P, C1M) have to keep the smaller ITO resistance for panel layout. So the wires of layout need to keep as thick as possible to reduce the ITO resistance. The Figure A-7 is an example for VLCD layout of panel. Because the RA8815 provide six pads for VLCD, therefore the layout engineer has to connect all of these pads to FPC. In this case, the VLCD is two times of VDD, so the C2P have to connect to VLCD and do not forget keep the wire thicker.

The Figure A-8 is a layout example of RA8815 to FPC on COG module. The VDD and GND of RA8815 should as close as possible to FPC. The RA8815 provide six GND pad, user have to connect these six

pad to FPC with a thick wire. For the design of FPC, the related power signals(VDD, GND, VLCD) of layout need to keep as thick as possible to reduce the wire resistance. And the VDD, GND pad of FPC keep double width than other signals.

Figure A-8 : ITO Layout Example