

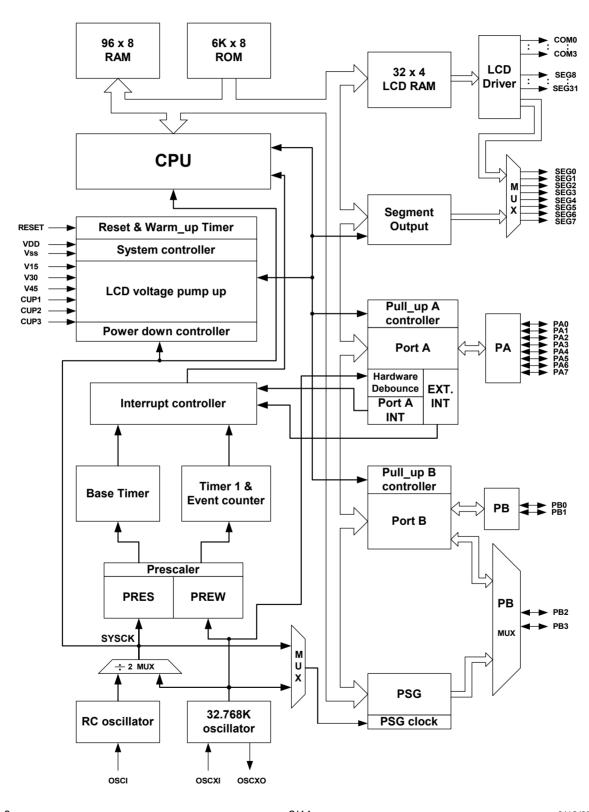
ST2006

6K ROM Microcontroller with 128 Dot LCD Driver

Notice: Sitronix Technology Corp. reserves the right to change the contents in this document without prior notice. This is not a final specification. Some parameters are subject to change.

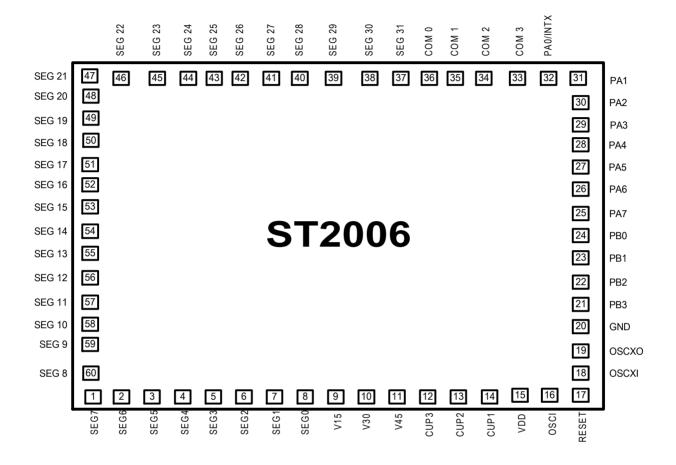
1 FEATURES

- 8-bit static pipeline CPU
- ROM: 6K x 8 bits
- RAM: 96 x 8 bits (data + stack)
- Operation voltage : 2.4V~3.4V
- 12 CMOS Bi-directional bit programmable I/O pins
- 8 Output pins (Shared with LCD segment)
- Hardware de-bounce option for Port-A interrupt
- Bit programmable PULL-UP for input port
- Timer/Counter :
 - One 8-bit timer / 16-bit event counter
 - One 8-bit BASE timer
- Four powerful interrupt sources :
 - External interrupt (edge trigger)
 - TIMER1 interrupt
 - BASE timer interrupt
 - PORTA[7~0] interrupt (transition trigger)


- 16-level deep stack
- Dual clock source :
 - OSCX: Crystal oscillator: 32.768K Hz
 - OSC: RC oscillator 500K ~ 2M Hz ,
- CPU clock 250K ~ 1M Hz
 Build-in oscillator with warm-up timer
- LCD driver programmable duty :
 - 128 (4x32) dots (1/4 duty, 1/3 bias)
 - 96 (3x32) dots (1/3 duty, 1/2 bias)
- Programmable Sound Generator (PSG) includes :
 - Tone generator
 - Noise generator
 - 4 level volume control
- Three power down modes :
 - WAI0 mode
 - WAI1 mode
 - STP mode
- Stand by current < 5uA

2 GENERAL DESCRIPTION

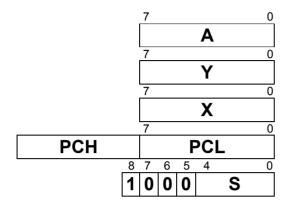
ST2006 is a low-cost, high-performance, fully static, 8-bit microcontroller designed with CMOS silicon gate technology. It comes with 8-bit pipeline CPU core, SRAM, timer, LCD driver, I/O port, PSG and mask program ROM. A


build-in dual oscillator is specially integrated to enhance chip performance. For handheld equipment and consumer applications. Such as watch, calculator and LCD game .

3 BLOCK DIAGRAM

ST2006

4 PAD DIAGRAM



5 PAD DESCRIPTION

Designation	Pad #	Туре	Description
SEG 0 - 7	1~8	0	LCD Segment output or output port
SEG 8 - 31	37~60	0	LCD Segment output
COM 0 - 3	33~36	0	LCD Common output
RESET	17	I	Pad reset input (high active)
GND	20	Р	Ground Input and chip substrate
		I/O	Port-A bit programmable I/O
PA0/INTX	32	1	Edge-trigger Interrupt.
PAU/INTX	32	1	Transition-trigger Interrupt
		1	Programmable Timer1 clock source
PA 1-7	25~31	I/O	Port-A bit programmable I/O
FA 1-7	25/31	ĺ	Transition-trigger Interrupt
PB 0-1	23, 24	I/O	Port-B bit programmable I/O
PB 2-3	21, 22	I/O	Port-B bit programmable I/O
PD 2-3	21, 22	0	PSG Output
V_{DD}	15	Р	Power supply
OSCXI	18	I	OSCX input pin, for 32768Hz crystal
OSCXO	19	0	OSCX output pin, for 32768Hz crystal
OSCI	16	ļ	OSC input pin, toward external resistor
CUP1~3	12~14	Ţ	Voltage pump up capacitor
V15,V30,V45	9~11	1	LCD voltage capacitor

Legend: I = input, O = output, I/O = input/output, P = power.

6 CPU

Accumulator A

Index Register Y

Index Register X

Program Counter PC

Stack Pointer S

CPU REGISTER MODEL

6.1 Accumulator (A)

The accumulator is a general purpose 8-bit register which stores the results of most arithmetic and logic operations. In addition, the accumulator usually contains one of the two data words used in these operations.

6.2 Index Registers (X,Y)

There are two 8-bit Index Registers (X and Y) which may be used to count program steps or to provide and index value to be used in generating an effective address. When executing an instruction which specifies indexed addressing, the CPU fetches the OP code and the base address, and modifies the address by adding the index register to it prior to performing the desired operation. Pre or post-indexing of indirect addresses is possible.

6.3 Stack Pointer (S)

The stack Pointer is an 8-bit register which is used to control the addressing of the variable-length stack. It's range from 100H to 11FH total for 32 bytes (16-level deep). The stack pointer is automatically incremented and decrement under control of the microprocessor to perform stack

manipulations under direction of either the program or interrupts (IRQ). The stack allows simple implementation of nested subroutines and multiple level interrupts. The stack pointer is initialized by the user's software.

6.4 Program Counter (PC)

The 16-bit Program Counter register provides the address which step the microprocessor through sequential program instructions. Each time the microprocessor fetches and instruction from program memory, the lower byte of the program counter (PCL) is placed on the low-order bits of the address bus and the higher byte of the program counter (PCH) is placed on the high-order 8 bits. The counter is incremented each time an instruction or data is fetched from program memory.

6.5 Status Register (P)

The 8-bit Processor Status Register contains seven status flags. Some of the flags are controlled by the program, others may be controlled both by the program and the CPU. The instruction set contains a member of conditional branch instructions which are designed to allow testing of these flags.

Table 6-1 STATUS REGISTER (P)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
N	V	1	В	D	I	Z	С				
Bit 7:	1 = Neg	N : Signed flag by arithmetic 1 = Negative 0 = Positive									
Bit 6:	V : Over 1 = Neg 0 = Pos		ned Arithr	metic flag							
Bit 4:	1 = BR k	B: BRK interrupt flag 1 = BRK interrupt occur 0 = Non BRK interrupt occur									
Bit 3:	1 = Dec	imal mode imal mode ary mode									
Bit 2:	1 = Inte	upt disable rrupt disab rrupt enab	ole -								
Bit 1:	1 = Zero	Z : Zero flag 1 = Zero 0 = Non zero									
Bit 0:	C: Carry flag 1 = Carry 0 = Non carry										

7 MEMORY CONFIGURATION

0000 H 003F H	CONTROL REGISTERS	64 Bytes
	No Use	
0080 H 00BF H	User RAM	64 Bytes
	No Use	
0100 H 011F H	Stack RAM & User RAM	32 Bytes
	Don't Use	
0200 H 021F H	LCD RAM	32x4 Bits
	No Use	
E800 H FFFF H	Program ROM	6K Bytes

7.1 ROM (\$E800~\$FFFF)

The ST2006 has 6K bytes ROM for program, data and vector address.

Vector address mapping :

\$FFEE

\$FFFE Software BRK operation interrupter. \$FFFC RESET vector \$FFFA Reserved \$FFF8 INTX (PA0) edge interrupter. Reserved \$FFF6 \$FFF4 Reserved Timer1 interrupter. \$FFF2 \$FFF0 PORTA transition interrupter.

Base Timer interrupter.

7.2 RAM

7.2.1 DATA RAM (\$0080~\$00BF)

DATA RAM are organized in 64 bytes.

7.2.2 STACK RAM (\$0100~\$011F)

STACK RAM are organized in 32 bytes. It provides for a maximum of 16-level subroutine stacks And can be used as data memory.

7.2.3 LCD RAM (\$0200~\$021F)

Resident LCD-RAM, accessible through write and read instructions, is organized in 32x4 bits for 32x4 LCD display. Note that this area can also be used as data memory.

ST2006

The RAM mapping includes Control Registers, Data RAM, Stack RAM and LCD RAM.

Table 7-1 CONTROL REGISTERS (\$0000~\$003E)

Address	Name	R/W	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default
\$000	PA	R/W	PA[7]	PA[6]	PA[5]	PA[4]	PA[3]	PA[2]	PA[1]	PA[0]	1111 1111
\$001	РВ	R/W	-	-	-	-	PB[3]	PB[2]	PB[1]	PB[0]	1111
\$008	PCA	R/W	PCA[7]	PCA[6]	PCA[5]	PCA[4]	PCA[3]	PCA[2]	PCA[1]	PCA[0]	0000 0000
\$009	PCB	R/W	-	-	-	-	PCB[3]	PCB[2]	PCB[1]	PCB[0]	0000
\$00F	PMCR	R/W	PULL	PDBN	INTEG	-	-	-	PSGO	PSGB	10000
\$012	PSGL	W	PSG[7]	PSG[6]	PSG[5]	PSG[4]	PSG[3]	PSG[2]	PSG[1]	PSG[0]	0000 0000
\$013	PSGH	W	-		-	-	PSG[11]	PSG[10]	PSG[9]	PSG[8]	0000
\$016	PSGC	W	-	PCK[2]	PCK[1]	PCK[0]	PRBS	C1EN			-000 00
\$017	VOL	W	VOL[1]	VOL[0]	-	-	-	-	-	-	00
\$020	LCK	W	-	•	-	-	-	LCK[2]	LCK[1]	LCK[0]	100
\$021	BTM	W	-		-	-	BTM[3]	-	BTM[1]	BTM[0]	0-00
\$023	PRS	R	PRS[7]	PRS[6]	PRS[5]	PRS[4]	PRS[3]	PRS[2]	PRS[1]	PRS[0]	0000 0000
\$023	FKS	W	SRES	SENA	SENT	-	-	-	-	-	000
\$026	T1M	R/W	-	-	-	T1M[4]	T1M[3]	-	T1M[1]	T1M[0]	0 0-00
\$027	T1C	R/W	T1C[7]	T1C[6]	T1C[5]	T1C[4]	T1C[3]	T1C[2]	T1C[1]	T1C[0]	0000 0000
\$030	SYS	R/W	XSEL	OSTP	XSTP	XBAK	WSKP	WAIT	•	ı	0000 00
\$03A	LCTL	W	LPWR	BLANK	-	-	SEGO1	SEGO0	-	DUTY	00 00-0
\$03C	IREQ	R/W	-	-	IRBT	IRPT	IRT1	-	-	IRX	00 00
\$03E	IENA	R/W	-	1	IEBT	IEPT	IET1	-	-	IEX	00 00

Note: 1. Some addresses of I/O area, \$2~\$7, \$A~\$E, \$10~\$11, \$14~\$15, \$18~\$1F, \$22, \$24~\$25, \$28~\$2F, \$31~\$39, \$3B, \$3D, \$3F are no used.

- 2. User should never use undefined addresses and bits.
- 3. Do not use Bit instructions for write-only registers, such as RMBx, SMBx

8 INTERRUPTS

8.1 Interrupt description

BRK

Instruction 'BRK' will cause software interrupt when interrupt disable flag (I) is cleared. Hardware will <u>push 'PC', 'P' Register to stack and set interrupt disable flag (I)</u>. Program counter then will be loaded with the BRK vector from locations \$FFFE and \$FFFF.

RESET

A negative transition of RESET pin will enable an initialization sequence. After the system's operating, a low on this line of a least two clock cycles will cease ST2006 activity. When a positive edge is detected, there is an initialization sequence lasting for six clock cycles. Then the interrupt mask flag is set, the decimal mode is cleared and the program counter will be loaded with the restart vector from locations \$FFFC (low byte) and \$FFFD (high byte). This is the start location for program control. This input should be high in normal operation.

INTX interrupt

The IRX (INTX interrupt request) flag will be set while INTX edge signal occurs. The INTX interrupt will be active once IEX (INTX interrupt enable) is set, and interrupt mask flag is cleared. Hardware will push 'PC', 'P' Register to stack and set interrupt mask flag (I). Program counter will be loaded with the INTX vector from locations \$FFF8 and \$FFF9.

T1 interrupt

The IRT1 (TIMER1 interrupt request) flag will be set while T1 overflows. With IET1 (TIMER1 interrupt enable) being set, the T1 interrupt will be executed, and interrupt mask flag will be cleared. Hardware will push 'PC', 'P' Register to stack and set interrupt mask flag (I). Program counter will be loaded with the T1 vector from locations \$FFF2 and \$FFF3.

PT interrupt

The IRPT (Port-A interrupt request) flag will be set while Port-A transition signal occurs. With IEPT (PT interrupt enable)being set, the PT interrupt will be execute, and interrupt mask flag will be cleared. Hardware will <u>push 'PC'. P' Register to stack and set interrupt mask flag (I)</u>. program counter will be loaded with the PT vector from locations <u>\$FFF0 and \$FFF1</u>.

BT interrupt

The IRBT (Base timer interrupt request) flag will be set when Base Timer overflows. The BT interrupt will be executed once the IEBT (BT interrupt enable) is set and the interrupt mask flag is cleared. Hardware will push 'PC', 'P' Register to stack and set interrupt mask flag (I). Program counter will be loaded with the BT vector from locations \$FFEE and \$FFEF.

Table 8-1 PREDEFINED VECTORS FOR INTERRUPT

Name	Signal	Vector address	Priority	Comment
BRK	Internal	\$FFFF,\$FFFE	6	Software BRK operation vector
RESET	External	\$FFFD,\$FFFC	1	RESET vector
-	-	\$FFFB,\$FFFA	-	Reserved
INTX	External	\$FFF9,\$FFF8	2	PA0 edge interrupt
-	-	\$FFF7,\$FFF6	-	Reserved
-	-	\$FFF5,\$FFF4	-	Reserved
T1	INT/EXT	\$FFF3,\$FFF2	3	Timer1 interrupt
PT	External	\$FFF1,\$FFF0	4	Port-A transition interrupt
ВТ	Internal	\$FFEF,\$FFEE	5	Base Timer interrupt

8.2 Interrupt request clear

Interrupt request flag can be cleared by two methods. One is to write "0" to IENA, the other is to initiate the interrupt service routine when interrupt occurs. Hardware will automatically clear the Interrupt flag.

Table 8-2 INTERRUPT REQUEST REGISTER (IREQ)

Address	Name	R/W	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default
\$03C	IREQ	R/W	-	-	IRBT	IRPT	IRT1	-	-	IRX	00 00

Bit 5: IRBT: Base Timer Interrupt Request bit

1 = Time base interrupt occurs

0 = Time base interrupt doesn't occur

Bit 4: IRPT: Port-A Interrupt Request bit

1 = Port-A transition interrupt occurs

0 = Port-A transition interrupt doesn't occur

IRT1: Timer1 Interrupt Request bit

1 = Timer1 overflow interrupt occurs

0 = Timer1 overflow interrupt doesn't occur

Bit 0: IRX: INTX Interrupt Request bit

1 = INTX edge interrupt occurs

0 = INTX edge interrupt doesn't occur

Table 8-3 INTERRUPT ENABLE REGISTER (IENA)

Address	Name	R/W	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default
\$03E	IENA	R/W	-	-	IEBT	IEPT	IET1	-	-	IEX	00 00
Bit 5:			er Interrupt		t						

0 = Time base interrupt disable

Bit 4: IEPT: Port-A Interrupt Enable bit

1 = Port-A transition interrupt enable 0 = Port-A transition interrupt disable

Bit 3: **IET1:** Timer1 Interrupt Enable bit

Bit 0:

1 = Timer1 overflow interrupt enable 0 = Timer1 overflow interrupt disable

IEX: INTX Interrupt Enable bit 1 = INTX edge interrupt enable

0 = INTX edge interrupt disable

9 I/O PORTS

9.1 General Function

ST2006 has three I/O ports, PORT-A, PORT-B, SEGMENT-PORT. In total, ST2006 provides for a maximum of 18 I/O pins with SEGMENT-PORT being programmed as output ports. For detail pin assignment, please refer to Table 9-1

NOTE: all of unused input pins should be pulled up to minimize standby current

Table 9-1 I/O DESCRIPTION

PORT NAME	PAD NAME	PAD NUMBER	PIN Type	FEATURE
	PA0/INTX	32	I/O	
	PA1	31	I/O	
	PA2	30	I/O	
PORTA	PA3	29	I/O	programmable input/output pin
PORTA	PA4	28	I/O	programmable input/output pin
	PA5	27	I/O	
	PA6	26	I/O	
	PA7	25	I/O	
	PB0	24	I/O	
PORTB	PB1	23	I/O	programmable input/output pin
PORIB	PB2	22	I/O	programmable input/output pin
	PB3	21	I/O	
	SEG0	8	0	
	SEG1	7	0	These 4 segment pins can be programmed as output
	SEG2	6	0	ports.
SEGMENT	SEG3	5	0	
PORT	SEG4	4	0	
	SEG5	3	0	These 4 segment pins can be programmed as output
	SEG6	2	0	ports.
	SEG7	1	0	

ST2006

9.2 **PORT-A**

Port- A is a bit-programmable bi-direction I/O port, which is controlled by PCA register. It provides user with bit programmable pull-up MOS, interrupt debounce and interrupt edge selection(PA0 only).

Table 9-2 SUMMARY FOR PORT-A REGISTERS

Address	Name	R/W	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default
\$000	PA	R/W	PA[7]	PA[6]	PA[5]	PA[4]	PA[3]	PA[2]	PA[1]	PA[0]	1111 1111
\$008	PCA	R/W	PCA[7]	PCA[6]	PCA[5]	PCA[4]	PCA[3]	PCA[2]	PCA[1]	PCA[0]	0000 0000
\$00F	PMCR	R/W	PULL	PDBN	INTEG	-	-	-	PSG0	PSGB	10000
\$03C	IREQ	R/W	-	-	IRBT	IRPT	IRT1	-	-	IRX	00 00
\$03E	IENA	R/W	-	-	IEBT	IEPT	IET1	-	-	IEX	00 00

9.2.1 PORT-A I/O control

Direction of Port-A is controlled by PCA. Every bit of PCA[7-0] is mapped to the I/O direction of PA[7-0]

correspondingly with "1" for output mode, and "0" for input mode.

Table 9-3 PORT-A CONTROL REGISTER (PCA)

Address	Name	R/W	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default
\$008	PCA	R/W	PCA[7]	PCA[6]	PCA[5]	PCA[4]	PCA[3]	PCA[2]	PCA[1]	PCA[0]	0000 0000

Bit 7~0: PCA[7~0]: Port-A directional bits

1 = Output mode 0 = Input mode

9.2.2 PORT-A PULL-UP OPTION

PORT-A contains pull-up MOS transistors controlled by software. When an I/O is used as an input, the ON/OFF of the pull-up MOS transistor will be controlled by port data register (PA) and the pull-up MOS will be enabled with "1" for

data bit and disable with "0" for data bit. The PULL control bit of PMCR controls the ON/OFF of all the pull-up MOS simultaneously. Please refer to the Figure 9-1.

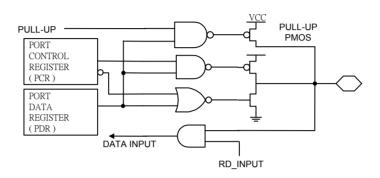


Figure 9-1 Port-A Configuration Function Block Diagram

Table 9-4 PORT CONDITION CONTROL REGISTER (PMCR)

Address	Name	R/W	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default
\$00F	PMCR	R/W	PULL	PDBN	INTEG	1	ı	ı	PSG0	PSGB	10000
Bit 7:	PULL: Enable all pull-up function bit 1 = Enable pull-up function 0 = Disable pull-up function										
Bit 6:	PDBN : Enable Port-A interrupt debounce bit* 1 = Debounce for Port-A interrupt 0 = No debounce for Port-A interrupt										
Bit 5:	INTEG: INTX interrupt edge select bit** 1 = Rising edge 0 = falling edge										

^{*} No de-bounce function when Port-A disable interrupt.

^{**} INTX interrupt no de-bounce function.

ST2006

9.2.3 Port-A interrupt

Port-A, a programmable I/O, can be used as a port interrupt when it is in the input mode. Any edge transition of the Port-A input pin will generate an interrupt request. The last state of Port-A must be kept before I/O transition and this can be accomplished by reading Port-A.

When programmer enables INTX and PT interrupts, PA0 trigger will occur. INTX and PT interrupts will therefore happen sequentially. Please refer to the Figure 9-2.

Operating Port-A interrupt step by step:

- 1. Set input mode.
- 2. Read Port-A.
- 3. Clear interrupt request flag (IRPT).
- 4. Set interrupt enable flag (IEPT).
- 5. Clear CPU interrupt disable flag (I).
- **6.** Read Port-A before 'RTI' instruction in INT-Subroutine.

Example:

.

STZ PCA LDA #\$FF LDA PA RMB4 <IREQ SMB4 <IENA CLI

CL

INT-SUBROUTINE

.

LDA PA RTI

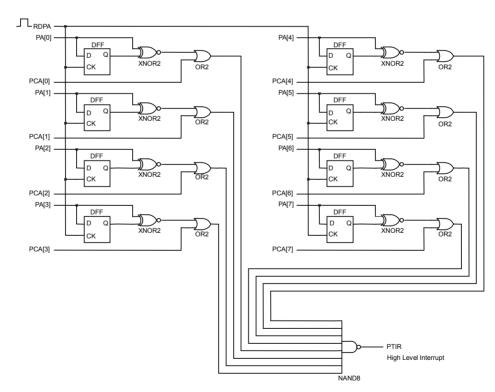


Figure 9-2 Port Interrupt Logic Diagram

9.2.4 Port-A interrupt debounce

ST2006 has hardware debounce option for Port-A interrupt. The debounce will be enabled with "1" and disable with "0" for PDBN. The debounce will active when Port-A transition occurs, PDBN enable and <u>OSCX enable</u>.

The debounce time is OSCX x 512 cycles(about 16 ms). Refer to Table 9-5 .

Table 9-5 PORT CONDITION CONTROL REGISTER (PMCR)

Address	Name	R/W	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default
\$00F	PMCR	R/W	PULL	PDBN	INTEG	-	-	ı	PSG0	PSGB	10000
Bit 6: PDBN : Enable Port-A interrupt debounce bit											

1 = Debounce for Port-A interrupt

0 = No debounce for Port-A interrupt

9.2.5 PA0/INTX

PA0 can be used as an external interrupt input(INTX). Falling or Rising edge is controlled by INTEG(PMCR[5]) and the external interrupt is set up with "0" for falling edge and "1" for rising edge.

When programmer enables INTX and PT interrupts, PA0 trigger will occur. Both INTX and PT interrupts will happen sequentially. Please refer to the operating steps.

Operating INTX interrupt step by step :

- 1. Set PA0 pin into input mode. (PCA[0])
- 2. Select edge level. (INTEG)
- 3. Clear INTX interrupt request flag. (IRX)
- 4. Set INTX interrupt enable bits. (IEX)
- 5. Clear CPU interrupt mask flag (I).

Example:

.

RMB0 <PCA ;Set input mode.

SMB5 <PMCR ;Rising edge.

RMB0 <IREQ ;Clear IRQ flag.

SMB0 <IENA ;Enable INTX interrupt.

CLI

:

PMCR[5] Falling Edge Interrupt

Figure 9-3 INTX Logic Diagram

9.3 PORT-B

Port -B is a bit programmable bi-direction I/O port, which is controlled by PCB register. It also provides user with bit-

programmable pull-up MOS and sound output port separately.

Table 9-6 SUMMARY FOR PORT-B REGISTERS

Address	Name	R/W	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default
\$001	РВ	R/W	-	-	-	-	PB[3]	PB[2]	PB[1]	PB[0]	1111
\$009	PCB	R/W	-	-	-	-	PCB[3]	PCB[2]	PCB[1]	PCB[0]	0000
\$00F	PMCR	R/W	PULL	PDBN	INTEG	-	-	-	PSG0	PSGB	10000

9.3.1 PORT-B I/O control

Direction of Port-B is controlled by PCB. Every bit of PCB[3-0] is mapped into the I/O direction of PB[3-0]

correspondingly, with "1" for output mode, and "0" for input mode.

Table 9-7 PORT-B CONTROL REGISTER (PCB)

Address	Name	R/W	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default
\$009	PCB	R/W	-	1	ı	-	PCB[3]	PCB[2]	PCB[1]	PCB[0]	0000
Bit 1~0	: PCB	[3~0] : Po	ort-B direct	ional bits							

1 = Output mode 0 = Input mode

9.3.2 PORT-B PULL-UP OPTION

This port contains pull-up MOS transistors which is controlled by software and can be enabled or disabled with "1" or with "0" accordingly in data bit of the port data register

(PB) when an I/O is used as an input. The PULL control bit of PMCR also controls the ON/OFF of all the pull-up MOS simultaneously. Please refer to the Figure 9-4.

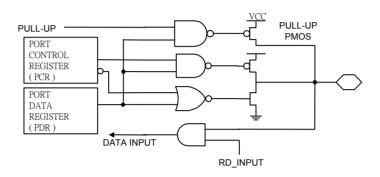


Figure 9-4 Port-B Configuration Function Block Diagram

Table 9-8 PORT CONDITION CONTROL REGISTER (PMCR)

Address	Name	R/W	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default
\$00F	PMCR	R/W	PULL	PDBN	INTEG	-	ı	ı	PSG0	PSGB	10000
Bit 7:	1 = En:	able pull-u	ll pull-up fu p function up functior		it						
Bit 1:	0 = Disable pull-up function PSGO: PSG output enable bit 1 = PB3 is PSG data output pin if PB3 is set in output mode 0 = PB3 is normal I/O pin										
Bit 0:	1 = PB		erse signa inverse da al I/O pin	•		s set in ou	ıtput mode)			

9.4 SEGMENT-PORT

The SEG0~SEG3 and SEG4~SEG7 can be used as LCD drivers or output ports. In output port mode, <u>programmer must write</u> \$FF(\$00) into LCD RAM in order to output

<u>HIGH(LOW)</u>. The assignments of SEGOX will be decided by Bit 3~2 of LCTL[3~2]. Please refer to Table 9-9.

Table 9-9 LCD CONTROL REGISTER (LCTL)

Address	Name	R/W	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default
\$03A	LCTL	W	LPWR	BLANK	-	-	SEGO1	SEG00	-	DUTY	00 00-0
Bit 3:	1 = SE(0 = SE(SEGO(1 = SE(G0-SEG3 G0-SEG3) : Segme G4-SEG7	used as o used as L nt output s used as o	selection b utput pins CD segme selection b utput pins CD segme	ent pins it						

Table 9-10 SEGMENT OUT REGISTER

Address	Name	R/W	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default		
\$200	SEGMENT OUT 0	W		SEGMENT-0 OUTPUT BIT									
\$201	SEGMENT OUT 1	W		SEGMENT-1 OUTPUT BIT									
\$202	SEGMENT OUT 2	W			SEG	MENT-2	OUTPUT	BIT			???? ????		
\$203	SEGMENT OUT 3	W			SEG	MENT-3	OUTPUT	BIT			???? ????		
\$204	SEGMENT OUT 4	W			SEG	MENT-4	OUTPUT	BIT			???? ????		
\$205	SEGMENT OUT 5	W			SEG	MENT-5	OUTPUT	BIT			???? ????		
\$206	SEGMENT OUT 6	W		SEGMENT-6 OUTPUT BIT									
\$207	SEGMENT OUT 7	W		SEGMENT-7 OUTPUT BIT									

In the output port mode, programmer must write \$FF(\$00) into LCD RAM to output HIGH(LOW).

10 OSCILLATOR

ST2006 is with dual-clock system. Programmer can choose between OSC(RC) and OSCX(32.768k), or both as clock source through program. The system clock(SYSCK) also can be switched between OSC and OSCX. The OSC will be switch with "0" and OSCX will be switch with "1" for XSEL. Whenever system clock be switch, the warm-up cycles are

occur at the same time. That is confirm SYSCK really switched when read **XSEL** bit. LCD driver, Timer1, Base Timer and PSG can utilize these two clock sources as well.

Table 10-1 SYSTEM CONTROL REGISTER (SYS)

Address	Name	R/W	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default
\$030	SYS	R/W	XSEL	OSTP	XSTP	XBAK	WSKP	WAIT	-	-	0000 00
Bit 7:	XSEL :	sys [xs	EL] must	be 0.							
Bit 6:	1 = Dis	: OSC sto able OSC able OSC		it							
Bit 5:	1 = Dis	OSCX stable OSC able OSC		bit							
Bit 4:	1 = OS	: OSCX d CX norma CX heavy		y load bit							
Bit 3:	1 = Wa	arm-up to	warm-up o 16 oscillati 256 oscilla	ion cycles	3						
Bit 2:			VAI-1mod on causes					MODE)			

Note:

1. The XSEL(SYS[7]) bit will show which real working mode is when it is read.

0 = WAI instruction causes the chip to enter WAI-0 mode

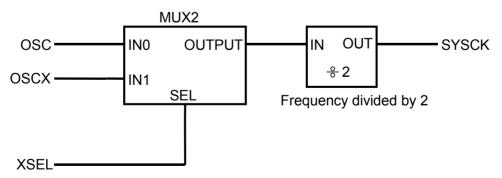


Figure 10-1 System Clock Diagram

ST2006

11 TIMER/EVENT COUNTER

The ST2006 has two timers: Base timer/Timer1, and two prescalers (PRES and PREW). There are two clock sources

for PRES and one clock source(OSCX) for PREW. Please refer to the following table:

Table 11-1 CLOCK SOURCE (TCLK) FOR PRES

SENT	Clock source(TCLK)	MODE
1	INTX	Event counter
0	SYSCK	Timer

Table 11-2 SUMMARY FOR TIMER REGISTERS

Address	Name	R/W	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default
\$021	BTM	W	-	-	-	-	BTM[3]		BTM[1]	BTM[0]	0-00
\$023	PRS	R	PRS[7]	PRS[6]	PRS[5]	PRS[4]	PRS[3]	PRS[2]	PRS[1]	PRS[0]	0000 0000
\$023	FKS	W	SRES	SENA	SENT	-	-	-		-	000
\$026	T1M	R/W	-	-	-	T1M[4]	T1M[3]		T1M[1]	T1M[0]	0 0-00
\$027	T1C	R/W	T1C[7]	T1C[6]	T1C[5]	T1C[4]	T1C[3]	T1C[2]	T1C[1]	T1C[0]	0000 0000
\$030	SYS	R/W	XSEL	OSTP	XSTP	XBAK	WSKP	WAIT	-	-	0000 00
\$03C	IREQ	R/W	-	-	IRBT	IRPT	IRT1	-	-	IRX	00 0-00
\$03E	IENA	R/W	-	-	IEBT	IEPT	IET1	-	-	IEX	00 0-00

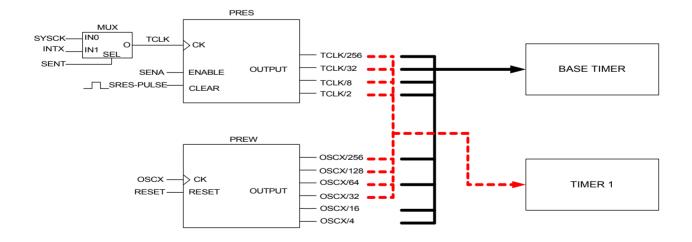


Figure 11-1 Prescaler for Timers

ST2006

11.1 PRES

The prescaler PRES is an 8-bits counter as shown in Figure 11-6. Which provides four clock sources for base timer and timer1, and it is controlled by register PRS. The instruction read toward PRS will bring out the content of PRES and the

instruction write toward PRS will reset, enable or select clock sources for PRES.

When user set external interrupt as the input of PRES for event counter, combining PRES and Timer1 will get a 16bit-event counter.

Table 11-3 PRESCALER CONTROL REGISTER (PRS)

Address	Name	R/W	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default
\$023	PRS	R	PRS[7]	PRS[6]	PRS[5]	PRS[4]	PRS[3]	PRS[2]	PRS[1]	PRS[0]	0000 0000
\$023	PKS	W	SRES	SENA	SENT	-	-	-	-	-	000

READ

Bit 7~0: PRS[7~0]: 1's complement of PRES counter

WRITE

Bit 7: SRES: Prescaler Reset bit

Write "1" to reset the prescaler (PRS[7~0])

Bit 6: **SENA**: Prescaler enable bit

0 = Disable prescaler counting1 = Enable prescaler counting

Bit 5: SENT: Clock source(TCLK) selection for prescaller PRES

0 = Clock source from system clock "SYSCK"

1 = Clock source from external events "INTX"

11.2 PREW

The prescaler PREW is an 8-bits counter as shown in Figure 11-6. PREW provides four clock source for base timer and

timer1. It stops counting only if OSCX stops or hardware reset occurs.

11.3 Base timer

11.3.1 Structure of Base Timer

Base timer is an 8-bit up counting timer. When it overflows from \$FF to \$00, a timer interrupt request IRBT will be generated. Please refer to Figure 11-2.

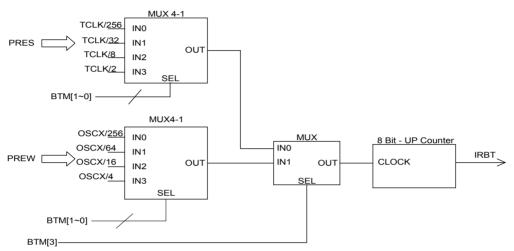


Figure 11-2 Structure of Base Timer

11.3.2 Clock source control for Base Timer

Several clock sources can be selected for Base Timer. Please refer to the following table:

* SENA	BTM[3]	BTM[1]	BTM[0]	Base Timer source clock
0	0	Х	X	STOP
1	0	0	0	TCLK / 256
1	0	0	1	TCLK / 32
1	0	1	0	TCLK / 8
1	0	1	1	TCLK / 2
X	1	0	0	OSCX / 256
X	1	0	1	OSCX / 64
X	1	1	0	OSCX / 16
X	1	1	1	OSCX / 4

Table 11-4 CLOCK SOURCE FOR BASE TIMER

^{*} TCLK will stop when an '0' is written to SENA(PRS[6]).

11.4 Timer 1

11.4.1 General function

The Timer1 is an 8-bit up counter. It can be used as a timer or an event counter. T1C(\$27) is a real time read/write counter. When an overflow from \$FF to \$00, a timer interrupt

request IRT1 will be generated. <u>Timer1 will stop counting</u> when system clock stops. Please refer to Figure 11-3.

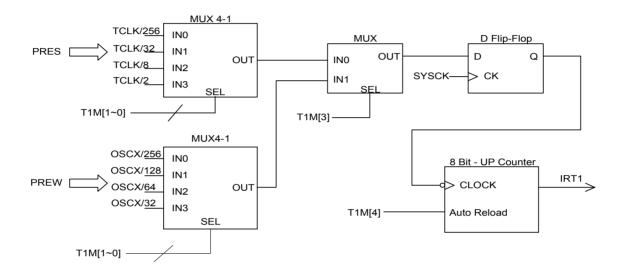


Figure 11-3 Timer1 Structure Diagram

Table 11-5 TIMER1 COUNTING REGISTER (T1C)

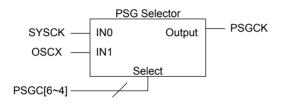
Address	Name	R/W	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default
\$027	T1C	R/W	T1C[7]	T1C[6]	T1C[5]	T1C[4]	T1C[3]	T1C[2]	T1C[1]	T1C[0]	0000 0000
Bit 7-0:	T1C[7-0] : Tim	er1 up cou	ınter regis	ter						

11.4.2 Clock source control for Timer1

Several clock source can be chosen from for Timer1. It's SYSCK stays active. Refer to the following table: very important that Timer1 can keep counting as long as

Table 11-6 CLOCK SOURCE FOR TIMER1

* SENA	T1M[4]	T1M[3]	T1M[1]	T1M[0]	Clock source	Auto-Reload
0	Х	0	Х	Х	STOP	-
1	0	0	0	0	TCLK / 256	No
1	0	0	0	1	TCLK / 32	No
1	0	0	1	0	TCLK / 8	No
1	0	0	1	1	TCLK / 2	No
X	0	1	0	0	OSCX / 256	No
X	0	1	0	1	OSCX / 128	No
X	0	1	1	0	OSCX / 64	No
X	0	1	1	1	OSCX / 32	No
1	1	0	0	0	TCLK / 256	Yes
1	1	0	0	1	TCLK / 32	Yes
1	1	0	1	0	TCLK / 8	Yes
1	1	0	1	1	TCLK / 2	Yes
X	1	1	0	0	OSCX / 256	Yes
X	1	1	0	1	OSCX / 128	Yes
X	1	1	1	0	OSCX / 64	Yes
X	1	1	1	1	OSCX / 32	Yes


^{*} TCLK would stop when SENA is set to 0.

12 PSG

12.1 General Function

The built-in Programmable Sound Generator (PSG) is controlled by registers directly. Its flexibility through setting several parameters to registers makes it useful in many applications, such as music synthesis, sound effects generation, audible alarms and tone generation. PSG will

finish the reset when user needs to create sound effect. The structure of PSG is shown in Figure 12-1 and its clock sources are shown in Figure 12-2. There are two sound types for PSG; tone and noise.

	PSGC		PSGCK
В6	B5	B4	PSGCK
0	0	0	SYSCK/2
Х	0	1	SYSCK/4
Х	1	0	SYSCK/8
0	1	1	SYSCK/16
1	0	0	SYSCK

Figure 12-1 Clock Source for PSG

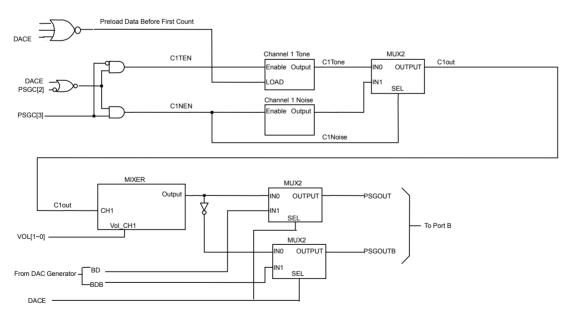


Figure 12-2 Program Sound Generator

Table 12-1 SUMMARY FOR PSG REGISTERS

Address	Name	R/W	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default
\$00F	PMCR	R/W	PULL	PDBN	INTEG	-	-	-	PSGO	PSGB	10000
\$012	PSGL	W	PSG[7]	PSG[6]	PSG[5]	PSG[4]	PSG[3]	PSG[2]	PSG[1]	PSG[0]	0000 0000
\$013	PSGH	W	-	-	-	-	PSG[11]	PSG[10]	PSG[9]	PSG[8]	0000
\$016	PSGC	W	-	PCK[2]	PCK[1]	PCK[0]	PRBS	C1EN	-	-	- 000 00
\$017	VOL	W	VOL[1]	VOL[0]	-	-	-	-	-	-	00

Table 12-2 CONTROL REGISTER FOR PSG OUTPUT (PMCR)

Address	Name	R/W	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default
\$00F	PMCR	R/W	PULL	PDBN	INTEG	-	-	-	PSGO	PSGB	10000

Bit 1: **PSGO:** PSG output enable bit

1 = PSG data output pin if PB3 is set in output mode

0 = PB3 is normal I/O pin

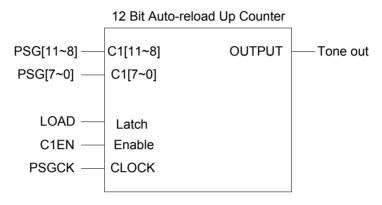
Bit 0: **PSGB**: PSG inverse signal output enable bit

1 = PB2 is PSG inverse data output pin if PB2 is set in output mode

0 = PB2 is normal I/O pin

Table 12-3 CONTROL REGISTER FOR PSG VOLUME (VOL)

Address	Name	R/W	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default
\$017	VOL	W	VOL[1]	VOL[0]	-	-	-	-	-	=	00


Bit 7~6: VOL[1~0]: PSG volume control bit

00 = No sound output

01 = 1/4 volume (PSGCK must >= 128K Hz) 10 = 1/2 volume (PSGCK must >= 64K Hz) 11 = Maximum volume (PSGCK must >= 32K Hz) Sitronix ST2006

12.2 Tone Generator

The tone frequency is decided by PSGCK and 12-bit programmable divider (PSG[11~0]) Please refer to Figure 12-3.

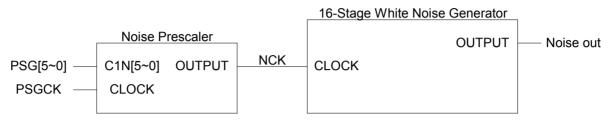
Tone Frequency = PSGCK/(1000H-PSG[11~0])/2

Figure 12-3 PSG Tone Counter

12.3 PSG Tone programming

To program tone generator, PSGO (PMCR[1]) or PSGB (PMCR[0]) should be set to "1" for PB1 or PB0 in order to be in the PSG output mode. Writing to C1EN will enable tone

generator when PSG is in tone function. Noise or tone function is selected by PRBS.


Table 12-4 PSG CONTROL REGISTER (PSGC)

Address	Name	R/W	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default	
\$016	PSGC	W	-	PCK[2]	PCK[1]	PCK[0]	PRBS	C1EN	-	ı	- 000 00	
Bit 2:	C1EN: PSG (Tone or Noise) enable bit 1 = PSG (Tone or Noise) enable 0 = PSG (Tone or Noise) disable PRBS: Tone or Noise generator selection bit											
Bit 3:	1 = No	oise gene	rator	nerator se	lection bit							
Bit 6~4	000 = X01 = X10 = 011 =	0 = Tone generator PCK[2~0]: clock source PSGK selection for PSG 000 = SYSCK / 2 X01 = SYSCK / 4 X10 = SYSCK / 8 011 = SYSCK / 16 100 = SYSCK										

ST2006

12.4 Noise Generator Control

Noise generator is shown in Figure 12-4, which base frequency is controlled by PSGL[5~0].

NCK Frequency = $PSGCK/(40H-PSG[5\sim0])$

Figure 12-4 Noise Generator Diagram

12.5 PSG Noise programming

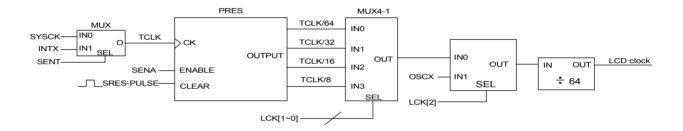
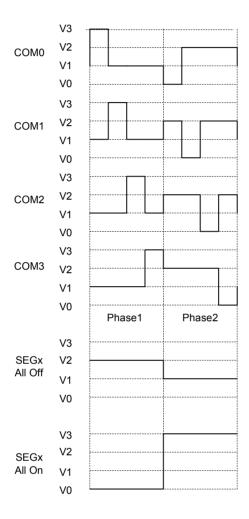
To program noise generator, PSGO (PMCR[1]) or PSGB (PMCR[0]) should be set to "1" for PB3 or PB2 in order to be

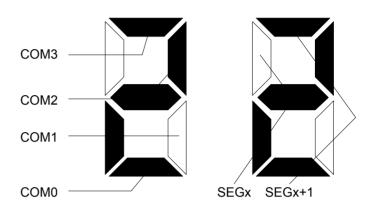
in PSG output. Writing a "1" to C1EN will enable noise generator when PSG is in noise mode.

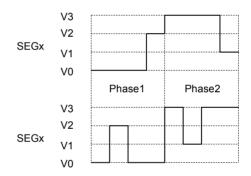
13 LCD

The ST2006 can drive up to 128 dots of LCD panel directly. The LCD driver can control by 1/3 duty (96 dots) and 1/4 duty (128 dots). LCD block include display RAM (\$200~\$21F) for storing the display data, 32-segment output pins (SEG0~SEG31), 4-common output pins (COM0~COM3).

All LCD RAM are random after power on reset.


Figure 13-1 Clock source of LCD


13.1 LCD driver 1/4 duty output

1/4 duty, 1/3 bias LCD signal

Example

13.2 LCD control register

Table 13-1 LCD CONTROL REGISTER (LCTL)

Address	Name	R/W	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default
\$020	LCK	W	-	-	-	-	-	LCK[2]	LCK[1]	LCK[0]	100
\$023	PRS	W	SRES	SENA	SENT	-	-	-	•	-	000
\$03A	LCTL	W	LPWR	BLANK	-	-	SEGO1	SEG00	-	DUTY	00 00-0

Table 13-2 LCD FREQUENCY REGISTER (LCK)

Address	Name	R/W	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default
\$020	LCK	W	-	-	-	-	-	LCK[2]	LCK[1]	LCK[0]	100
Bit 2~0	000 = 001 = 010 = 011 =	TCLK / 40 TCLK / 20 TCLK / 10 TCLK / 5	0 clock sou 096 (LCE 048 (LCE 024 (LCE 12 (LCE 64 (LCD	frame clo frame clo frame clo frame clo	ock = TCLI ock = TCLI ock = TCLI	<pre>< / 16384 </pre> < / 8192)) * *				

^{*} SENA must switch "1". (refer to FIGURE 13-1)

Table 13-3 LCD CONTROL REGISTER (LCTL)

Address	Name	R/W	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default
\$03A	LCTL	W	LPWR	BLANK	-	-	SEGO1	SEGO0	-	DUTY	00 00-0
Bit 7:	1 = LCI	: LCD pov D power C D power C		F bit							
Bit 6:	1 = Dis		splay ON/0 display (C display		ne is still s	canning)					
Bit 3:	1 = SE	G3~SEG0	control for l) will be ge output is	neral purp	ose outpu	it pin only					
Bit 2:	1 = SE	G7~SEG4	control for I I will be ge I output is	neral purp	ose ouṫpu	ıt pin only					
Bit 0:	1 = 1/3	LCD duty duty (1/2 duty (1/3		it							

13.3 LCD RAM MAPPING

The LCD RAM map is shown as the following:

Table 13-4 LCD RAM MAPPING

SEGO	ADDRESS	COM0	COM1	COM2	COM3
0	200H	Bit 0	Bit 1	Bit 2	Bit 3
1	201H	Bit 0	Bit 1	Bit 2	Bit 3
2	202H	Bit 0	Bit 1	Bit 2	Bit 3
3	203H	Bit 0	Bit 1	Bit 2	Bit 3
4	204H	Bit 0	Bit 1	Bit 2	Bit 3
5	205H	Bit 0	Bit 1	Bit 2	Bit 3
6	206H	Bit 0	Bit 1	Bit 2	Bit 3
7	207H	Bit 0	Bit 1	Bit 2	Bit 3
8	208H	Bit 0	Bit 1	Bit 2	Bit 3
9	209H	Bit 0	Bit 1	Bit 2	Bit 3
10	20AH	Bit 0	Bit 1	Bit 2	Bit 3
11	20BH	Bit 0	Bit 1	Bit 2	Bit 3
12	20CH	Bit 0	Bit 1	Bit 2	Bit 3
13	20DH	Bit 0	Bit 1	Bit 2	Bit 3
14	20EH	Bit 0	Bit 1	Bit 2	Bit 3
15	20FH	Bit 0	Bit 1	Bit 2	Bit 3
16	210H	Bit 0	Bit 1	Bit 2	Bit 3
17	211H	Bit 0	Bit 1	Bit 2	Bit 3
18	212H	Bit 0	Bit 1	Bit 2	Bit 3
19	213H	Bit 0	Bit 1	Bit 2	Bit 3
20	214H	Bit 0	Bit 1	Bit 2	Bit 3
21	215H	Bit 0	Bit 1	Bit 2	Bit 3
22	216H	Bit 0	Bit 1	Bit 2	Bit 3
23	217H	Bit 0	Bit 1	Bit 2	Bit 3
24	218H	Bit 0	Bit 1	Bit 2	Bit 3
25	219H	Bit 0	Bit 1	Bit 2	Bit 3
26	21AH	Bit 0	Bit 1	Bit 2	Bit 3
27	21BH	Bit 0	Bit 1	Bit 2	Bit 3
28	21CH	Bit 0	Bit 1	Bit 2	Bit 3
29	21DH	Bit 0	Bit 1	Bit 2	Bit 3
30	21EH	Bit 0	Bit 1	Bit 2	Bit 3
31	21FH	Bit 0	Bit 1	Bit 2	Bit 3

Note:

- 1. The LCD RAM address is allocated at page 2 of memory map. Only bit0 ~ bit2 is useful when it is 1/3 duty mode.
- 2. The LCD RAM can be write & read as like general purpose RAM.

Sitronix ST2006

14 POWER DOWN MODE

The ST2006 has three power down modes: WAI-0, WAI-1 and STP. The instruction WAI will enable mode WAI-0 or WAI-1, which are controlled by WAIT(SYS[2]). The

instruction WAI (WAI-0 and WAI-1 modes) can be wake-up by interrupt. However, the instruction of STP can only be wake-up by hardware reset.

14.1 WAI-0 Mode:

When **WAIT** is cleared, WAI instruction lets MCU enter WAI-0 mode. In the mean time, oscillator circuit is be active and interrupts, timer/counter, and PSG will all be working. Under such circumstance, CPU stops and the related instruction execution will stop. All registers, RAM, and I/O pins will retain their states before the MCU enter standby mode. WAI-0 mode can be wake-up by reset or interrupt

request. If user disable interrupt(CPU register I='1'), MCU will still be wake-up but not go into the interrupt service routine. If interrupt is enabled(CPU register I='0'), the corresponding interrupt vector will be fetched and interrupt service routines will executed.

The sample program is showed as followed:

LDA #\$00 STA SYS

WAI ; WAI 0 mode

14.2 WAI-1 Mode:

When **WAIT** is set, WAI instruction let MCU to enter WAI-1 mode. In this mode, the CPU will stop, but PSG, timer/counter won't stop if the clock source is from OSCX.

The wake-up procedure is the same as the one for WAI-0. <u>But the warm-up cycles are occur</u> when WAI-1 wake-up. The sample program is shown as the following:

LDA #\$04 STA SYS

WAI ; WAI 1 mode

14.3 STP Mode:

STP instruction will force MCU to enter stop mode. In this mode, MCU stops, but PSG, timer/counter won't stop if the clock source is from OSCX. In power-down mode, MCU only

be wake-up by hardware reset, <u>and the warm-up cycles are occur</u> at the same time.

The sample program is showed as the following:

. STP .

(SYSCK source from OSC)

Table 14-1 STATUS UNDER POWER DOWN MODE

Mode	Timer1	SYSCK	osc	oscx	Base Timer	RAM	REG.	LCD	I/O	Wake-up condition
WAI-0					Reta	in				Reset, Any interrupt
WAI-1	Stop	Stop	Stop		Reta	ain				Reset, Any interrupt
STP	Stop	Stop	Stop		Retain					Reset

(SYSCK source from OSCX)

Mode	Timer1	SYSCK	osc	oscx	Base Timer	RAM	REG.	LCD	I/O	Wake-up condition
WAI-0				•	Reta		Reset, Any interrupt			
WAI-1	Stop	Stop		•	Reta	in		•	•	Reset, Any interrupt
STP	Stop	Stop		Retain Rese						

15 ELECTRICAL CHARACTERISTICS

15.1 Absolute Maximum Ratings*

*Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. All the ranges are stress ratings only. Functional operation of this device at these or any other conditions above those indicated in the operational sections of this specification is not implied or intended. Exposed to the absolute maximum rating conditions for extended periods may affect device reliability.

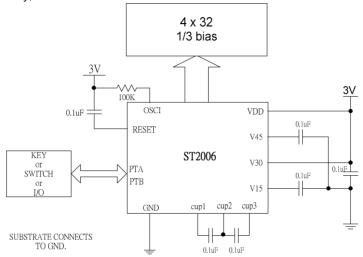
15.2 DC Electrical Characteristics

Standard operation conditions: V_{DD} = 3.0V, GND = 0V, T_A = 25°C, OSC=2MHz, OSCX = 32768Hz, unless otherwise specified

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition
Operating Voltage	V_{DD}	2.4	3	3.4	V	
Operating Current	I _{OP}	370	400	450	μА	All output pins unload, execute NOP instruction Exclude LCD bias current
Standby Current 1	1		0.04	0.1		All output pins unload,OSCX off, LCD off
Standby Current 1	I _{SB0}		0.04	0.1	μΑ	(WAIT1/STOP mode)
Standby Current 2			0.5	1.0		All output pins unload,OSCX on, LCD off
Standby Current 2	I _{SB1}		0.5	1.0	μА	(WAIT1/STOP mode)
Chandless Comment 2			2.0	4.5		All output pins unload,OSCX on, LCD on
Standby Current 3	I _{SB2}		2.9	4.5	μА	(WAIT1/STOP mode)
Oto and have Common at A			7.4	00		All output pins unload,OSCX on, LCD off
Standby Current 4	I_{SB3}		74	90	μА	(WAIT0 mode)
Input High Voltage	V _{IH}	0.7V _{DD}		V _{DD} + 0.3	V	PORT A, PORT B
		0.85V _{DD}			V	RESET, INT
Input Low Voltage	V _{IL}	GND -0.3		0.3V _{DD}	V	PORT A, PORT B
				0.15V _{DD}	V	RESET, INT
Pull-up resistance	R _{OH}	60	80	100	ΚΩ	PORTA, PORTB (IOH = -37uA, VOH=0).
Output high voltage	V _{OH1}	0.7VDD			V	PORTA, PORTB (IOH = -3mA).
Output low voltage	V _{OL1}			0.8	V	PORTA, PORTB (IOL= 3mA).
Output high voltage	V _{OH2}	0.7 VDD			V	PSG, IOH = -5mA.
Output low voltage	V _{OL2}			0.8	V	PSG, IOL= 5mA.
Output high voltage	V _{OH3}	2.8			V	SEGx, Ioh = -800μA, C=50P,rise time < 200ns
Output low voltage	V _{OL3}			0.2	V	SEGx, IoI = 800μA
Output high voltage	V _{OH4}	0.7VDD			V	SEG 0~7 as output port, loh = 61 μ A
Output low voltage	V _{OL4}			0.3VDD	V	SEG 0~7 as output port, IoI = 116 μA
Output high voltage	V _{OH6}	VDD-0.6			V	COMx, loh = -1 mA.
Output low voltage	V _{OL6}			0.8	V	COMx, IoI = 1 mA.
Oscillation start time	T _{STT}		1	3	s	, ,
Frequency stability	ΔF/F			1	PPM	[F(3.0)-F(2.5)]/F(3.0)(crystal oscillator)
Frequency variation	ΔF/F	-10	3	10	PPM	

• TABLE 15-32 R vs. OSC.

Resistance	Frequency
100K	2.0 MHz
200k	1.0MHz
390K	524KHz

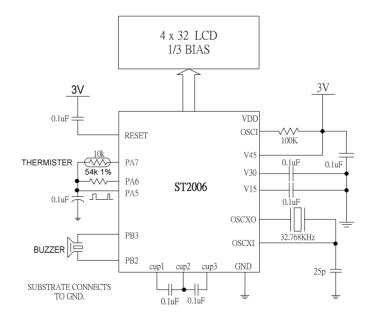


16 APPLICATION CIRCUITS

16.1 Application 1:

VDD : 3.0V CLOCK : RC 2.0M

LCD : 4.5V,1/4 duty, 1/3 bias.

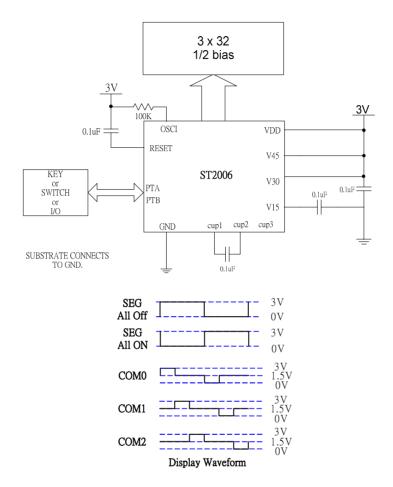


16.2 Application 2:

VDD : 3V

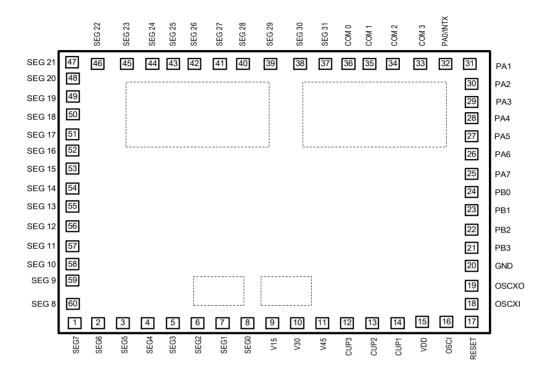
Clock : 32.768KHz crystal and 2.0M RC

LCD : 3.0V,1/4 duty, 1/3 bias



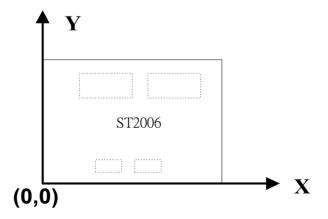
16.3 **Application 3:**

VDD


: 3V : 32.768KHz crystal and 2.0M RC Clock

LCD : 3.0V,1/3 duty, 1/2 bias

Selection LCD display guide line:


17 BONDING DIAGRAM:

Chip size: 1890 x 1700 µm

* The chip substrate must be connected to GND (PAD 20)

Indicate the origin of bonding:

18 BONDING INFORMATION

Unit: µm

PAD#	NAME	PAD C	ENTER
PAD#	IVAIVIE	X	Υ
1	SEG7	65.00	65.00
2	SEG6	175.00	65.00
3	SEG5	285.00	65.00
4	SEG4	395.00	65.00
5	SEG3	505.00	65.00
6	SEG2	615.00	65.00
7	SEG1	725.00	65.00
8	SEG0	835.00	65.00
9	V15	945.00	65.00
10	V30	1055.00	65.00
11	V45	1165.00	65.00
12	CUP3	1275.00	65.00
13	CUP2	1385.00	65.00
14	CUP1	1495.00	65.00
15	VDD	1605.00	65.00
16	OSCI	1715.00	65.00
17	RESETB	1825.00	65.00
18	OSCXI	1825.00	192.65
19	OSCXO	1825.00	302.65
20	GND	1825.00	412.65
21	PB3	1825.00	522.65
22	PB2	1825.00	632.65
23	PB1	1825.00	742.65
24	PB0	1825.00	852.65
25	PA7	1825.00	962.65
26	PA6	1825.00	1072.65
27	PA5	1825.00	1182.65
28	PA4	1825.00	1292.65
29	PA3	1825.00	1402.65
30	PA2	1825.00	1512.65

PAD#	NAME	PAD (CENTER
PAD#	NAIVIE	Х	Υ
31	PA1	1825.00	1635.00
32	PA0/INTX	1715.00	1635.00
33	COM3	1605.00	1635.00
34	COM2	1495.00	1635.00
35	COM1	1385.00	1635.00
36	COM0	1275.00	1635.00
37	SEG31	1165.00	1635.00
38	SEG30	1055.00	1635.00
39	SEG29	945.00	1635.00
40	SEG28	835.00	1635.00
41	SEG27	725.00	1635.00
42	SEG26	615.00	1635.00
43	SEG25	505.00	1635.00
44	SEG24	395.00	1635.00
45	SEG23	285.00	1635.00
46	SEG22	175.00	1635.00
47	SEG21	65.00	1635.00
48	SEG20	65.00	1512.65
49	SEG19	65.00	1402.65
50	SEG18	65.00	1292.65
51	SEG17	65.00	1182.65
52	SEG16	65.00	1072.65
53	SEG15	65.00	962.65
54	SEG14	65.00	852.65
55	SEG13	65.00	742.65
56	SEG12	65.00	632.65
57	SEG11	65.00	522.65
58	SEG10	65.00	412.65
59	SEG9	65.00	302.65
60	SEG8	65.00	192.65

ST2006 EVB PCB108

The PCB 108 of ST2006 EV Board

9	T2006- checklist	
8 bits Micro-controller with 128 / 96 dots LCD driver		
	SCX: 32.768KHz Crystal . z. (ROSC = Ω)	
LCD Panel:		
	4 duty; 1 / 3 duty .	
Operation Voltage		
Power Down mod		
ST2006 EVB PCE	B	
Program file:	. hex Date (Y/M/D) : / /	
E.V. Board bios ve	ersion:	
Check sum (See	appendix) :	
Appendix:		
Convert mask coo	de into Intel HEX from E800h ~ FFFFh;	
	er and Select EPROM device 27512;	
Fill memory buffer		
Load . hex file of		
Read check sum	value .	
Customer		
Company Name		
Function approval on emulation board : Yes ; No .		
Emulation boards use 5V DC power and their electrical		
characteristics are different with real chip.		
Signature		
Sitronix		
FAE / SA		
Sales Signature		

Project name _____ / ___/

	Confirmed Item	Check	Note
1	After power on , initial user RAM and confirm control register .	<u> </u>	
2	Confirm LCD panel's V _{OP} (contrast level) > Duty and Bias .		
_	Confirm the difference between E.V. Board and real chip (ex.		
3	V_{OP} · driving ability · F_{OSC} · power consumption · noiseetc.)		
	Before entry power down mode, turn off un-used peripheral.		
4	(LCD driver \ PSG \ OSC or OSCX)		
5	Make sure power down mode work .		
	Calculate average operating current . (Wake up time ratio)		
	Confirm I/O directions and set pull-up for un-used input pins.		
_	For input mode with pull-up function, Please set bit 7 of port		
8	condition control register (PMCR[7]) and each bit of port		
	data register .		
	If use I/O for pin option , please re-configure I/O status after		
ıu	reading . (directions and pull-up resistor)		
	Pay attention to bit instructions because some registers		
10	have different function for read and write acting. ex. PA · PB ·		
	PRS - SYS and control register for write only		
11	Disable un-used function's control register and put"RTI"		
11	Instruction at un-used interrupt vector .		
12	Make sure timer counting correct.		
13	Make sure temperature counting correct.		
14	Make sure software key de-bounce work . (10 ~ 50 mS)		
15	Make sure calendar counting correct . (include user setting)		
16	Make sure stack memory will not overflow .		
17	Under test mode, every functions / parts must be tested. ex.		
17	LCD \ LED \ speaker / buzzer \ key \ motor and senseretc.		
	Please use same parts when developing and producing .		
19	Please select general parts for production.		
20	When testing, write every unusual situation down and find		
	out the reasons indeed.		
21	Make sure the program accept un-normal operatings and system will not hold or crash down.		
22	Please write specification's version number down.		
	Check machine outline LCD panel and MCU for single-side		
23	PCB layout .		
	When you set I/O port as input mode , please make sure		
24	signal level stable before reading . ex. When key scan , please		
	delay 12 uS then get key code .		

Engineer	Manager
	ivia i agoi

Special Notice

_	Confirmed Item	Check	Note
Special Notice 1			
1	Do not use 32768HZ as system clock.		

Engineer _____ Manager ____

19 REVISIONS

Version 1.8	Page 43 Page 19	Add system clock regulation in Special Notice Modify SYS [XSEL] in Table of SYSTEM CONTROL REGISTER2007/09/12
Version 1.7	Page40 Page41/42	Add ST2006 EV Board photo Add checklist2007/5/21
Version 1.6	Page 1	Add CPU clock 250K ~ 1M Hz2006/6/23
Version 1.5	Page 1 Page 25/27 Page11	Remove IR remote controller Take off PSG/DAC clock source from oscx Add pad number and note: all of unused input pins should be pulled up to minimize standby current
Version 1.4	Page34	add SEGMENT Port driving/sinking current.
Version 1.3	Page36/37	modify application circuit.
Version 1.22	Page 39	add bonding information
Version 1.21	Page 2 Page 34	modify block diagram modify values of standby current
Version 1.20	Page 33 Page 36	modify Seg0-3 output current value. Add 1/3 duty,1/2 bias application circuit.
Version 1.10	Page 34 Page 35	modify TABLE 15-32 R vs. OSC . modify application 1 and application 2.
Version 0.91	Page 35 Page 33	increase bonding diagram. Change DC supply voltage & temperature.
Version 0.9	Page 2	modify Block Diagram.
	Page 18 Page 30	Change \$3C(IREQ) power on default. description of XSEL bit. description of LCD frame clock.
Version 0.81		Change \$3A(LCTL) be write only register.

The above information is the exclusive intellectual property of Sitronix Technology Corp. and shall not be disclosed, distributed or reproduced without permission from Sitronix. Sitronix Technology Corp. reserves the right to change this document without prior notice and makes no warranty for any errors which may appear in this document. Sitronix products are not intended for use in life support, critical care, medical, safety equipment, or similar applications where products failure could result in injury, or loss of life, or personal or physical harm, or any military or defense application, or any governmental procurement to which special terms or provisions may apply.