

CHARACTER LCD MODULE SPECIFICATIONS

Crystalfontz Model Number	CFAH1602D-YTI-ET
Hardware Version	Revision A
Data Sheet Version	Revision 1.0, November 2007
Product Pages	http://www.crystalfontz.com/products/1602d
Customer Name	
Customer Part Number	

Crystalfontz America, Incorporated

12412 East Saltese Avenue Spokane Valley, WA 99216-0357

Phone: 888-206-9720 Fax: 509-892-1203

Email: <u>techinfo@crystalfontz.com</u>
URL: <u>www.crystalfontz.com</u>

REVISION HISTORY

HARDWARE							
Current hardware version: vA New module.							
DATA SHEET							
2007/11/01	Current Data Sheet version: v1.0 New Data Sheet.						

The Fine Print

Certain applications using Crystalfontz America, Inc. products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications"). CRYSTALFONTZ AMERICA, INC. PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. Inclusion of Crystalfontz America, Inc. products in such applications is understood to be fully at the risk of the customer. In order to minimize risks associated with customer applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazard. Please contact us if you have any questions concerning potential risk applications.

Crystalfontz America, Inc. assumes no liability for applications assistance, customer product design, software performance, or infringements of patents or services described herein. Nor does Crystalfontz America, Inc. warrant or represent that any license, either express or implied, is granted under any patent right, copyright, or other intellectual property right of Crystalfontz America, Inc. covering or relating to any combination, machine, or process in which our products or services might be or are used.

The information in this publication is deemed accurate but is not guaranteed.

Company and product names mentioned in this publication are trademarks or registered trademarks of their respective owners.

Copyright © 2007 by Crystalfontz America, Inc., 12412 East Saltese Avenue, Spokane Valley, WA 99216-0357 U.S.A.

CONTENTS

MAIN FEATURES	
Module Classification Information	4
Ordering Information	
MECHANICAL SPECIFICATIONS	5
Physical Characteristics	
Module Outline Drawing	
ELECTRICAL SPECIFICATIONS	
System Block Diagram	
Driving Method	
Absolute Maximum Ratings	
Interface Pin Functions	
Typical V _O Connections for Display Contrast	11
ESD (Electro-Static Discharge) Specifications	
OPTICAL SPECIFICATIONS	
Optical Characteristics	
Optical Definitions	
LED Backlight Characteristics	
LCD CONTROLLER INTERFACE	
Display Position DDRAM Address	
Character Generator ROM (CGROM)	
PRODUCT RELIABILITY	_
PRODUCT LONGEVITY	
CARE AND HANDLING PRECAUTIONS	
APPENDIX A: QUALITY ASSURANCE STANDARDS	
APPENDIX B: SITRONIX ST7066U CONTROLLER SPECIFICATION SHEET	
APPENDIX C: APPLICATION NOTE FOR 3.3V OPERATION	25
LIST OF FIGURES	
	6
Figure 1. Module Outline Drawing Figure 2. System Block Diagram	
	13
Figure 7. Definition of 6:00 O'Clock and 12:00 O'Clock Viewing Angles	
Figure 9. Example of LED Backlight Connections for PWM Dimming	

MAIN FEATURES

16 characters by 2 lines LCD has a large display area in a compact 85.0 (W) x 30.0 (H) x 13.2 (D) millimeter pack-
age (3.35" (W) x 1.18" (H) x 0.52" (D)).
4-bit or 8-bit parallel interface.
Standard Hitachi HD44780 equivalent controller.
Yellow-green array LED backlight with FSTN, negative, transmissive mode LCD (displays yellow-green characters on dark background).
Wide temperature operation: -20°C to +70°C.
RoHS compliant.

MODULE CLASSIFICATION INFORMATION

CFA H 16 02 D - Y T I - ET*

0	Brand	Crystalfontz America, Inc.
0	Display Type	H – Character
€	Number of Characters (Width)	16 Characters
4	Number of Lines (Height)	2 Lines
6	Model Identifier	D
0	Backlight Type & Color	Y – LED, yellow-green
0	Fluid Type, Image (Positive or Negative), & LCD Glass Color	T – FSTN, negative
8	Polarizer Film Type, Wide (WT) Temperature Range, & Viewing Angle (O 'Clock)	I – Transmissive, WT, 6:00 ¹
9	Special Codes	ET – English and European fonts * – May have additional manufacturer's codes at this location.

¹Note: For more information on Viewing Angle, see <u>Definition of 6 O'Clock and 12:00 O'Clock</u> <u>Viewing Angles (Pg. 14)</u>.

ORDERING INFORMATION

PART NUMBER	FLUID	LCD GLASS COLOR	IMAGE	POLARIZER FILM	BACK COLOR	LIGHT R/TYPE
CFAH1602D-YTI-ET	FSTN		negative transmissive		yellow-green LED	# CRYSTALFONTZ # CFAH1602D-YTI-ET
Additional variants (same	e form fac	tor, different LCI	D mode or l	backlight):		
CFAH1602D-TMI-ET	STN	blue	negative	transmissive	white LED	# CRYSTALFONTZ # CFAH1692D-TMI-ET
CFAH1602D-YYH-ET	STN	yellow-green	positive	transflective	yellow-green LED	# CRYSTALFONTZ # CFAH1602D-YYH-ET

MECHANICAL SPECIFICATIONS

PHYSICAL CHARACTERISTICS

ITEM	SIZE					
Number of Characters and Lines	16 Characters x 2 Lines					
Module Dimensions	85.0 (W) x 30.0 (H) x 13.2 (D) mm					
Viewing Area	66.0 (W) x 16.0 (H) mm					
Active Area	56.21 (W) x 11.5 (H) mm					
Character Size	2.95 (W) x 5.55 (H) mm					
Character Pitch	3.55 (W) x 5.95 (H) mm					
Dot Size	0.55 (W) x 0.65 (H) mm					
Dot Pitch	0.60 (W) x 0.70 (H) mm					
Weight	31 grams (typical)					

MODULE OUTLINE DRAWING

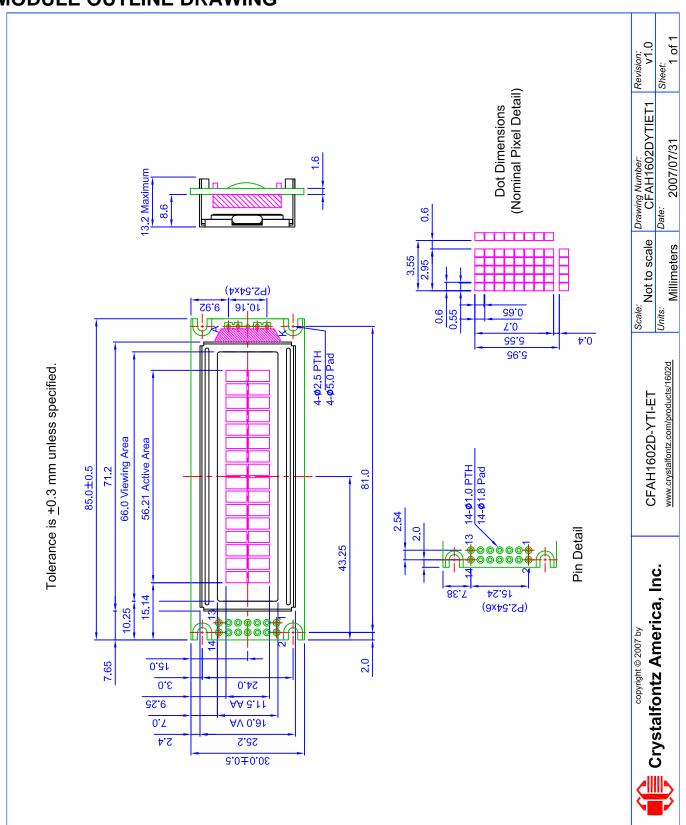
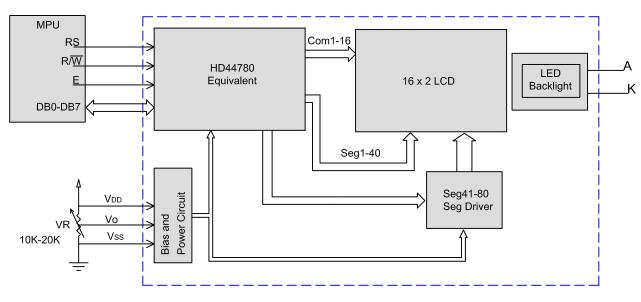



Figure 1. Module Outline Drawing

ELECTRICAL SPECIFICATIONS

SYSTEM BLOCK DIAGRAM

			DDRAW ADDRESS														
			Column														
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Row	1	00	01	02	03	04	05	06	07	08	09	0A	0B	0C	0D	0E	0F
Kow	2	40	41	42	43	44	45	46	47	48	49	4A	4B	4C	4D	4E	4F

DDDAM ADDDESS

Figure 2. System Block Diagram

DRIVING METHOD

DRIVING METHOD	SPECIFICATION
Duty	1/16
Bias	1/5

ABSOLUTE MAXIMUM RATINGS

ABSOLUTE MAXIMUM RATINGS	SYMBOL	MINIMUM	MAXIMUM
Operating Temperature*	T _{OP}	-20°C	+70°C
Storage Temperature*	T _{ST}	-30°C	+80°C
Input Voltage	V _I	V _{SS}	V _{DD}
Supply Voltage for Logic	V _{DD} - V _{SS}	-0.3v	+7v
Supply Voltage for LCD	$V_{DD-}V_{O}$	-0.3v	+13v

^{*}Note: Prolonged exposure at temperatures outside of this range may cause permanent damage to the module.

DC CHARACTERISTICS

DC CHARACTERISTICS*		SYMBOL	MINIMUM	TYPICAL	MAXIMUM	TEST CONDITION
Supply Voltage for Logic		V _{DD} - V _{SS}	+4.5v	+5.0v	+5.5v	
	T _A = -20°C				+4.2v	
Supply Voltage for Driving LCD	T _A = +25°C	V _{DD} - V _O		+3.8v		
	T _A = +70°C		+3.6v			
Input High Voltage		V _{IH}	+3.5v		V _{DD}	Pins: E, RS, R/W, DB0 - DB7
Input Low Voltage		V _{IL}			+0.6v	
Output High Voltage		V _{OH}	+2.4v			IOH = - 0.1 mA Pins: DB0 - DB7
Output Low Voltage		V _{OL}			+0.4v	IoL = 0.1 mA Pins: DB0 - DB7
Supply Current	V _{DD} = 5V	I _{DD}		1.2 mA		

^{*}Specifications are for 5.0v operation. For 3.3v operation, please see APPENDIX C: APPLICATION NOTE FOR 3.3V OPERATION (Pg. 25).

INTERFACE PIN FUNCTIONS

			DIRECTION	
PIN	SIGNAL	LEVEL	DIRE	DESCRIPTION
1	V_{DD}	+5.0v		Supply voltage for logic
2	V _{SS}	0v		Ground
3	Vo	variable		Supply voltage for driving LCD $V_O = +1.3v$ typical at $V_{DD} = +5v$ which gives a $V_{LCD} = (V_{DD} - V_O) = +3.7v$
4	RS	H/L	I	Register selection input H: Data register (for read and write) L: Instruction code (for write)
5	R/W	H/L	I	H: Read (MPU→Module) L: Write (MPU←Module)
6	Е	H,H→L	I	Read/write enable signal H: Read data is enabled by a high level. H->L: Write data is latched on the falling edge.
7	DB0	H/L	I/O	Data bit 0
8	DB1	H/L	I/O	Data bit 1
9	DB2	H/L	I/O	Data bit 2
10	DB3	H/L	I/O	Data bit 3
11	DB4	H/L	I/O	Data bit 4
12	DB5	H/L	I/O	Data bit 5
13	DB6	H/L	I/O	Data bit 6
14	DB7	H/L	I/O	Data bit 7
For b	acklight con	nections, p	lease	refer to LED Backlight Characteristics (Pg. 14).

TYPICAL VO CONNECTIONS FOR DISPLAY CONTRAST

Adjust V_O to +1.3v (V_{LCD} = +3.7v) as an initial setting. When the module is operational, readjust V_O for optimal display appearance.

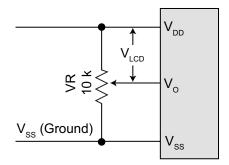


Figure 3. Typical V_O Connections

We recommend allowing field adjustment of V_O for all designs. The optimal value for V_O will change with temperature, variations in V_{DD} , and viewing angle. V_O will also vary module-to-module and batch-to-batch due to normal manufacturing variations.

Ideally, adjustments to V_O should be available to the end user so each user can adjust the display to the optimal contrast for their required viewing conditions. At a minimum, your design should allow V_O to be adjusted as part of your product's final test

Although a potentiometer is shown as a typical connection, V_O can be driven by your microcontroller, either by using a DAC or a filtered PWM. Displays that require V_O to be negative may need a level-shifting circuit. Please do not hesitate to contact Crystalfontz application support for design assistance on your application.

ESD (ELECTRO-STATIC DISCHARGE) SPECIFICATIONS

This circuitry is industry standard CMOS logic and is susceptible to ESD damage. Please use industry standard antistatic precautions as you would for any other PCB such as expansion cards or motherboards. For more information, see <u>CARE AND HANDLING PRECAUTIONS</u> (Pg. 18).

OPTICAL SPECIFICATIONS

OPTICAL CHARACTERISTICS

ITEM	SYMBOL	CONDITION	MINIMUM	TYPICAL	MAXIMUM
Viewing Angle (6 o'clock)	(V)θ	CR <u>></u> 3	30°		60°
(Vertical, Horizontal)	(H)φ	CR <u>></u> 3	-45°		45°
Contrast Ratio	CR			5	
LCD Response Time*	T rise	Ta = 25°C		150 ms	200 ms
	T fall	Ta = 25°C		150 ms	200 ms

^{*}Response Time: The amount of time it takes a liquid crystal cell to go from active to inactive or back again.

OPTICAL DEFINITIONS

Operating Voltage (V_{LCD)}: V_{OP}

Viewing Angle

■ Vertical (V)θ: 0°

■ Horizontal (H)φ: 0°

• Frame Frequency: 64 Hz

Driving Waveform: 1/16 Duty, 1/5 Bias

Ambient Temperature (Ta): 25°C

Definition of Operation Voltage (Vop)

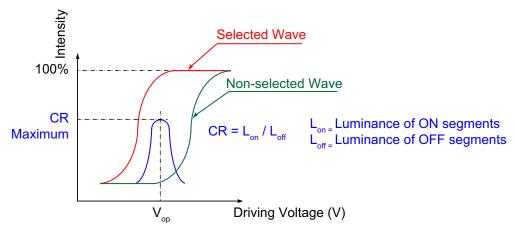


Figure 4. Definition of Operation Voltage (V_{OP}) (Negative)

Definition of Response Time (Tr, Tf)

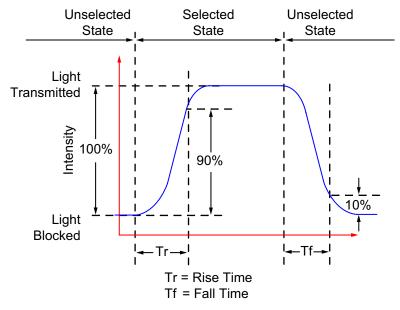
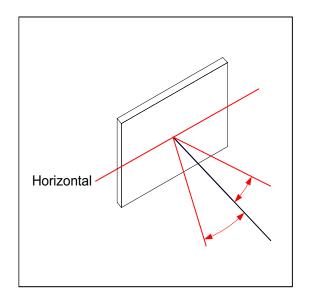



Figure 5. Definition of Response Time (Tr, Tf) (Negative)

Definition of Vertical and Horizontal Viewing Angles (CR≥2)

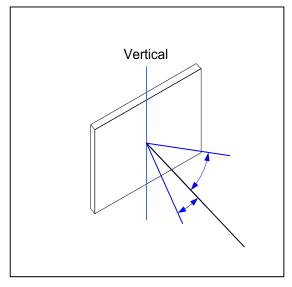
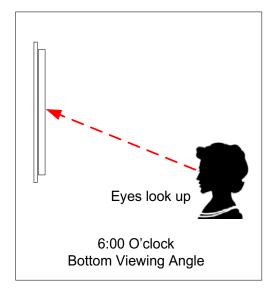



Figure 6. Definition of Horizontal and Vertical Viewing Angles (CR≥2)

Definition of 6 O'Clock and 12:00 O'Clock Viewing Angles

This module has a 6:00 o'clock viewing angle. A 6:00 o'clock viewing angle is a bottom viewing angle like what you would see when you look at a cell phone or calculator. A 12:00 o'clock viewing angle is a top viewing angle like what you would see when you look at the gauges in a golf cart or airplane.

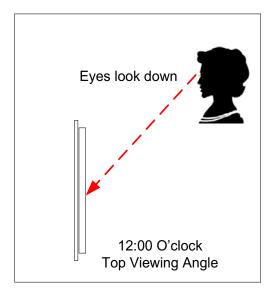


Figure 7. Definition of 6:00 O'Clock and 12:00 O'Clock Viewing Angles

LED BACKLIGHT CHARACTERISTICS

The CFAH1602D-YTI-ET uses an LED backlight. LED backlights are easy to use, but they are also easily damaged by abuse.

NOTE

Do not connect +5v directly to the backlight terminals. This will ruin the backlight.

LEDs are "current" devices. The important aspect of driving an LED is the current flowing through it, not the voltage across it. Ideally, a current source would be used to drive the LEDs. In practice, a simple current limiting resistor in line from a voltage source will work well in most applications and is much less complex than a current source.

You need to know what the forward voltage of the LEDs is so you can calculate the current limiting resistor (R_{LIMIT}). The forward voltage will vary slightly from display to display.

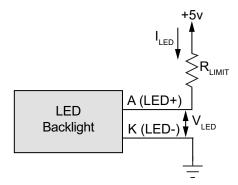


Figure 8. Typical LED Backlight Connections for "Always On"

The equation to calculate R_{LIMIT} is:

$$R_{LIMIT} \, (minimum) = \ \ \frac{V_{DD} \, (Supply \, Voltage) - V_{LED} \, (Typical \, LED \, Forward \, Voltage)}{I_{LED} \, (Typical \, LED \, Forward \, Current)}$$

The specific R_{LIMIT} calculation for the CFAH1602D-YTI-ET at V_{DD} = +5v is:

$$R_{LIMIT} = \frac{5v - 4.2v}{0.13 \text{ A}} = 6.15\Omega \text{ (minimum)}$$

The backlight may be dimmed by PWM (Pulse Width Modulation). The typical range for the PWM frequency is from 100 to 300 Hz.

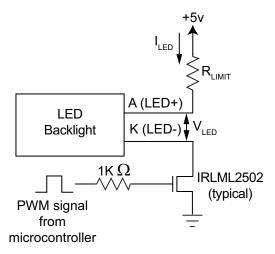


Figure 9. Example of LED Backlight Connections for PWM Dimming

Backlight Characteristics Yellow-green dots on dark background					
PARAMETER MINIMUM TYPICAL MAXIMUM					
Forward Current (I _{LED}) V = 4.2v	104 mA	130 mA	195 mA		
Forward Voltage (V _{LED})	+4.0v	+4.2v	+4.4v		
Reverse Voltage (V _{R)}			+8v		
Luminous Intensity* (IV) I _{LED} = 130 mA	80 cd/m ²	100 cd/m ²			
Wavelength (λ p) I _{LED} = 130 mA		570 nm			

^{*}Direct measurement of backlight-the backlight is not measured through the LCD.

LCD CONTROLLER INTERFACE

The CFAH1602D-YTI-ET uses a Sitronix ST7066U controller. The ST7066U is compatible with the industry standard Hitachi HD44780 controller. Software written for modules that use the HD44780 should work without modification.

For your reference, we added <u>APPENDIX B: SITRONIX ST7066U CONTROLLER SPECIFICATION SHEET (Pg. 24)</u> to this CFAH1602D-YTI-ET Data Sheet.

DISPLAY POSITION DDRAM ADDRESS

The following table shows the relationship between the controller's addresses and the corresponding character location on the CFAH1602D-YTI-ET.

>	COLUMN															
RO	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
0	0x00	0x01	0x02	0x03	0x04	0x05	0x06	0x07	80x0	0x09	0xA	0xB	0xC	0xD	0xE	0xF
1	0x40	0x41	0x42	0x43	0x44	0x45	0x46	0x47	0x48	0x49	0x4A	0x4B	0x4C	0x4D	0x4E	0x4F

CHARACTER GENERATOR ROM (CGROM)

To find the code for a given character, add the two numbers that are shown in bold for its row and column. For example, the lowercase "h" is in the column labeled "96₁₀" and in the row labeled "8₁₀". So you would add 96 + 8 to get 104. When you send a byte with the value of 104 to the display, then a lowercase "h" will be shown. (See <u>APPENDIX B: SITRONIX ST7066U CONTROLLER SPECIFICATION SHEET (Pg. 24)</u>.

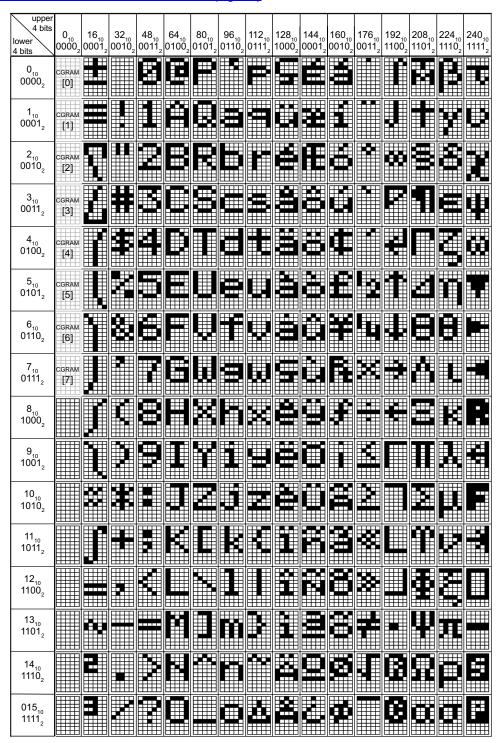


Figure 10. Character Generator ROM (CGROM)

PRODUCT RELIABILITY

ITEM	SPECIFICATION
LCD including yellow-green LED backlight	50,000 to 100,000 hours (typical)

PRODUCT LONGEVITY

Crystalfontz is committed to making all of our LCD modules available for as long as possible. Occasionally, a supplier discontinues a component, or a process used to make the module becomes obsolete, or the process moves to a more modern manufacturing line. In order to continue making the module, we will do our best to find an acceptable replacement part or process which will make the "replacement" fit, form, and function compatible with its predecessor.

Our goal is that the modified design will not change fit, form, or function for your application. In most situations, you should not notice a difference when comparing an older module to a newer module that uses a modified replacement part or process. Sometimes, the change results in a slight variation, perhaps an improvement, over the previous design.

Although the module is still within the stated Data Sheet specifications and tolerances, the change may require a modification to your circuit and/or firmware. Possible changes include:

- LCD fluid, polarizers, or the LCD manufacturing process. These items may change the appearance of the display, requiring an adjustment to V_O (See <u>Typical VO Connections for Display Contrast (Pg. 11)</u>.)
- Backlight LEDs. Brightness may be affected (perhaps the new LEDs have better efficiency) or the current they
 draw may change (new LEDs may have a different V_F).
- Controller. A new controller may require you to make minor changes in your code.
- Component Tolerances. Module components have manufacturing tolerances. In extreme cases, the tolerance stack can change the visual or operating characteristics.

Please understand that we avoid change whenever possible; we only change a part or process if we have no other option to keep the module available. If we cannot find a way to keep a module in production, we will be forced to discontinue the module ("End of Life," EOL) and offer a substitute of a similar existing or new module. If you must be notified that a change / EOL is to occur, please contact Crystalfontz Technical Support. Technical Support will generate a semi-custom part number that ensures you will be notified if any changes have occurred since your last order.

CARE AND HANDLING PRECAUTIONS

For optimum operation of the CFAH1602D-YTI-ET and to prolong its life, please follow the precautions described below.

ESD (ELECTRO-STATIC DISCHARGE)

The circuitry is industry standard CMOS logic and susceptible to ESD damage. Please use industry standard antistatic precautions as you would for any other PCB such as expansion cards or motherboards. Ground your body, work surfaces, and equipment.

DESIGN AND MOUNTING

- The exposed surface of the LCD "glass" is actually a polarizer laminated on top of the glass. To protect the soft
 plastic polarizer from damage, the CFAH1602D-YTI-ET ships with a protective film over the polarizer. Please
 peel off the protective film slowly. Peeling off the protective film abruptly may generate static electricity.
- The polarizer is made out of soft plastic and is easily scratched or damaged. When handling the module, avoid touching the polarizer. Finger oils are difficult to remove.
- To protect the soft plastic polarizer from damage, place a transparent plate (for example, acrylic, polycarbonate, or glass) in front of the module, leaving a small gap between the plate and the display surface. We use GE HP-92 Lexan, which is readily available and works well.
- Do not disassemble or modify the module.
- Do not modify the tab of the metal holder or make connections to it.
- Solder only to the I/O terminals. Use care when removing solder—it is possible to damage the PCB.
- Do not reverse polarity to the power supply connections. Reversing polarity will immediately ruin the module.

AVOID SHOCK, IMPACT, TORQUE, AND TENSION

- Do not expose the CFAH1602D-YTI-ET to strong mechanical shock, impact, torque, and tension.
- Do not drop, toss, bend, or twist the module.
- Do not place weight or pressure on the module.

IF LCD PANEL BREAKS

- If the LCD panel breaks, be careful not to get the liquid crystal fluid in your mouth or eyes.
- If the liquid crystal fluid touches your skin, clothes, or work surface, wash it off immediately using soap and plenty of water.
- Do not eat the LCD panel.

CLEANING

The polarizer (laminated to the glass) is soft plastic. The soft plastic is easily scratched or damaged. Be very careful when you clean the polarizer.

- Do not clean the polarizer with liquids. Do not wipe the polarizer with any type of cloth or swab (for example, Q-tips).
- Use the removable protective film to remove smudges (for example, fingerprints) and any foreign matter. If you no longer have the protective film, use standard transparent office tape (for example, Scotch® brand "Crystal Clear Tape"). If the polarizer is dusty, you may carefully blow it off with clean, dry, oil-free compressed air.

OPERATION

- We do not recommend connecting this module to a PC's parallel port as an "end product." This module is not
 "user friendly" and connecting them to a PC's parallel port is often difficult, frustrating, and can result in a "dead"
 display due to mishandling. For more information, see our forum thread at http://www.crystalfontz.com/forum/showthread.php?s=&threadid=3257.
- Your circuit should be designed to protect the CFAH1602D-YTI-ET from ESD and power supply transients.
- Observe the operating temperature limitations: from -20°C to +70°C maximum with minimal fluctuations. Operation outside of these limits may shorten the life and/or harm the display.
 - At lower temperatures of this range, response time is delayed.
 - At higher temperatures of this range, display becomes dark. (You may need to adjust the contrast.)

• Operate away from dust, moisture, and direct sunlight.

STORAGE AND RECYCLING

- Store in an ESD-approved container away from dust, moisture, and direct sunlight.
- Observe the storage temperature limitations: a minimum from -30°C minimum to +80°C maximum with minimal fluctuations. Rapid temperature changes can cause moisture to form, resulting in permanent damage.
- Do not allow weight to be placed on the CFAH1602D-YTI-ETs while they are in storage.
- Please recycle your outdated Crystalfontz LCD modules at an approved facility.

APPENDIX A: QUALITY ASSURANCE STANDARDS

INSPECTION CONDITIONS

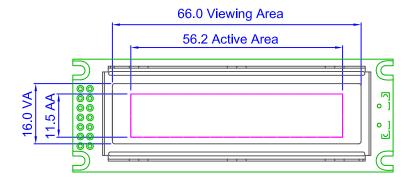
Environment

Temperature: 25±5°C

Humidity: 30~85% RH (Noncondensing)For visual inspection of active display area

■ Source lighting: two 20-Watt or one 40-Watt fluorescent light

Display adjusted for best contrast


■ Viewing distance: 30±5 cm (about 12 inches)

■ Viewing angle: inspect at 45° angle of vertical line right and left, top and bottom

COLOR DEFINITIONS

We try to describe the appearance of our LCD modules as accurately as possible. For the photos, we adjust the backlight (if any) and contrast for optimal appearance. Actual display appearance may vary due to (1) different operating conditions, (2) small variations of component tolerances, (3) inaccuracies of our camera, (4) color interpretation of the photos on your monitor, and/or (5) personal differences in the perception of color.

DEFINITION OF ACTIVE AREA AND VIEWING AREA

ACCEPTANCE SAMPLING

DEFECT TYPE	AQL*			
Major	≤.65%			
Minor <1.0%				
* Acceptable Quality Level: maximum allowable error rate or variation from standard				

DEFECTS CLASSIFICATION

Defects are defined as:

- Major Defect: results in failure or substantially reduces usability of unit for its intended purpose
- Minor Defect: deviates from standards but is not likely to reduce usability for its intended purpose

ACCEPTANCE STANDARDS

#	DEFECT TYPE		CRITERIA		MAJOR / MINOR	
1	Electrical defects		No display, display malfunctions, or shorted segments. Current consumption exceeds specifications.			
2	Viewing area defect	Viewing area does not	meet specifications.		Major	
3	Contrast adjustment defect	Contrast adjustment fa	ils or malfunctions.		Major	
4	Blemishes or foreign	Blemish	Defect Size	Acceptable Qty		
	matter on display segments		<u><</u> 0.30 mm	3		
			≤2 defects within 10 mm of each other		- Minor	
5	ı	_	Defect Size =	Defect Size	Acceptable Qty	
		side of display (Width + Length)/2	<u><</u> 0.15 mm	Ignore		
		Length	0.15 to 0.20 mm	3	Minor	
			0.20 to 0.25 mm	2		
			> 0.30 mm	1		
6	Dark lines or scratches	Defect Width	Defect Length	Acceptable Qty		
	in display area	<u><</u> 0.03 mm	<u>≤</u> 3.0 mm	3		
	\	0.03 to 0.05	<u><</u> 2.0 mm	2	Minor	
	Width	0.05 to 0.08	<u>≤</u> 2.0 mm	1	IVIII IOI	
	Length	0.08 to 0.10	≤3.0 mm	0		
		<u>≥</u> 0.10	>3.0 mm	0		

#	DEFECT TYPE		CRITERIA		MAJOR/ MINOR
7	Bubbles between polarize	r film and glass	Defect Size	Acceptable Qty	
			<u><</u> 0.20 mm	Ignore	
			0.20 to 0.40 mm	3	Minor
			0.40 to 0.60 mm	2	
			≥0.60 mm	0	
8	Display pattern defect	4	B	D W	
		Dot Size	Acce	eptable Qty	Minor
		((A+B)/2) <u><</u> 0.20 mm			
		C>0 mm	_	tal defects	
		((D+E)/2) <u><</u> 0.25 mm	<u><</u> 2 pinh	noles per digit	
		((F+G)/2) <u><</u> 0.25 mm			
9	Backlight defects	Light fails or flickers. (Major) Color and luminance do not correspond to specifications. (Major) Exceeds standards for display's blemishes, foreign matter, dark lines or scratches. (Minor)			
10	PCB defects	1. Oxidation or contamination on connectors.* 2. Wrong parts, missing parts, or parts not in specification.* 3. Jumpers set incorrectly. (Minor) 4. Solder (if any) on bezel, LED pad, zebra pad, or screw hole pad is not smooth. (Minor) *Minor if display functions correctly. Major if the display fails.			See list (
11	Soldering defects	1. Unmelted solder paste. 2. Cold solder joints, missing solder connections, or oxidation.* 3. Solder bridges causing short circuits.* 4. Residue or solder balls. 5. Solder flux is black or brown. *Minor if display functions correctly. Major if the display fails.			

APPENDIX B: SITRONIX ST7066U CONTROLLER SPECIFICATION SHEET

The complete Sitronix ST7066U Dot Matrix LCD Controller/Driver specifications (42 pages) follows.

Sitronix

ST7066U

Dot Matrix LCD Controller/Driver

■ Features

- 5 x 8 and 5 x 11 dot matrix possible
- Low power operation support:
- -- 2.7 to 5.5V
- Wide range of LCD driver power
 - -- 3.0 to 10V
- Correspond to high speed MPU bus interface
 - -- 2 MHz (when $V_{cc} = 5V$)
- 4-bit or 8-bit MPU interface enabled
- 80 x 8-bit display RAM (80 characters max.)
- 13,200-bit character generator ROM for a total of 240 character fonts(5 x 8 dot or 5 x 11 dot)
- 64 x 8-bit character generator RAM
 - -- 8 character fonts (5 x 8 dot)
 - -- 4 character fonts (5 x 11 dot)
- 16-common x 40-segment liquid crystal display driver

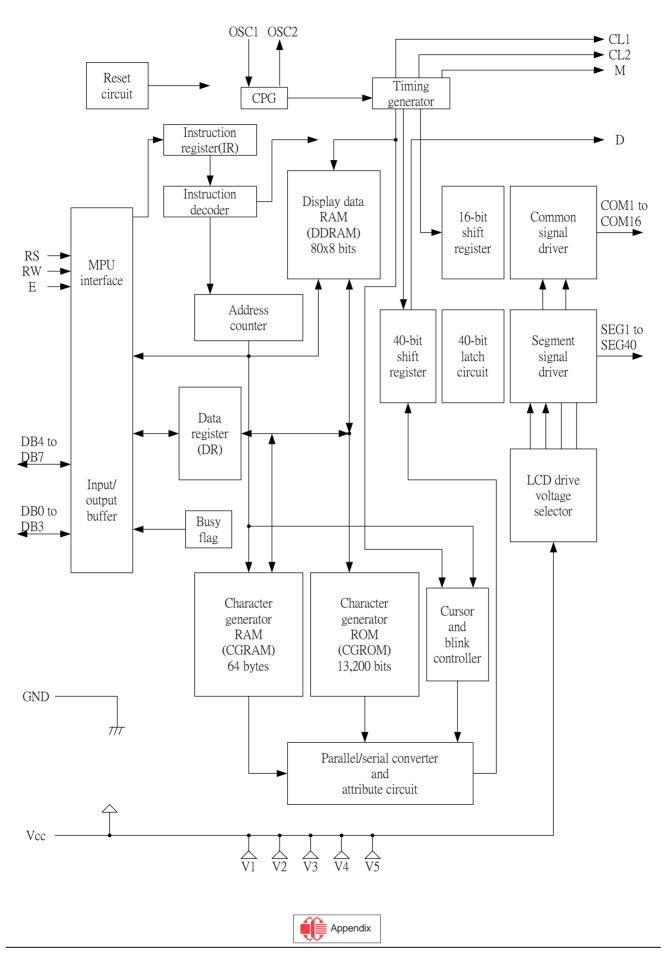
- Programmable duty cycles
 - -- 1/8 for one line of 5 x 8 dots with cursor
 - -- 1/11 for one line of 5 x 11 dots & cursor
 - -- 1/16 for two lines of 5 x 8 dots & cursor
- Wide range of instruction functions: Display clear, cursor home, display on/off, cursor on/off, display character blink, cursor shift, display shift
- Pin function compatibility with HD44780, KS0066 and SED1278
- Automatic reset circuit that initializes the controller/driver after power on
- Internal oscillator with external resistors
- Low power consumption
- QFP80 and Bare Chip available

■ Description

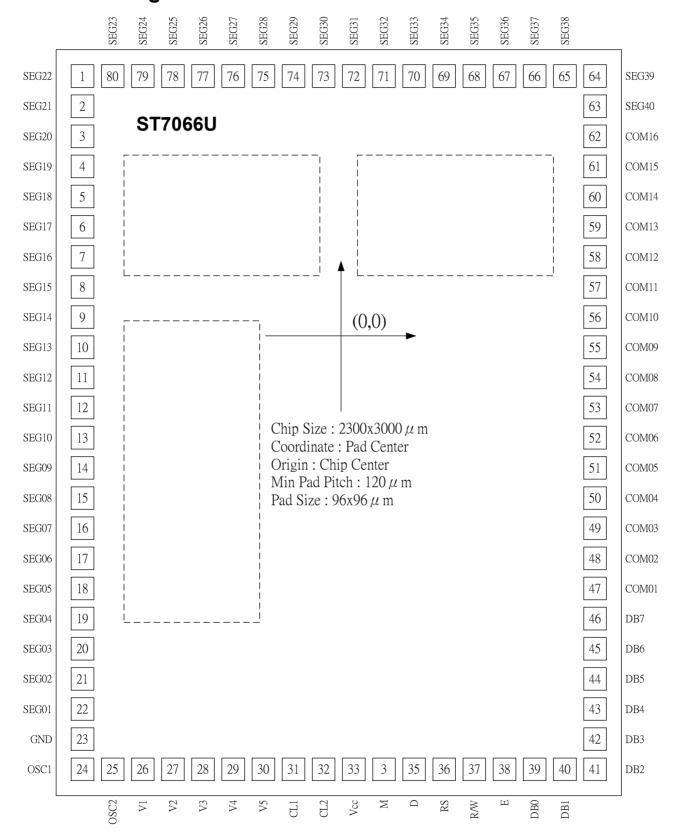
The ST7066U dot-matrix liquid crystal display controller and driver LSI displays alphanumeric, Japanese kana characters, and symbols. It can be configured to drive a dot-matrix liquid crystal display under the control of a 4- or 8-bit microprocessor. Since all the functions such as display RAM, character generator, and liquid crystal driver, required for driving a dot-matrix liquid crystal display are internally provided on one chip, a minimal system can be interfaced with this controller/driver.

The ST7066U has pin function compatibility with the HD44780, KS0066 and SED1278 that allows the user to easily replace it with an ST7066U. The ST7066U character generator ROM is extended to generate

240 5x8(5x11) dot character fonts for a total of 240 different character fonts. The low power supply (2.7V to 5.5V) of the ST7066U is suitable for any portable battery-driven product requiring low power dissipation.


The ST7066U LCD driver consists of 16 common signal drivers and 40 segment signal drivers which can extend display size by cascading segment driver ST7065 or ST7063. The maximum display size can be either 80 characters in 1-line display or 40 characters in 2-line display. A single ST7066U can display up to one 8-character line or two 8-character lines.

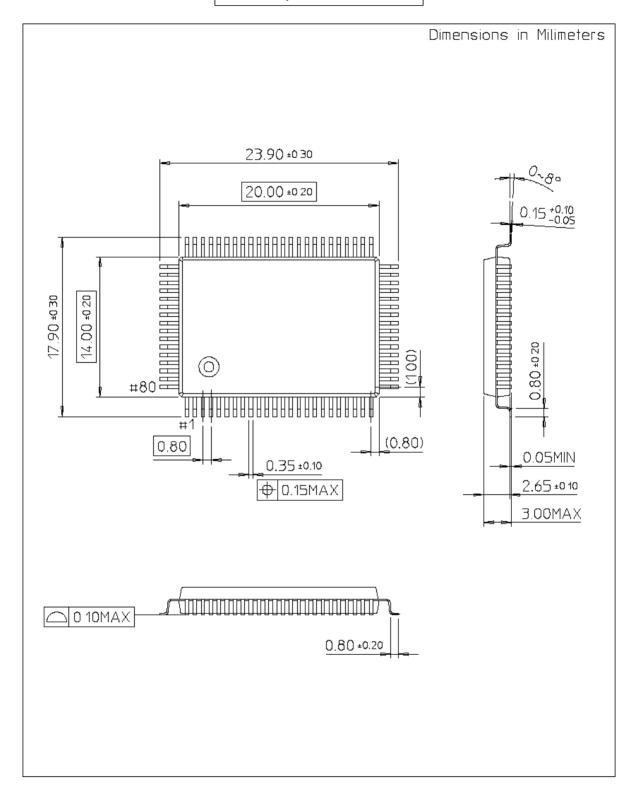
Product Name	Support Character
ST7066U-0A	English / Japan
ST7066U-0B	English / European
ST7066U-0E	English / European



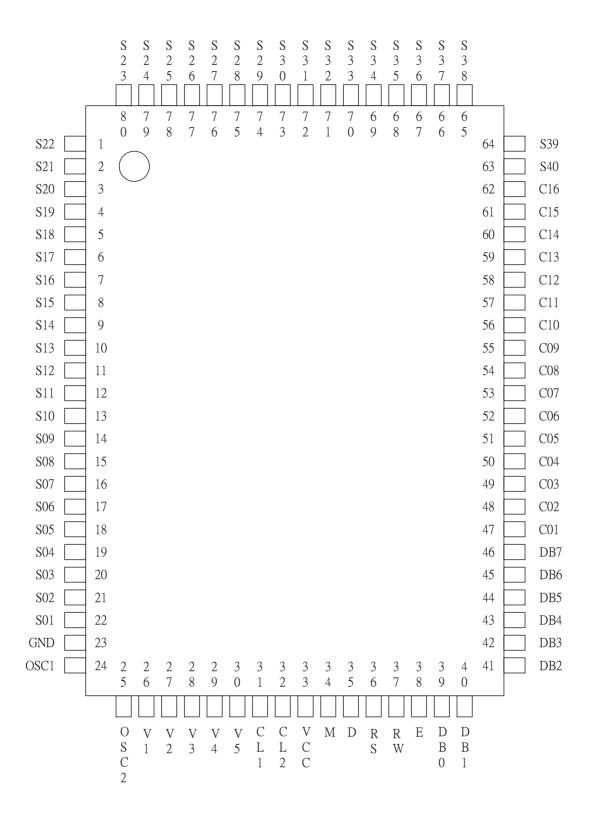
Manaire		rial Specification Revision History
Version	Date	Description
1.7	2000/10/31	 Added 8051 Example Program Code(Page 21,23) Added Annotated Flow Chart : "BF cannot be checked before this instruction" Changed Maximum Ratings Power Supply Voltage:+5.5V →+7.0V(Page 28)
1.8	2000/11/14	Added QFP Pad Configuration(Page 5)
1.8a	2000/11/30	 Moved QFP Package Dimensions(Page 39) to Page Changed DC Characteristics Ratings(Page 32,33)
2.0	2001/03/01	Transition to ST7066U
2.1	2006/04/10	 Add Power Supply Conditions (Page 31); Modify reset description on Page 22.

■ Block Diagram

■ Pad Arrangement



Substrate Connect to VDD.



■ Package Dimensions

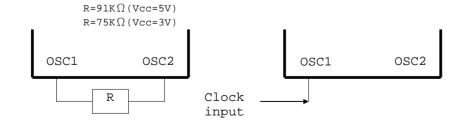
80-QFP-1420C

■ Pad Configuration(80 QFP)

■ Pad Location Coordinates

	Locatioi	1 00014		
Pad No.	Function	X	Υ	
1	SEG22	-1040	1400	
2	SEG21	-1040	1270	
3	SEG20	-1040	1140	
4	SEG19	-1040	1020	
5	SEG18	-1040	900	
6	SEG17	-1040	780	
7	SEG16	-1040	660	
8	SEG15	-1040	540	
9	SEG14	-1040	420	
10	SEG13	-1040	300	
11	SEG12	-1040	180	
12	SEG11	-1040	60	
13	SEG10	-1040	-60	
14	SEG9	-1040	-180	
15	SEG8	-1040	-300	
16	SEG7	-1040	-420	
17	SEG6	-1040	-540	
18	SEG5	-1040	-660	
19	SEG4	-1040	-780	
20	SEG3	-1040	-900	
21	SEG2	-1040	-1020	
22	SEG1	-1040	-1140	
23	GND	-1040	-1270	
24	OSC1	-1040	-1400	
25	OSC2	-910	-1400	
26	V1	-780	-1400	
27	V2	-660	-1400	
28	V3	-540	-1400	
29	V4	-420	-1400	
30	V5	-300	-1400	
31	CL1	-180	-1400	
32	CL2	-60	-1400	
33	Vcc	60	-1400	
34	M	180	-1400	
35	D	300	-1400	
36	RS	420	-1400	
37	RW	540	-1400	
38	Е	660	-1400	
39	DB0	780	-1400	
40	DB1	910	-1400	

Pad No.	Function	Х	Υ
41	DB2	1040	-1400
42	DB3	1040	-1270
43	DB4	1040	-1140
44	DB5	1040	-1020
45	DB6	1040	-900
46	DB7	1040	-780
47	COM1	1040	-660
48	COM2	1040	-540
49	COM3	1040	-420
50	COM4	1040	-300
51	COM5	1040	-180
52	COM6	1040	-60
53	COM7	1040	60
54	COM8	1040	180
55	COM9	1040	300
56	COM10	1040	420
57	COM11	1040	540
58	COM12	1040	660
59	COM13	1040	780
60	COM14	1040	900
61	COM15	1040	1020
62	COM16	1040	1140
63	SEG40	1040	1270
64	SEG39	1040	1400
65	SEG38	910	1400
66	SEG37	780	1400
67	SEG36	660	1400
68	SEG35	540	1400
69	SEG34	420	1400
70	SEG33	300	1400
71	SEG32	180	1400
72	SEG31	60	1400
73	SEG30	-60	1400
74	SEG29	-180	1400
75	SEG28	-300	1400
76	SEG27	-420	1400
77	SEG26	-540	1400
78	SEG25	-660	1400
79	SEG24	-780	1400
80	SEG23	-910	1400



■ Pin Function

Name	Number	I/O	Interfaced with	Function
RS	1	I	MPU	Select registers. 0: Instruction register (for write) Busy flag: address counter (for read) 1: Data register (for write and read)
R/W	1	ı	MPU	Select read or write. 0: Write 1: Read
E	1	I	MPU	Starts data read/write.
DB4 to DB7	4	I/O	MPU	Four high order bi-directional tristate data bus pins. Used for data transfer and receive between the MPU and the ST7066U. DB7 can be used as a busy flag.
DB0 to DB3	4	I/O	MPU	Four low order bi-directional tristate data bus pins. Used for data transfer and receive between the MPU and the ST7066U. These pins are not used during 4-bit operation.
CL1	1	0	Extension driver	Clock to latch serial data D sent to the extension driver
CL2	1	0	Extension driver	Clock to shift serial data D
M	1	0	Extension driver	Switch signal for converting the liquid crystal drive waveform to AC
D	1	0	Extension driver	Character pattern data corresponding to each segment signal
COM1 to COM16	16	0	LCD	Common signals that are not used are changed to non-selection waveform. COM9 to COM16 are non-selection waveforms at 1/8 duty factor and COM12 to COM16 are non-selection waveforms at 1/11 duty factor.
SEG1 to SEG40	40	0	LCD	Segment signals
V1 to V5	5	-	Power supply	Power supply for LCD drive Voc - V5 = 10 V (Max)
Vcc, GND	2		Power supply	Vcc : 2.7V to 5.5V, GND: 0V
OSC1, OSC2	2		Oscillation resistor clock	When crystal oscillation is performed, a resistor must be connected externally. When the pin input is an external clock, it must be input to OSC1.

Note:

- 1. Vcc>=V1>=V2>=V3>=V4>=V5 must be maintained
- 2. Two clock options:

■ Function Description

System Interface

This chip has all two kinds of interface type with MPU: 4-bit bus and 8-bit bus. 4-bit bus or 8-bit bus is selected by DL bit in the instruction register.

During read or write operation, two 8-bit registers are used. One is data register (DR), the other is instruction register(IR).

The data register(DR) is used as temporary data storage place for being written into or read from DDRAM/CGRAM, target RAM is selected by RAM address setting instruction. Each internal operation, reading from or writing into RAM, is done automatically. So to speak, after MPU reads DR data, the data in the next DDRAM/CGRAM address is transferred into DR automatically. Also after MPU writes data to DR, the data in DR is transferred into DDRAM/CGRAM automatically.

The Instruction register(IR) is used only to store instruction code transferred from MPU. MPU cannot use it to read instruction data.

To select register, use RS input pin in 4-bit/8-bit bus mode.

RS	R/W	Operation
L	L	Instruction Write operation (MPU writes Instruction code
		into IR)
L	Н	Read Busy Flag(DB7) and address counter (DB0 ~ DB6)
Н	L	Data Write operation (MPU writes data into DR)
Н	Н	Data Read operation (MPU reads data from DR)

Table 1. Various kinds of operations according to RS and R/W bits.

Busy Flag (BF)

When BF = "High", it indicates that the internal operation is being processed. So during this time the next instruction cannot be accepted. BF can be read, when RS = Low and R/W = High (Read Instruction Operation), through DB7 port. Before executing the next instruction, be sure that BF is not High.

Address Counter (AC)

Address Counter(AC) stores DDRAM/CGRAM address, transferred from IR.

After writing into (reading from) DDRAM/CGRAM, AC is automatically increased (decreased) by 1.

When RS = "Low" and R/W = "High", AC can be read through DB0 ~ DB6 ports.

Display Data RAM (DDRAM)

Display data RAM (DDRAM) stores display data represented in 8-bit character codes. Its extended capacity is 80 x 8 bits, or 80 characters. The area in display data RAM (DDRAM) that is not used for display can be used as general data RAM. See Figure 1 for the relationships between DDRAM addresses and positions on the liquid crystal display.

The DDRAM address (ADD) is set in the address counter (AC) as hexadecimal.

> 1-line display (N = 0) (Figure 2)

When there are fewer than 80 display characters, the display begins at the head position. For example, if using only the ST7066U, 8 characters are displayed. See Figure 3. When the display shift operation is performed, the DDRAM address shifts. See Figure 3.

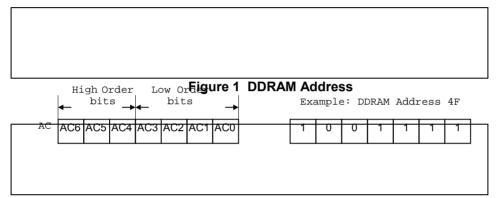


Figure 2 1-Line Display

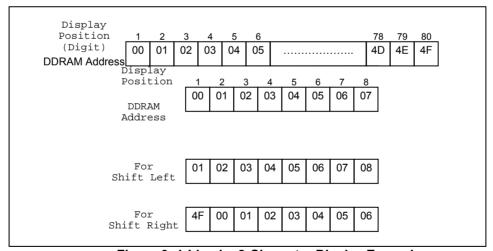


Figure 3 1-Line by 8-Character Display Example

> 2-line display (N = 1) (Figure 4)

Case 1: When the number of display characters is less than 40×2 lines, the two lines are displayed from the head. Note that the first line end address and the second line start address are not consecutive. For example, when just the ST7066U is used, 8 characters \times 2 lines are displayed. See Figure 5.

When display shift operation is performed, the DDRAM address shifts. See Figure 5.

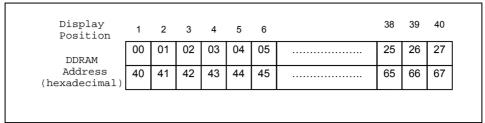


Figure 4 2-Line Display

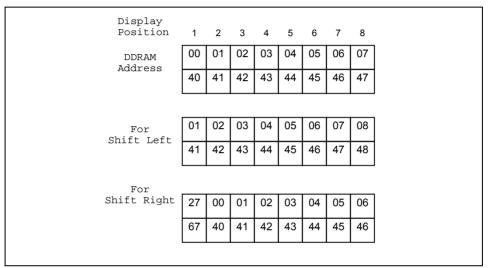


Figure 5 2-Line by 8-Character Display Example

Case 2: For a 16-character \times 2-line display, the ST7066U can be extended using one 40-output extension driver. See Figure 6.

When display shift operation is performed, the DDRAM address shifts. See Figure 6.

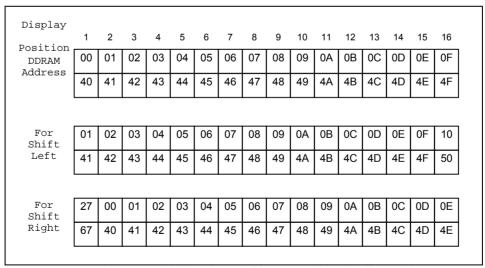


Figure 6 2-Line by 16-Character Display Example

Character Generator ROM (CGROM)

The character generator ROM generates 5 x 8 dot or 5 x 11 dot character patterns from 8-bit character codes. It can generate 240 5 x 8 dot character patterns. User-defined character patterns are also available by mask-programmed ROM.

Character Generator RAM (CGRAM)

In the character generator RAM, the user can rewrite character patterns by program. For 5 x 8 dots, eight character patterns can be written, and for 5 x 11 dots, four character patterns can be written.

Write into DDRAM the character codes at the addresses shown as the left column of Table 4 to show the character patterns stored in CGRAM.

See Table 5 for the relationship between CGRAM addresses and data and display patterns. Areas that are not used for display can be used as general data RAM.

Timing Generation Circuit

The timing generation circuit generates timing signals for the operation of internal circuits such as DDRAM, CGROM and CGRAM. RAM read timing for display and internal operation timing by MPU access are generated separately to avoid interfering with each other. Therefore, when writing data to DDRAM, for example, there will be no undesirable interference, such as flickering, in areas other than the display area.

LCD Driver Circuit

LCD Driver circuit has 16 common and 40 segment signals for LCD driving. Data from CGRAM/CGROM is transferred to 40 bit segment latch serially, and then it is stored to 40 bit shift latch. When each common is selected by 16 bit common register, segment data also output through segment driver from 40 bit segment latch. In case of 1-line display mode, COM1 \sim COM8 have 1/8 duty or COM1 \sim COM11 have 1/11duty, and in 2-line mode, COM1 \sim COM16 have 1/16 duty ratio.

Cursor/Blink Control Circuit

It can generate the cursor or blink in the cursor/blink control circuit. The cursor or the blink appears in the digit at the display data RAM address set in the address counter.

Table 4 Correspondence between Character Codes and Character Patterns (ROM Code: 0A)

NO.7066-0A

–	<u> -מטע</u>	<u> </u>		•	,	•										
67-64 63-60	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
0000	CG RAM (1)															
0001	(2)															
0010	(3)															
0011	(4)															
0100	(5)															
0101	(6)															
0110	(7)															
0111	(8)															
1000	(1)															
1001	(2)															
1010	(3)															
1011	(4)															
1100	(5)															
1101	(6)															
1110	(7)															
1111	(8)															

Table 4(Cont.) (ROM Code: 0B)

NO.7066-0B

140.1													
67-64 63-60	0000	0010	0100	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
0000	CG RAM (1)												
0001	(2)												
0010	(3)												
0011	(4)												
0 100	(5)												
0101	(6)												
0110	(7)												
0111	(8)												
1000	(1)												
1001	(2)												
1010	(3)												
1011	(4)												
1100	(5)												
1101	(6)												
1110	(7)												
1111	(8)												

Table 4(Cont.) (ROM Code: 0E)

NO.7066-0E

h7-h4			1	 1	I	 I	I		1		I <u></u>	1	1	11
67-64 63-60	0000	0001	0010	0100		0111	1000	1001	1010	1011	1100	1101	1110	1111
0000	CG RAM (1)													
0001	(2)													
0010	(3)													
0011	(4)													
0100	(5)													
0101	(6)													
0110	7)													
0111	(8)													
1000	(1)													
1001	(2)													
1010	(3)													
1011	(4)													
1100	(5)													
1101	(6)													
1110	(7)													
1111	(8)													

	С	har	act	er (Coc	le		CGRAM				Character Patterns									
	(DD	RA	M D	ata	1)		Address				(CGRAM Data)									
b7	b6	b5	b4	b3	b2	b1	b0	b5	b4	b3	b2	b1	b0	b7	b6	b5	b4	b3	b2	b1	b0
					0	0	0				0	0	0				1	1	1	1	1
					0	0	0				0	0	1				0	0	1	0	0
					0	0	0				0	1	0				0	0	1	0	0
0	0	0	0		0	0	0	0	0	0	0	1	1				0	0	1	0	0
١٠	U	U	U	-	0	0	0	U	U	U	1	0	0	_	-	-	0	0	1	0	0
					0	0	0				1	0	1				0	0	1	0	0
					0	0	0				1	1	0				0	0	1	0	0
					0	0	0				1	1	1				0	0	0	0	0
					0	0	1				0	0	0				1	1	1	1	0
					0	0	1				0	0	1				1	0	0	0	1
					0	0	1				0	1	0				1	0	0	0	1
0	0	0	0		0	0	1	0	0	1	0	1	1				1	1	1	1	0
١٠	U	U	U	-	0	0	1	U	U	ı	1	0	0	-	-	-	1	0	1	0	0
					0	0	1				1	0	1				1	0	0	1	0
					0	0	1				1	1	0				1	0	0	0	1
					0	0	1				1	1	1				0	0	0	0	0

Table 5 Relationship between CGRAM Addresses, Character Codes (DDRAM) and Character patterns (CGRAM Data)

Notes:

- 1. Character code bits 0 to 2 correspond to CGRAM address bits 3 to 5 (3 bits: 8 types).
- 2. CGRAM address bits 0 to 2 designate the character pattern line position. The 8th line is the cursor position and its display is formed by a logical OR with the cursor. Maintain the 8th line data, corresponding to the cursor display position, at 0 as the cursor display. If the 8th line data is 1, 1 bits will light up the 8th line regardless of the cursor presence.
- 3. Character pattern row positions correspond to CGRAM data bits 0 to 4 (bit 4 being at the left).
- 4. As shown Table 5, CGRAM character patterns are selected when character code bits 4 to 7 are all 0. However, since character code bit 3 has no effect, the R display example above can be selected by either character code 00H or 08H.
- 5. 1 for CGRAM data corresponds to display selection and 0 to non-selection.
- "-": Indicates no effect.

■ Instructions

There are four categories of instructions that:

- Designate ST7066U functions, such as display format, data length, etc.
- Set internal RAM addresses
- Perform data transfer with internal RAM
- Others

Instruction Table:

Instruction rad	tion			Inst	ructi	on C	Code)				Description
Instruction	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description	Time (270KHz)
Clear Display	0	0	0	0	0	0	0	0	0	1	Write "20H" to DDRAM. and set DDRAM address to "00H" from AC	1.52 ms
Return Home	0	0	0	0	0	0	0	0	1	x	Set DDRAM address to "00H" from AC and return cursor to its original position if shifted. The contents of DDRAM are not changed.	1.52 ms
Entry Mode Set	0	0	0	0	0	0	0	1	I/D	S	Sets cursor move direction and specifies display shift. These operations are performed during data write and read.	37 us
Display ON/OFF	0	0	0	0	0	0	1	D	С	В	D=1:entire display on C=1:cursor on B=1:cursor position on	37 us
Cursor or Display Shift	0	0	0	0	0	1	S/C	R/L	х	х	Set cursor moving and display shift control bit, and the direction, without changing DDRAM data.	37 us
Function Set	0	0	0	0	1	DL	N	F	х	х	DL:interface data is 8/4 bits N:number of line is 2/1 F:font size is 5x11/5x8	37 us
Set CGRAM address	0	0	0	1	AC5	AC4	AC3	AC2	AC1	AC0	Set CGRAM address in address counter	37 us
Set DDRAM address	0	0	1	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Set DDRAM address in address counter	37 us
Read Busy flag and address	0	1	BF	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Whether during internal operation or not can be known by reading BF. The contents of address counter can also be read.	0 us
Write data to RAM	1	0	D7	D6	D5	D4	D3	D2	D1	D0	Write data into internal RAM (DDRAM/CGRAM)	37 us
Read data from RAM	1	1	D7	D6	D5	D4	D3	D2	D1	D0	Read data from internal RAM (DDRAM/CGRAM)	37 us

Note:

Be sure the ST7066U is not in the busy state (BF = 0) before sending an instruction from the MPU to the ST7066U. If an instruction is sent without checking the busy flag, the time between the first instruction and next instruction will take much longer than the instruction time itself. Refer to Instruction Table for the list of each instruction execution time.

■ Instruction Description

Clear Display

RS RW DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

Code 0 0 0 0 0 0 0 0 0 1

Clear all the display data by writing "20H" (space code) to all DDRAM address, and set DDRAM address to "00H" into AC (address counter). Return cursor to the original status, namely, bring the cursor to the left edge on first line of the display. Make entry mode increment (I/D = "1").

Return Home

RS RW DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

Code 0 0 0 0 0 0 0 0 1 x

Return Home is cursor return home instruction. Set DDRAM address to "00H" into the address counter. Return cursor to its original site and return display to its original status, if shifted. Contents of DDRAM does not change.

Entry Mode Set

RS RW DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

Code 0 0 0 0 0 0 1 I/D S

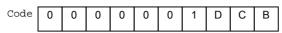
Set the moving direction of cursor and display.

I/D : Increment / decrement of DDRAM address (cursor or blink)

When I/D = "High", cursor/blink moves to right and DDRAM address is increased by 1.

When I/D = "Low", cursor/blink moves to left and DDRAM address is decreased by 1.

* CGRAM operates the same as DDRAM, when read from or write to CGRAM.


> S: Shift of entire display

When DDRAM read (CGRAM read/write) operation or S = "Low", shift of entire display is not performed. If S = "High" and DDRAM write operation, shift of entire display is performed according to I/D value (I/D = "1" : shift left, I/D = "0" : shift right).

S	I/D	Description
Н	Н	Shift the display to the left
Н	L	Shift the display to the right

Display ON/OFF

RS RW DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

Control display/cursor/blink ON/OFF 1 bit register.

> D: Display ON/OFF control bit

When D = "High", entire display is turned on.

When D = "Low", display is turned off, but display data is remained in DDRAM.

C: Cursor ON/OFF control bit

When C = "High", cursor is turned on.

When C = "Low", cursor is disappeared in current display, but I/D register remains its data.

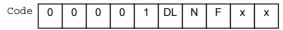
▶ B : Cursor Blink ON/OFF control bit

When B = "High", cursor blink is on, that performs alternate between all the high data and display character at the cursor position.

When B = "Low", blink is off.

Cursor or Display Shift

RS RW DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0


Code	0	0	0	0	0	1	S/C	R/L	х	х

Without writing or reading of display data, shift right/left cursor position or display. This instruction is used to correct or search display data. During 2-line mode display, cursor moves to the 2nd line after 40th digit of 1st line. Note that display shift is performed simultaneously in all the line. When displayed data is shifted repeatedly, each line shifted individually. When display shift is performed, the contents of address counter are not changed.

S/C	R/L	Description	AC Value
L	L	Shift cursor to the left	AC=AC-1
L	Н	Shift cursor to the right	AC=AC+1
Н	L	Shift display to the left. Cursor follows the display shift	AC=AC
Н	Н	Shift display to the right. Cursor follows the display shift	AC=AC

Function Set

RS RW DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

DL : Interface data length control bit

When DL = "High", it means 8-bit bus mode with MPU.

When DL = "Low", it means 4-bit bus mode with MPU. So to speak, DL is a signal to select 8-bit or 4-bit bus mode.

When 4-bit bus mode, it needs to transfer 4-bit data by two times.

> N: Display line number control bit

When N = "Low", it means 1-line display mode.

When N = "High", 2-line display mode is set.

> F: Display font type control bit

When F = "Low", it means 5 x 8 dots format display mode

When F = "High", 5 x11 dots format display mode.

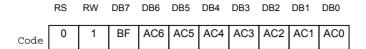
N	F	No. of Display Lines	Character Font	Duty Factor
L	L	1	5x8	1/8
L	Н	1	5x11	1/11
Н	х	2	5x8	1/16

Set CGRAM Address

Set CGRAM address to AC.

This instruction makes CGRAM data available from MPU.

Set DDRAM Address

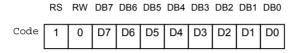

Set DDRAM address to AC.

This instruction makes DDRAM data available from MPU.

When 1-line display mode (N = 0), DDRAM address is from "00H" to "4FH".

In 2-line display mode (N = 1), DDRAM address in the 1st line is from "00H" to "27H", and DDRAM address in the 2nd line is from "40H" to "67H".

Read Busy Flag and Address

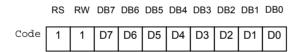


When BF = "High", indicates that the internal operation is being processed. So during this time the next instruction cannot be accepted.

The address Counter (AC) stores DDRAM/CGRAM addresses, transferred from IR.

After writing into (reading from) DDRAM/CGRAM, AC is automatically increased (decreased) by 1.

Write Data to CGRAM or DDRAM



Write binary 8-bit data to DDRAM/CGRAM.

The selection of RAM from DDRAM, CGRAM, is set by the previous address set instruction : DDRAM address set, CGRAM address set. RAM set instruction can also determine the AC direction to RAM.

After write operation, the address is automatically increased/decreased by 1, according to the entry mode.

Read Data from CGRAM or DDRAM

Read binary 8-bit data from DDRAM/CGRAM.

The selection of RAM is set by the previous address set instruction. If address set instruction of RAM is not performed before this instruction, the data that read first is invalid, because the direction of AC is not determined. If you read RAM data several times without RAM address set instruction before read operation, you can get correct RAM data from the second, but the first data would be incorrect, because there is no time margin to transfer RAM data.

In case of DDRAM read operation, cursor shift instruction plays the same role as DDRAM address set instruction: it also transfer RAM data to output data register. After read operation address counter is automatically increased/decreased by 1 according to the entry mode. After CGRAM read operation, display shift may not be executed correctly.

* In case of RAM write operation, after this AC is increased/decreased by 1 like read operation. In this time, AC indicates the next address position, but you can read only the previous data by read instruction.

■ Reset Function

Initializing by Internal Reset Circuit

An internal reset circuit automatically initializes the ST7066U when the power is turned on. The following instructions are executed during the initialization. The busy flag (BF) is kept in the busy state until the initialization ends (BF = 1). The busy state lasts for 40 ms after VCC rises to 4.5 V.

- 1. Display clear
- 2. Function set:

DL = 1; 8-bit interface data

N = 0; 1-line display

F = 0; 5x8 dot character font

3. Display on/off control:

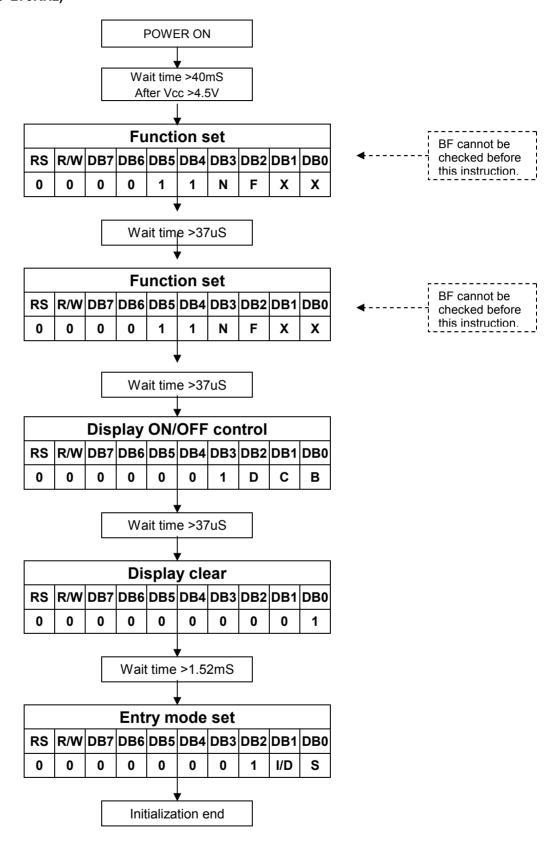
D = 0; Display off

C = 0; Cursor off

B = 0; Blinking off

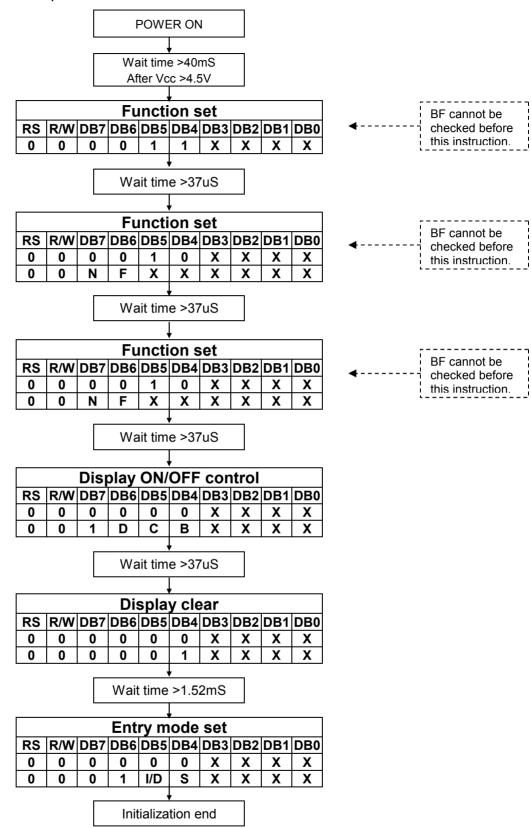
4. Entry mode set:

I/D = 1; Increment by 1


S = 0; No shift

Note:

If the electrical characteristics conditions listed in the table Power Supply Conditions (Page 31) are not met, the internal reset circuit will not operate normally and will fail to initialize the ST7066U. For such a case, initialization must be performed by the MPU as explain by the following figures.

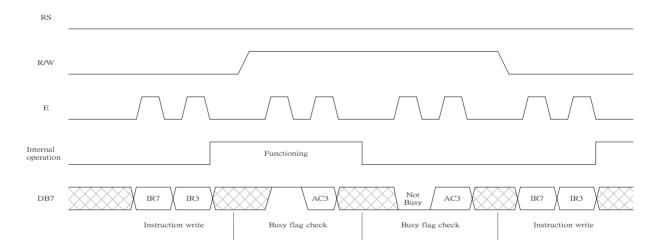

■ Initializing by Instruction

• 8-bit Interface (fosc=270KHz)

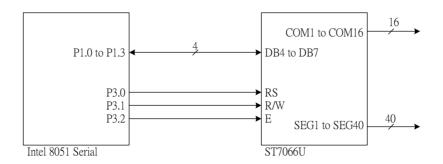
Initial Program Code Example For 8051 MPU(8 Bit Interface): **INITIAL START:** CALL DELAY40mS MOV A,#38H ;FUNCTION SET CALL WRINS_NOCHK ;8 bit,N=1,5*7dot CALL DELAY37uS MOV A,#38H :FUNCTION SET CALL WRINS_NOCHK ;8 bit,N=1,5*7dot CALL DELAY37uS MOV A,#0FH CALL WRINS_CHK ;DISPLAY ON CALL DELAY37uS MOV A.#01H ;CLEAR DISPLAY CALL WRINS CHK CALL DELAY1.52mS MOV A,#06H **;ENTRY MODE SET** CALL WRINS_CHK ;CURSOR MOVES TO RIGHT CALL DELAY37uS MAIN_START: XXXX XXXX **XXXX** XXXX WRINS_CHK: CALL CHK BUSY WRINS NOCHK: CLR ;EX:Port 3.0 RS CLR RW ;EX:Port 3.1 SETB E ;EX:Port 3.2 MOV P1,A ;EX:Port 1=Data Bus CLR Ε P1,#FFH MOV ;For Check Busy Flag RET CHK_BUSY: ;Check Busy Flag RS CLR SETB RW SETB E JB P1.7,\$ CLR Ε **RET**

4-bit Interface (fosc=270KHz)

> Initial Program Code Example For 8051 MPU(4 Bit Interface):

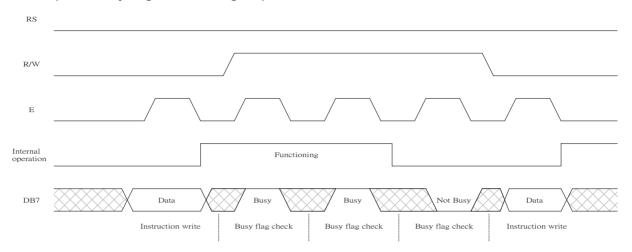

;				;			
ÍNITIA	L_STAF	RT:		WRII	NS_CHK	<u>.</u>	
	CALL	DELAY40mS				CHK_BUSY	
				WRII	NS_NOC		
	MOV		;FUNCTION SET		PUSH		
		WRINS_ONCE	;8 bit,N=1,5*7dot			A,#F0H	
	CALL	DELAY37uS			CLR		;EX:Port 3.0
					CLR		;EX:Port 3.1
	MOV	A,#28H	,		SETB		;EX:Port 3.2
	CALL	—	;4 bit,N=1,5*7dot			P1,A	;EX:Port1=Data Bus
	CALL	DELAY37uS			CLR	E	
					POP	Α	
			;FUNCTION SET		SWAF		
			;4 bit,N=1,5*7dot	WRII			
	CALL	DELAY37uS			ANL	A,#F0H	
					CLR	RS	
	MOV	A,#0FH	;DISPLAY ON		CLR		
		WRINS_CHK			SETB		
	CALL	DELAY37uS				P1,A	
					CLR	E	
		A,#01H	CLEAR DISPLAY			P1,#FFH	;For Check Bus Flag
		WRINS_CHK			RET		
	CALL	DELAY1.52mS		;			
				CHK _.	_BUSY:		;Check Busy Flag
			ENTRY MODE SET		PUSH		
		WRINS_CHK			MOV	P1,#FFH	
	CALL	DELAY37uS		\$1	a. –		
;					CLR	RS	
MAIN_	_START	:			SETB		
	XXXX				SETB		
	XXXX					A,P1	
	XXXX				CLR	E	
	XXXX					P1,#FFH	
	-				CLR	RS	
					SETB		
	-				SETB	Е	
					NOP	_	
					CLR	E	
						A.7,\$1	
					POP	Α	
					RET		

■ Interfacing to the MPU

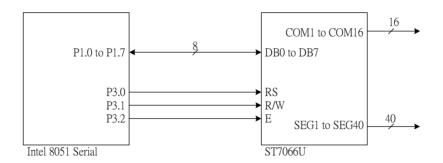

The ST7066U can send data in either two 4-bit operations or one 8-bit operation, thus allowing interfacing with 4-or 8-bit MPU.

For 4-bit interface data, only four bus lines (DB4 to DB7) are used for transfer. Bus lines DB0 to DB3 are disabled. The data transfer between the ST7066U and the MPU is completed after the 4-bit data has been transferred twice. As for the order of data transfer, the four high order bits (for 8-bit operation, DB4 to DB7) are transferred before the four low order bits (for 8-bit operation, DB0 to DB3). The busy flag must be checked (one instruction) after the 4-bit data has been transferred twice. Two more 4-bit operations then transfer the busy flag and address counter data.

Example of busy flag check timing sequence

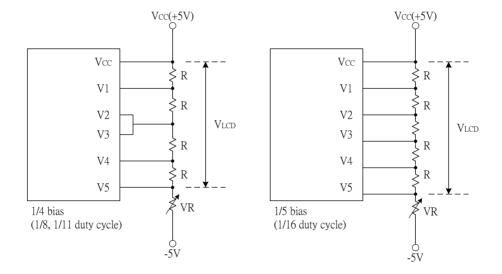


Intel 8051 interface



For 8-bit interface data, all eight bus lines (DB0 to DB7) are used.

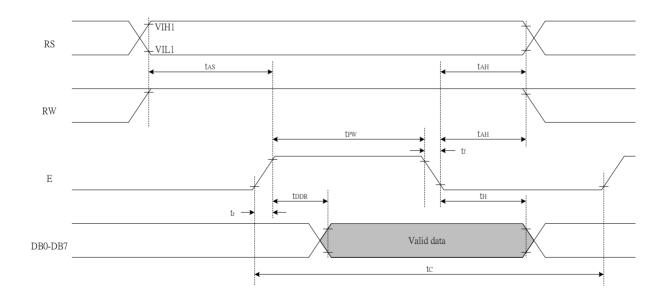
Example of busy flag check timing sequence



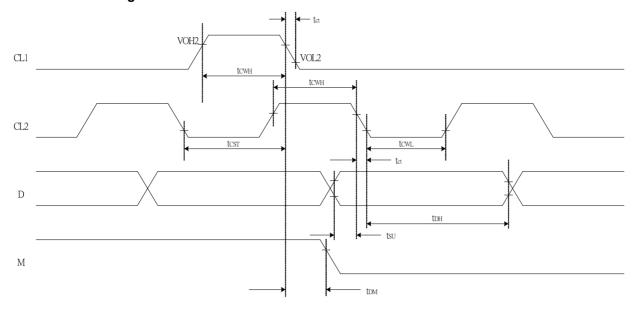
> Intel 8051 interface

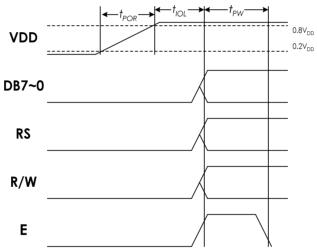

■ Supply Voltage for LCD Drive
There are different voltages that supply to ST7066U's pin (V1 - V5) to obtain LCD drive waveform. The relations of the bias, duty factor and supply voltages are shown as below:

	Duty I	actor							
	1/8, 1/11	1/16							
	Bi	as							
Supply Voltage									
V1	Vcc - 1/4VLCD	Vcc - 1/5VLCD							
V2	Vcc - 1/2VLCD	Vcc - 2/5VLCD							
V3	Vcc - 1/2VLCD	Vcc - 3/5VLCD							
V4	Vcc - 3/4VLCD	Vcc - 4/5VLCD							
V5	Vcc - VLCD	Vcc- VLCD							



■ Timing Characteristics


• Writing data from MPU to ST7066U


• Reading data from ST7066U to MPU

• Interface Timing with External Driver

■ Power Supply Conditions

Symbol	Characteristics	Description	Min.	Тур.	Max.	Unit
tPOR	Power rise time	Power rise time that will trigger internal power on reset circuit	0.1		100	ms
tIOL	I/O Low time	The period that I/O is kept low.	40			ms
tPW	Enable pulse width	Please refer to the	followin	g tables	· .	

- During tPOR, VDD noise should be reduced (especially close to 2.0V). Otherwise the Power-ON-Reset function might be triggered several times and maybe cause unexpected result.
- 2. During tIOL, the I/O ports of the interface (control and data signals) should be kept at "Low".

■ AC Characteristics

(TA = 25°C, VCC = 2.7V)

Symbol	Characteristics	Test Condition	Min.	Тур.	Max.	Unit		
Internal Clock Operation								
f _{OSC}	OSC Frequency	R = 75KΩ	190	270	350	KHz		
External Clock Operation								
f_{EX}	External Frequency	-	125	270	410	KHz		
	Duty Cycle	-	45	50	55	%		
T_R, T_F	Rise/Fall Time	-	-	-	0.2	μS		
	Write Mode	e (Writing data from MPU	to ST706	6U)				
T _C	Enable Cycle Time	Pin E	1200	-	-	ns		
T_PW	Enable Pulse Width	Pin E	460	-	-	ns		
T_R, T_F	Enable Rise/Fall Time	Pin E	-	-	25	ns		
T _{AS}	Address Setup Time	Pins: RS,RW,E	0	-	-	ns		
T _{AH}	Address Hold Time	Pins: RS,RW,E	10	-	-	ns		
T_{DSW}	Data Setup Time	Pins: DB0 - DB7	80	-	-	ns		
T _H	Data Hold Time	Pins: DB0 - DB7	10	-	-	ns		
	Read Mode	(Reading Data from ST70	066U to N	ЛРU)				
T _C	Enable Cycle Time	Pin E	1200	-	-	ns		
T_PW	Enable Pulse Width	Pin E	480	-	-	ns		
T_R, T_F	Enable Rise/Fall Time	Pin E	-	-	25	ns		
T _{AS}	Address Setup Time	Pins: RS,RW,E	0	-	-	ns		
T _{AH}	Address Hold Time	Pins: RS,RW,E	10	-	-	ns		
T_{DDR}	Data Setup Time	Pins: DB0 - DB7	-	-	320	ns		
T _H	Data Hold Time	Pins: DB0 - DB7	10	-	-	ns		
	Interfa	ce Mode with LCD Driver(ST7065)					
T _{CWH}	Clock Pulse with High	Pins: CL1, CL2	800	-	-	ns		
T _{CWL}	Clock Pulse with Low	Pins: CL1, CL2	800	-	-	ns		
T _{CST}	Clock Setup Time	Pins: CL1, CL2	500	-	-	ns		
T _{SU}	Data Setup Time	Pin: D	300	-	-	ns		
T _{DH}	Data Hold Time	Pin: D	300	-	-	ns		
T_DM	M Delay Time	Pin: M	0	-	2000	ns		

■ AC Characteristics

(TA = 25°C, VCC = 5V)

Symbol	Characteristics	Test Condition	Min.	Тур.	Max.	Unit			
Internal Clock Operation									
f _{OSC}	OSC Frequency	R = 91KΩ	190	270	350	KHz			
	External Clock Operation								
f_{EX}	External Frequency	-	125	270	410	KHz			
	Duty Cycle	-	45	50	55	%			
T_R,T_F	Rise/Fall Time	-	-	-	0.2	μS			
	Write Mode	e (Writing data from MPU	to ST706	6U)					
T _C	Enable Cycle Time	Pin E	1200	-	-	ns			
T_PW	Enable Pulse Width	Pin E	140	-	-	ns			
T_R, T_F	Enable Rise/Fall Time	Pin E	-	-	25	ns			
T _{AS}	Address Setup Time	Pins: RS,RW,E	0	-	-	ns			
T _{AH}	Address Hold Time	Pins: RS,RW,E	10	-	-	ns			
T_{DSW}	Data Setup Time	Pins: DB0 - DB7	40	-	-	ns			
T _H	Data Hold Time	Pins: DB0 - DB7	10	-	-	ns			
	Read Mode (Reading Data from ST7066U to MPU)								
T _C	Enable Cycle Time	Pin E	1200	-	-	ns			
T_PW	Enable Pulse Width	Pin E	140	-	-	ns			
T_R, T_F	Enable Rise/Fall Time	Pin E	-	-	25	ns			
T _{AS}	Address Setup Time	Pins: RS,RW,E	0	-	-	ns			
T _{AH}	Address Hold Time	Pins: RS,RW,E	10	-	-	ns			
T_{DDR}	Data Setup Time	Pins: DB0 - DB7	-	-	100	ns			
T _H	Data Hold Time	Pins: DB0 - DB7	10	-	-	ns			
Interface Mode with LCD Driver(ST7065)									
T _{CWH}	Clock Pulse with High	Pins: CL1, CL2	800	-	-	ns			
T _{CWL}	Clock Pulse with Low	Pins: CL1, CL2	800	_	-	ns			
T _{CST}	Clock Setup Time	Pins: CL1, CL2	500	-	-	ns			
T _{SU}	Data Setup Time	Pin: D	300	-	-	ns			
T _{DH}	Data Hold Time	Pin: D	300	_	-	ns			
T _{DM}	M Delay Time	Pin: M	0	-	2000	ns			

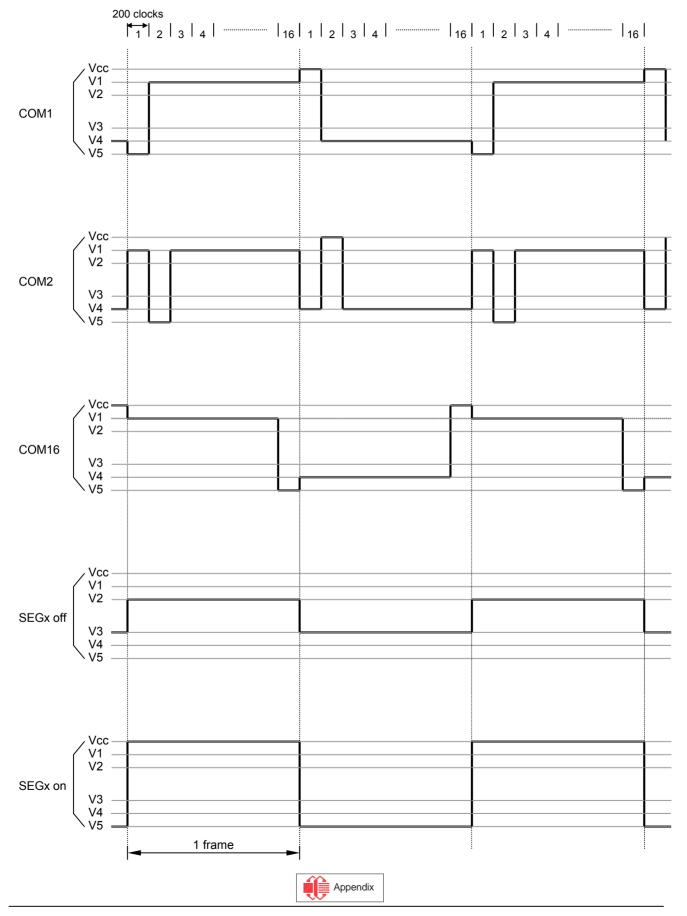
■ Absolute Maximum Ratings

Characteristics	Symbol	Value
Power Supply Voltage	V _{CC}	-0.3 to +7.0
LCD Driver Voltage	V_{LCD}	Vcc-10.0 to Vcc+0.3
Input Voltage	V _{IN}	-0.3 to V _{CC} +0.3
Operating Temperature	T _A	-40°C to + 90°C
Storage Temperature	T _{STO}	-55°C to + 125°C

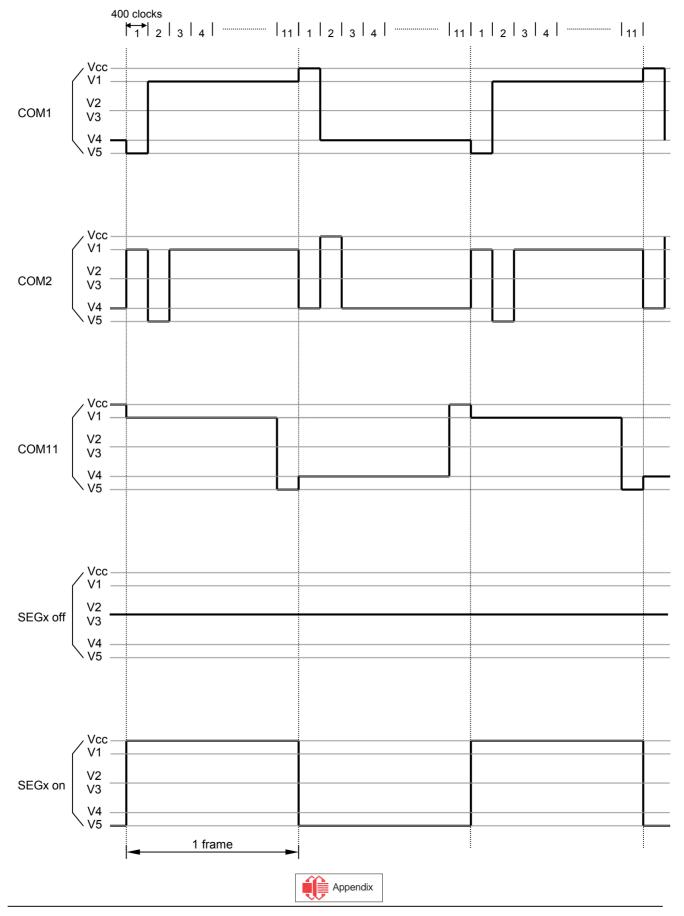
■ DC Characteristics

 $(TA = 25^{\circ}C, VCC = 2.7 V - 4.5 V)$

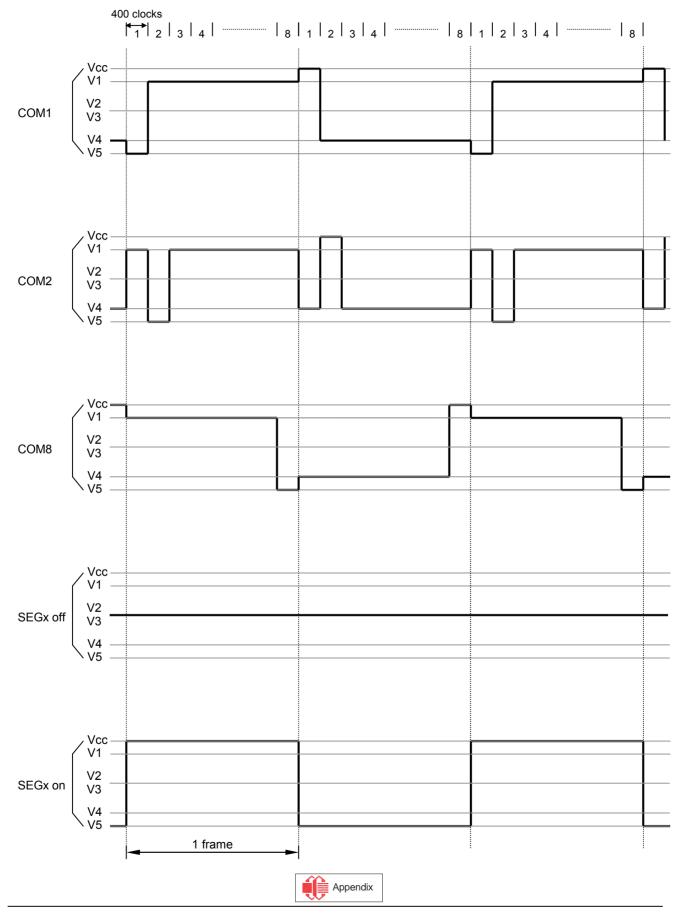
Symbol	Characteristics	Test Condition	Min.	Тур.	Max.	Unit
V _{CC}	Operating Voltage	-	2.7	-	4.5	V
V_{LCD}	LCD Voltage	V _{CC} -V5	3.0	ı	10.0	V
I _{CC}	Power Supply Current	f_{OSC} = 270KHz V_{CC} =3.0V	-	0.1	0.25	mA
V _{IH1}	Input High Voltage (Except OSC1)	-	0.7Vcc	-	V _{CC}	٧
V _{IL1}	Input Low Voltage (Except OSC1)	-	- 0.3	-	0.6	V
V _{IH2}	Input High Voltage (OSC1)	-	0.7Vcc	-	V _{CC}	٧
V_{IL2}	Input Low Voltage (OSC1)	-	-	-	0.2Vcc	٧
V _{OH1}	Output High Voltage (DB0 - DB7)	I _{OH} = -0.1mA	0.75 Vcc	-	-	٧
V _{OL1}	Output Low Voltage (DB0 - DB7)	I _{OL} = 0.1mA	-	-	0.2Vcc	٧
V _{OH2}	Output High Voltage (Except DB0 - DB7)	I _{OH} = -0.04mA	0.8V _{CC}	-	V _{CC}	V
V _{OL2}	Output Low Voltage (Except DB0 - DB7)	I _{OL} = 0.04mA	-	-	0.2V _{CC}	V
R _{COM}	Common Resistance	$V_{LCD} = 4V, I_{d} = 0.05mA$	-	2	20	ΚΩ
R _{SEG}	Segment Resistance	$V_{LCD} = 4V, I_{d} = 0.05mA$	-	2	30	ΚΩ
I _{LEAK}	Input Leakage Current	V _{IN} = 0V to V _{CC}	-1	-	1	μА
I _{PUP}	Pull Up MOS Current	V _{CC} = 3V	-10	-50	-120	μА

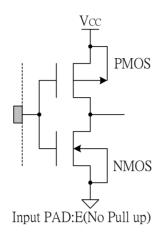

■ DC Characteristics

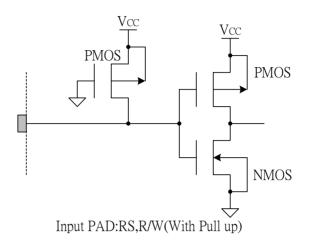
(TA = 25° C , V_{CC} = 4.5 V - 5.5 V)

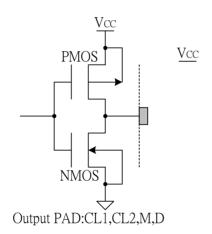

Symbol	Characteristics	Test Condition	Min.	Тур.	Max.	Unit
V_{CC}	Operating Voltage	-	4.5	-	5.5	V
V_{LCD}	LCD Voltage	V _{CC} -V5	3.0	-	10.0	V
I _{CC}	Power Supply Current	f_{OSC} = 270KHz V_{CC} =5.0V	-	0.2	0.5	mA
V _{IH1}	Input High Voltage (Except OSC1)	-	0.7Vcc	-	V _{CC}	V
V _{IL1}	Input Low Voltage (Except OSC1)	-	-0.3	-	0.6	V
V _{IH2}	Input High Voltage (OSC1)	-	V _{CC} -1	ı	V _{CC}	V
V_{IL2}	Input Low Voltage (OSC1)	-	-	ı	1.0	V
V _{OH1}	Output High Voltage (DB0 - DB7)	I _{OH} = -0.1mA	3.9	-	V _{CC}	V
V _{OL1}	Output Low Voltage (DB0 - DB7)	I _{OL} = 0.1mA	-	1	0.4	V
V_{OH2}	Output High Voltage (Except DB0 - DB7)	I _{OH} = -0.04mA	0.9V _{CC}	-	V _{CC}	V
V _{OL2}	Output Low Voltage (Except DB0 - DB7)	I _{OL} = 0.04mA	-	-	0.1V _{CC}	V
R _{COM}	Common Resistance	$V_{LCD} = 4V, I_{d} = 0.05mA$	-	2	20	ΚΩ
R _{SEG}	Segment Resistance	$V_{LCD} = 4V, I_{d} = 0.05mA$	-	2	30	ΚΩ
I _{LEAK}	Input Leakage Current	V _{IN} = 0V to V _{CC}	-1	-	1	μА
I _{PUP}	Pull Up MOS Current	V _{CC} = 5V	-50	-110	-180	μΑ

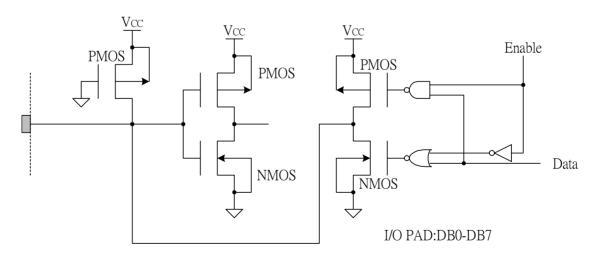
■ LCD Frame Frequency


Assume the oscillation frequency is 270KHZ, 1 clock cycle time = 3.7us, 1/16 duty; 1/5 bias,1 frame
 = 3.7us x 200 x 16 = 11840us=11.8ms(84.7Hz)

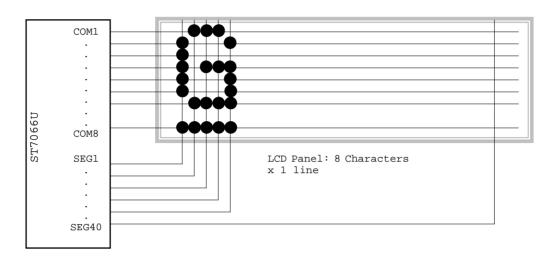

Assume the oscillation frequency is 270KHZ, 1 clock cycle time = 3.7us, 1/11 duty; 1/4 bias,1 frame = 3.7us x 400 x 11 = 16280us=16.3ms (61.3Hz)

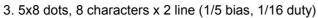


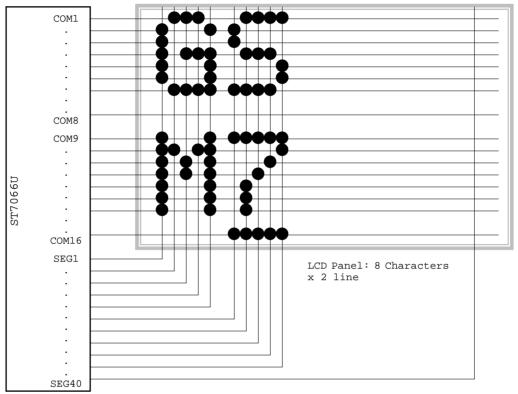

Assume the oscillation frequency is 270KHZ, 1 clock cycle time = 3.7us, 1/8 duty; 1/4 bias,1 frame = 3.7us x 400 x 8 = 11840us=11.8ms (84.7Hz)

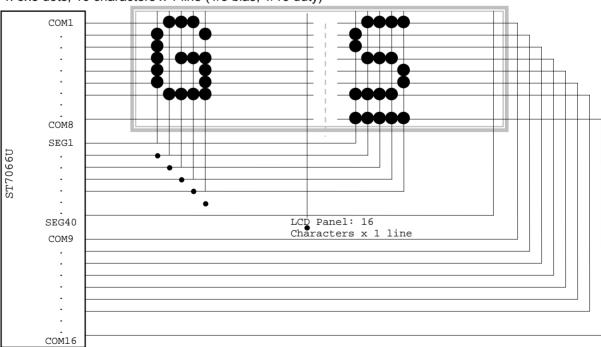


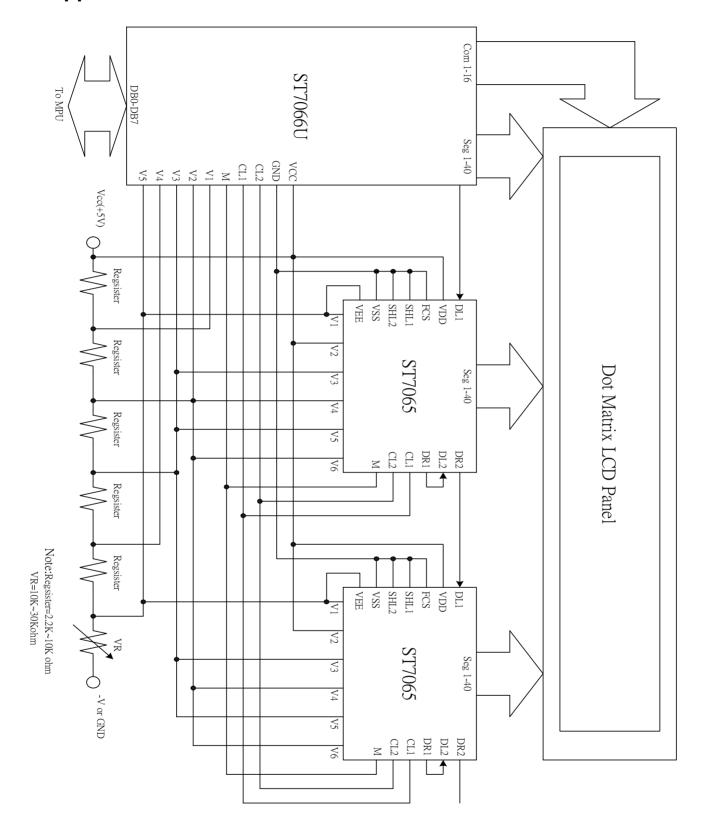
■ I/O Pad Configuration




■ LCD and ST7066U Connection


1. 5x8 dots, 8 characters x 1 line (1/4 bias, 1/8 duty)


2. 5x11 dots, 8 characters x 1 line (1/4 bias, 1/11 duty)



4. 5x8 dots, 16 characters x 1 line (1/5 bias, 1/16 duty)

■ Application Circuit

APPENDIX C: APPLICATION NOTE FOR 3.3V OPERATION

This module can be used with a 3.3v power supply. In order to meet the requirements of V_{LCD} , you must provide a negative voltage source for V_O (pin 3, see <u>Interface Pin Functions (Pg. 10)</u>). You need to drive V_O to below ground (typically -1v or -2v) until the V_{LCD} is met, making display contrast acceptable.

You can supply the negative voltage by one of the following methods:

1. Use an available source for the negative voltage.

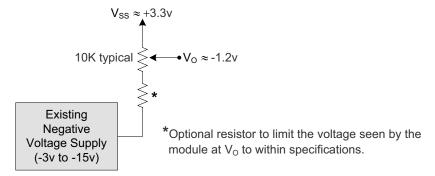


Figure 1. Use Existing Negative Voltage Supply

2. Use a "7660" CMOS switched-capacitor voltage converter or one of the many other available solutions for creating a negative voltage from a positive supply.

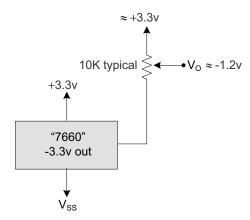


Figure 2. "7660" Switched-Capacitor Voltage Converter

3. Use the circuit in the figure below to create the voltage for V_O by using a PWM (Pulse Width Modulation) output of your microcontroller. This circuit allows the contrast to be adjusted under software control.

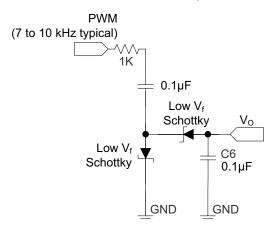


Figure 3. V_O Driving Circuit

Since V_O is pulled up internally by the LCD controller, this circuit will produce positive ($\approx+1v$) V_{LCD} (V_{LCD} = small, contrast is light) for low ($\approx10\%$) or high (90%) duty cycles. For duty cycles near 50%, this circuit will produce negative ($\approx-2v$) levels of V_O (V_{LCD} = big, contrast is dark).

4. Replace this module with the module in this series that has an on-board negative voltage generator. (The part number has a "V" at the end of it.)

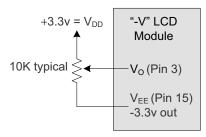


Figure 4. On-Board Negative Voltage Generator