
Crystalfontz America, Inc.

12412 East Saltese Avenue
Spokane Valley, WA 99216-0357

Phone: 888-206-9720

Fax: 509-892-1203
Email: support@crystalfontz.com

URL: www.crystalfontz.com

Crystalfontz

Datasheet Release 2021-05-03
for

CFA533 I2C Modules
CFA533-TMI-KC
CFA533-TFH-KC

CFA533-YYH-KC

Hardware Version: v1.4
Firmware Version: c1v2

LCD MODULE WITH KEYPAD SPECIFICATIONS

mailto:support@crystalfontz.com
https://www.crystalfontz.com/

Crystalfontz CFA533 I2C Modules

www.crystalfontz.com Datasheet Release Date 2021-05-03
 Hardware v1.4 / Firmware c1v2

Page | 2

Table of Contents

1. General Information ... 4

2. Introduction .. 5

 Main Features ... 5

 Module Classification Information.. 5

 Comparison to CFA633... 6

 Build Configurations .. 6

 CFA533 family .. 6

 CFA533KC Accessories .. 7

3. Mechanical Characteristics .. 8

 Physical Characteristics .. 8

 Jumper Locations .. 8

 Outline Drawings... 10

 Keypad Detail Drawing.. 12

4. Electrical Characteristics .. 13

 System Block Diagram .. 13

 Absolute Maximum Ratings... 14

 DC Characteristics .. 14

5. Optical Characteristics ... 15

 Test Conditions and Definitions for Optical Characteristics ... 15

 Optical Definitions for Negative Image Modules (CFA533-TMI-KC) .. 16

 Optical Definitions for Positive Image Modules CFA533-TFH-KC and CFA533-YYH-KC 17

6. Power Supply Connections .. 18

 Connection via J_PWR Connector (Non-ATX) .. 18

 Connection via J_RS232 Connector (Non-ATX).. 18

 ATX Host Power Sense through +5v on J_PWR ... 19

 ATX Host Power Sense through GPIO[1] on the J8 Connector ... 20

 ATX Keypad Control ... 20

7. Connections ... 21

 I2C Connections ... 21

 GPIO Connections .. 21

 Temperature Sensor 1-Wire Device (DOW) Connections ... 22

8. I2C Communication with Host .. 23

 I2C Address .. 23

 Packet Structure ... 23

 I2C Buffers .. 24

 Command Codes .. 25

9. CFA533-KC Command Codes ... 26

https://www.crystalfontz.com/

Crystalfontz CFA533 I2C Modules

www.crystalfontz.com Datasheet Release Date 2021-05-03
 Hardware v1.4 / Firmware c1v2

Page | 3

10. Character Generator ROM (CGROM) .. 41

11. Module Reliability and Lifetime .. 42

 Display Module Reliability ... 42

 Display Longevity and EOL/Replacement Policy ... 42

12. Appendix A: Demonstrations Software and Sample Code.. 43

 Algorithms to Calculate the CRC ... 43

13. APPENDIX B: CONNECTING A DS2450 1-WIRE QUAD A/D CONVERTER 54

https://www.crystalfontz.com/

Crystalfontz CFA533 I2C Modules

www.crystalfontz.com Datasheet Release Date 2021-05-03
 Hardware v1.4 / Firmware c1v2

Page | 4

1. General Information

Datasheet Revision History

Datasheet Version: 2021-05-03

Hardware Version: v1.4

Firmware Version: c1v2

This datasheet reflects hardware version v1.4, firmware c1v2 for the CFA533 family of LCD modules.

For information about firmware and hardware revisions, see the Part Change Notifications (PCNs) at the
bottom of the product page.

Previous datasheet version: 2015-09-25

For reference, previous datasheets may be downloaded by clicking the “Show Previous Versions of
Datasheet” link under the “Datasheets and Files” tab of the product web page.

Product Change Notifications

To check for or subscribe to “Part Change Notices” for this display module, see the Product Notices tab on

the product’s webpage.

Variations

Slight variations (for example, contrast, color, or intensity) between lots are normal.

Volatility
This display module has non-volatile memory capability.

Disclaimer

Certain applications using Crystalfontz America, Inc. products may involve potential risks of death, personal
injury, or severe property or environmental damage (“Critical Applications”). CRYSTALFONTZ AMERICA,

INC. PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE
SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS. Inclusion of Crystalfontz America, Inc. products in such applications is
understood to be fully at the risk of the customer. In order to minimize risks associated with customer
applications, adequate design and operating safeguards should be provided by the customer to minimize

inherent or procedural hazard. Please contact us if you have any questions concerning potential risk
applications.

Crystalfontz America, Inc. assumes no liability for applications assistance, customer product design,

software performance, or infringements of patents or services described herein. Nor does Crystalfontz
America, Inc. warrant or represent that any license, either express or implied, is granted under any patent
right, copyright, or other intellectual property right of Crystalfontz America, Inc. covering or relating to any
combination, machine, or process in which our products or services might be or are used.

All specifications in datasheets on our website are, to the best of our knowledge, accurate but not
guaranteed. Corrections to specifications are made as any inaccuracies are discovered.

Company and product names mentioned in this publication are trademarks or registered trademarks of their
respective owners.

Copyright © 2021 by Crystalfontz America, Inc.,12412 East Saltese Avenue, Spokane Valley, WA 99216

U.S.A.

https://www.crystalfontz.com/
https://www.crystalfontz.com/news/pcn.php

Crystalfontz CFA533 I2C Modules

www.crystalfontz.com Datasheet Release Date 2021-05-03
 Hardware v1.4 / Firmware c1v2

Page | 5

2. Introduction
The CFA533-xxx-KC is an intelligent LCD module with a keypad. The “KC” series use an I2C interface,

thus only four total lines are required for bi-directional communication: power, ground, SDA, and SCL.

Other interfaces are available at Crystalfontz.com.

 Main Features

• 16 characters x 2 lines LCD with keypad and high-level interface.

• Fits in a 1U rack mount case (35 mm overall height). A drive bay bracket is available to add on during
customization for a sleek fit in a 1U rack.

• A single 3.3-5v supply is needed for micro-controller, backlight, and LCD.

• “Live Display” shows up to eight temperature readings without host intervention, allowing temperatures to
be shown immediately at boot, before the host operating system is loaded.

• Adjustable, long-life backlight driven from the 5v supply at constant current. The brightness is independent
of power supply variations.

• Bi-directional I2C interface using just two lines (SDA and SCL).

• Robust packet-based communications protocol with 16-bit CRC.

• 6 o’clock viewing direction.

• Integrated, LED-backlit, 6-button keypad with four directional arrows, Enter, and Cancel.

• TFH modules are edge-lit by a white LED backlight with positive FSTN light gray transflective LCD.
Displays dark characters on a light gray background. Sunlight readable.

• TMI modules are edge-lit by a blue LED backlight with negative STN blue transmissive mode LCD.
Displays light characters on a deep blue background.

• YYH modules are edge-lit by a yellow-green LED backlight with positive STN yellow-green transflective

mode LCD. Displays dark characters on yellow-green background.

• Viewable in normal office lighting and in dark areas. Sunlight readability depends on module color.

• Non-volatile memory capability (EEPROM): Set the “power on” display screen, plus 16-bytes for storing

IP, netmask, system serial number, or other data.

 Module Classification Information

1 Brand Crystalfontz America, Inc.

2 Model Identifier 533

3 Backlight Type & Color
T – LED, white

Y – LED, yellow-green

4 Fluid Type, Image (positive or negative), & LCD Glass Color

F – FSTN positive, light gray

M – STN negative, blue

Y – STN positive, yellow-green

5
Polarizer Film Type, Temperature Range, &

View Angle (O ‘Clock)

H – Transflective, Wide Temperature
Range1, 6:00

I – Transmissive, Wide Temperature
Rage1, 6:00

6 Interface

KU – USB

KS – Full swing RS-232

KC – I2C

KL – Logic-level serial

1 Wide Temperature Range is -20°C minimum to +70°C maximum.

https://www.crystalfontz.com/

Crystalfontz CFA533 I2C Modules

www.crystalfontz.com Datasheet Release Date 2021-05-03
 Hardware v1.4 / Firmware c1v2

Page | 6

 Comparison to CFA633
The CFA533 family of modules is mechanically similar to the CFA633 family. The CFA533 can be an

economical drop-in replacement for most CFA633 applications that do not need fan capabilities. The
CFA533 family is compatible with the CFA633.

The CFA533 family incudes further features such as a 3.3v to 5v operating range, the ability to adjust

the keypad brightness separately from the LCD backlight, a stainless-steel bezel, and a single voltage
supply for both logic and back lighting.

 Build Configurations
Modifications of the CFA533KC are available after the module is added to the cart. These
modifications include:

• CFA533xxxKC8 which adds a Molex 70543-0002 header to J_DOW
• DBBKCFA533xxxKC the CFA533 is mounted into a drive bay bracket

• DBBKCFA533xxxKC8 both the header and the drive bay bracket

 CFA533 family

PART NUMBER FLUID
LCD

GLASS
COLOR

IMAGE
POLARIZER

FILM
BACKLIGHT COLOR/TYPE

CFA533-TFH-KC

(I2C)

FSTN light gray positive transflective

LCD: white edge LEDs

Keypad: white LEDs

CFA533-TFH-KL

(“full swing” RS-232)

CFA533-TFH-KS

(“full swing” RS-232)

CFA533-TMI-KC

(I2C)

STN blue negative transmissive

LCD: white edge LEDs

Keypad: blue LEDs

CFA533-TMI-KL

(“logic-level” RS-232)

CFA533-TMI-KS

(“full swing” RS-232)

CFA533-TMI-KU

(USB)

CFA533-YYH-KC

(I2C)

STN yellow-green positive transflective

LCD: yellow-green edge LEDs

Keypad: yellow-green LEDs

CFA533-YYH-KL

(“logic-level” RS-232)

CFA533-YYH-KS

(“full swing” RS-232)

CFA533-YYH-KU

(USB)

FSTN has better contrast than STN.
Positive Image: The display can be read in normal office lighting, in dark areas, and in bright sunlight.

Negative Image: Display can be read in normal office lighting and in dark areas. May be difficult to
read in direct sunlight.
Slight color variations from module to module and batch to batch are normal. If modules with

consistent color are required, request a custom order by emailing sales@crystalfontz.com.

https://www.crystalfontz.com/

Crystalfontz CFA533 I2C Modules

www.crystalfontz.com Datasheet Release Date 2021-05-03
 Hardware v1.4 / Firmware c1v2

Page | 7

 CFA533KC Accessories

Crystalfontz

Cable

Image
Description

All Cables Are RoHS Compliant

WR-PWR-

Y12

~13 inches

4-pin power splitter cable. Use this cable to plug a 4-pin “hard drive

style” Molex power connector into the module's “floppy drive style”
power connector, plus provides an additional 4-pin Molex connector

socket.

WR-PWR-

Y14

~24 inches

ATX power cable. Turn an ATX power supply on and off, or power

cycle the host through the module. Connect the cable’s 7-pin
connector to the module’s J8 socket connector, other end connects to
WOL connector. (Requires optional 7-pin socket connector at J8 on
module. Select J8 connector after clicking “Customize and Add to

Cart”.)

WR-PWR-

Y44

~39 inches

ATX power cable. Longer version of the WR-PWR-Y14.

WR-PWR-
Y05

~25 inches

 ATX power cable to turn an ATX power supply on and off, or power

cycle the host through the module. Similar to WR-PWR-Y14, but
uses 4 individual 0.1” connectors instead of WOL connector.

WR-DOW-

Y17

~12 inches
+ ~12
inches

between

connectors

Connect (“daisy chain”) up to 32 of these DOW (Dallas One-Wire)
DS18B20 temperature sensor cables. Requires optional DOW

connector at J_DOW on module.

DBBK

The drive bay mounting bracket is available for sale after clicking

the “Customize and Add to Cart” button, along with a list of options
for different cables and connectors.

https://www.crystalfontz.com/
https://www.crystalfontz.com/product/WRPWRY12.html
https://www.crystalfontz.com/product/WRPWRY12.html
https://www.crystalfontz.com/product/WRPWRY14
https://www.crystalfontz.com/product/WRPWRY14
https://www.crystalfontz.com/product/wrpwry44-atx-power-cable-for-cfa-modules
https://www.crystalfontz.com/product/wrpwry44-atx-power-cable-for-cfa-modules
https://www.crystalfontz.com/product/wrpwry05-atx-power-cable
https://www.crystalfontz.com/product/wrpwry05-atx-power-cable
https://www.crystalfontz.com/product/WRDOWY17.html
https://www.crystalfontz.com/product/WRDOWY17.html

Crystalfontz CFA533 I2C Modules

www.crystalfontz.com Datasheet Release Date 2021-05-03
 Hardware v1.4 / Firmware c1v2

Page | 8

3. Mechanical Characteristics

 Physical Characteristics

Item
Specification

(mm)

Specification
(inch, reference)

Module Overall Dimensions

Width and Height 110.5 (W) x 35.0 (H) 4.35 (W) x 1.378 (H)

Depth without Keypad 20.1 0.79

Depth with Keypad and Connectors 25.90 (max) 1.02

Viewing Area 61.0 (W) x 15.8 (H) 2.402 (W) x 0.622 (H)

Active Area 56.20 (W) x 11.5 0(H) 2.213 (W) x 0.453 (H)

Character Size 2.95 (W) x 5.55 (H) 0.116 (W) x 0.219 (H)

Dot Size 0.55 (W) x 0.65 (H) 0.022 (W) x 0.026 (H)

Keystroke Travel (approximate) 2.4 0.094

Weight 41 grams (typical) 1.48 ounces

 Jumper Locations
All jumpers are configurable, but not all jumpers will affect your interface. Open jumpers by removing
the corresponding resistors as shown below. Close the jumpers by melting a ball of solder across

their gap. Reopen the jumpers by removing the solder with a solder wick.

Figure 2. CFA533 HW v1.4 Jumper Locations

 PRO

 DO P R

P

S

P

R

P
1
3

 P

P

R

P

P

S

S
N

S

P

P

IO
1

R

P

P

IO
1

R

P
2

R

P

S

P

R

R

P

 P
 P4

 P3
 P2
 P1

 RS232

https://www.crystalfontz.com/

Crystalfontz CFA533 I2C Modules

www.crystalfontz.com Datasheet Release Date 2021-05-03
 Hardware v1.4 / Firmware c1v2

Page | 9

JUMPER FUNCTION -KC

JP1 Alternate RS232 Configuration Open

JP2 Standard RS232 Configuration Closed (0Ω R P2)

JP3 Alternate RS232 Configuration Open

JP4 Standard RS232 Configuration Closed (0Ω R P4)

JP5 Alternate RS232 Configuration Open

JP6 Standard RS232 Configuration Closed (0Ω R P6)

JP8 Connects the display’s +5v to +5v on J_PWR.
Conflicts with JPUSBSNS

Closed (0Ω RJP8)

JP11 Connects the microprocessor’s serial Tx line to P1
and JP2

Closed

JP12 Connects the microprocessor’s serial Rx line to P3
and JP4

Closed

JP13 Connects the display’s + v to Pin 4 on RS232 Open

JPUSBPWR Connects the display’s + v to P R on USB Open

JPUSBSNS Connects the display’s ATX SENSE to P R on
J-USB. Conflicts with JP8

Open

JPGPIO1 ypasses R3 when closed. R3 is a . KΩ resistor in
series with GPIO1

Closed (0Ω R PGPIO)

https://www.crystalfontz.com/

Crystalfontz CFA533 I2C Modules

www.crystalfontz.com Datasheet Release Date 2021-05-03
 Hardware v1.4 / Firmware c1v2

Page | 10

 Outline Drawings

P

R
D

O

C
h
a
ra

c
te

r
D

e
ta

il
A

.2

0
 A

c
ti
v
e
 A

re
a

1
.0

0
 V

ie
w

in
g
 A

re
a

.

0

e
z
e
l

.0

0
 P

C

 M

o
u
n
ti
n
g

o
le

s

1
1
0
.

0

0
.

0
 O

v
e
ra

ll
(P

C

)

3
0
.

0
 P

C

 M

.
.

2
0
.0

0

11. 0 AA

1 . 0 VA

2 . 0 ezel

30.00 PC M. .

3 .00 0. 0 Overall (PC)

2
.

0

.

.

0

1
1
.

0

2. 0

4.2

 . 0

11. .

.
0

.

. 0

.0

.0

2
.

3
.

 .

 .

.40

.
0

P
ix

e
l
D

e
ta

il

S
e
e
 C

h
a
ra

c
te

r

De
t
ai

l A

S
e
e
 P

ix
e
l

D
e
ta

il

1
2
.0

0
 K

e
y
p
a
d

I
C

Il
lu

s
tr
a
ti
o
n
 i
s
 d

e
e
m

e
d
 a

c
c
u
ra

te
 b

u
t
n
o
t
g
u
a
ra

n
te

e
d
.

2

.

0
 N

o
m

in
a
l

2

.

0
 M

a
x
im

u
m

w
w

w
.c

ry
s
ta

lf
o
n
tz

.c
o
m

 p
ro

d
u
c
ts

C
 y
s
ta
l
o
n
t
 A

e
 i
c
a

 n
c
.

c
o
p
y
ri
g
h
t

 2
0
1

 b

y

o
f

C
F
A

3
3

 K

C
 S

e
ri
e
s

2
0
1

 0

 2

N
o
t
to

 s
c
a
le

M
ill
im

e
te

rs

C
F
A

3
3

m

a
s
te

r
v
1
.4 1

2

https://www.crystalfontz.com/

Crystalfontz CFA533 I2C Modules

www.crystalfontz.com Datasheet Release Date 2021-05-03
 Hardware v1.4 / Firmware c1v2

Page | 11

https://www.crystalfontz.com/

Crystalfontz CFA533 I2C Modules

www.crystalfontz.com Datasheet Release Date 2021-05-03
 Hardware v1.4 / Firmware c1v2

Page | 12

 Keypad Detail Drawing

https://www.crystalfontz.com/

Crystalfontz CFA533 I2C Modules

www.crystalfontz.com Datasheet Release Date 2021-05-03
 Hardware v1.4 / Firmware c1v2

Page | 13

4. Electrical Characteristics

 System Block Diagram

https://www.crystalfontz.com/

Crystalfontz CFA533 I2C Modules

www.crystalfontz.com Datasheet Release Date 2021-05-03
 Hardware v1.4 / Firmware c1v2

Page | 14

 Absolute Maximum Ratings

Absolute Maximum Ratings Symbol Minimum Maximum

Operating Temperature TOP -20°C +70°C

Storage Temperature T
ST -30°C +80°C

Humidity Range (Non-condensing) RH 10% 90%

Supply Voltage for Logic VDD 0v +7.0v

These are stress ratings only. Extended exposure to the absolute maximum ratings listed above may affect
device reliability or cause permanent damage. Functional operation of the module at these conditions

beyond those listed under DC Characteristics is not implied.

5v Typical Current Consumption Specification

+5v (LCD, microcontroller, with backlight off, 0%) < 20mA

+5v (LCD, microcontroller, with white backlight on, 100%) < 100 mA

+5v (LCD, microcontroller, with yellow backlight on, 100%) < 120 mA

 DC Characteristics

DC Characteristics Test Conditions Symbol Minimum Typical Maximum

C
o

n
tr

o
ll

e
r

a
n

d
 B

o
a

rd
 Supply Voltage for Logic TOP =-30°C to +70°C V

DD - GND 3.2v
3.3v or

5.0v
5.25v

Input High Voltage V
DD

= +5v V
IH 2.2v - V

DD

Input Low Voltage V
IL -0.3v - +0.6v

Output High Voltage V
OH 2.4v - -

Output Low Voltage VOL - - +0.4v

Supply Current (including
backlight)

VDD=5.0v IDD - 105mA -

GPIO[0] through GPIO[4] Current Limits Specification

Sink 25 mA

Source 10 mA

The CFA533 has 5 GPIO (General-Purpose Input/Output) pins available. These pins connect to the

processor’s CMOS PIO pins. They may be set to input or output. Some pins have special purpose
functions. When they are set as GPIO outputs, the average voltage can be controlled by PWM.

Please refer to 34 (0x22): Set or Set and Configure GPIO Pins and 35 (0x23): Read GPIO Pin Levels
and Configuration State for more information.

https://www.crystalfontz.com/

Crystalfontz CFA533 I2C Modules

www.crystalfontz.com Datasheet Release Date 2021-05-03
 Hardware v1.4 / Firmware c1v2

Page | 15

5. Optical Characteristics
The CFA533 has a 6 o’clock viewing direction.

Item Symbol Condition Minimum Typical Maximum

Contrast Ratio1 CR - 10 15

LCD Response Time2 Trise Ta=25°C - 80 ms 160 ms

 Tfall Ta=25°C - 100 ms 200 ms

1Contrast Ratio = (brightness with pixels light)/ (brightness with pixels dark)
2Response Time = The amount of time it takes a liquid crystal cell to go from active to inactive or back again.

 Test Conditions and Definitions for Optical Characteristics

• Viewing Angle
o Vertical (V)θ: 0°
o Horizontal ()φ: 0°

• Frame Frequency: 64 Hz

• Driving Waveform: 1/16 Duty, 1/5 Bias

• Ambient Temperature (Ta): 25°C

Module Symbol Typical Conditions

TFH

ФRight 50 Θ=0

CR≥2

Ta=25°

ФLeft 30 Θ=180

ФUp 30 Θ=90

ФDown 30 Θ=270

TMI and YYH

ФRight 45 Θ=0

CR≥2

Ta=25°

ФLeft 25 Θ=180

ФUp 30 Θ=90

ФDown 30 Θ=270

https://www.crystalfontz.com/

Crystalfontz CFA533 I2C Modules

www.crystalfontz.com Datasheet Release Date 2021-05-03
 Hardware v1.4 / Firmware c1v2

Page | 16

 Optical Definitions for Negative Image Modules (CFA533-TMI-KC)

5.2.1. Operational Voltage for Optimal Contrast (VOP)

5.2.2. Response Time

Driving Voltage (V)

In
te

n
s
it
y

CR

Maximum

100

V
op

Selected ave

Non selected ave

CR = L
on

 L
off

L
on =

Luminance of ON segments

L
off =

Luminance of OFF segments

 nselected

State

 nselected

State

In
te

n
s
it
y

 0
100

Tr Tf

Selected

State

Tr = Rise Time

Tf = Fall Time

Light

Transmitted

Light

 locked

10

https://www.crystalfontz.com/

Crystalfontz CFA533 I2C Modules

www.crystalfontz.com Datasheet Release Date 2021-05-03
 Hardware v1.4 / Firmware c1v2

Page | 17

 Optical Definitions for Positive Image Modules CFA533-TFH-KC
and CFA533-YYH-KC

5.3.1. Operational Voltage for Optimal Contrast (VOP)

5.3.2. Response Time

 nselected

State

 nselected

State

In
te

n
s
it
y

100

Tr Tf

Selected

State

Tr = Rise Time

Tf = Fall Time

Light

Transmitted

Light

 locked

10

 0

Driving Voltage (V)

In
te

n
s
it
y

CR

Maximum

100

V
op

Selected ave

Non selected ave

CR = L
on

 L
off

L
on =

Luminance of ON segments

L
off =

Luminance of OFF segments

https://www.crystalfontz.com/

Crystalfontz CFA533 I2C Modules

www.crystalfontz.com Datasheet Release Date 2021-05-03
 Hardware v1.4 / Firmware c1v2

Page | 18

6. Power Supply Connections
Power supply connections can be made with or without the ability to control power on/off and reset

functions of an ATX power supply host. The connections described below are specified as ATX or non-
ATX. CFA533KC standard parts do not ship with ATX ability. Contact support@crystalfontz.com to initiate

a defined part for a CFA533KC with ATX capabilities. Otherwise, the modifications are described below to
allow for this ability.

 Connection via J_PWR Connector (Non-ATX)

By default, JP8 is closed with the R P 0Ω resistor. To connect via the _PWR connector, leave J8
closed.

Supply +5v to pin 1 and ground to either pin 2 or pin 3 on the J_PWR connector. This can be done with
the WR-PWR-Y12.

 Connection via J_RS232 Connector (Non-ATX)

The J_RS232 connector can be used as an I2C connector on CFA533KC modules. VDD power can be
supplied through the connector, allowing a single cable to bring in power and data connections. The five

connections needed are all located on the same side of RS232, so a 0.1” -position cable can be used
to connect the CFA533-KC to a main system, or an RS232 cable like the WR-232-Y22.
To connect via J RS232, remove the R P 0Ω resistor to open P .

https://www.crystalfontz.com/
mailto:support@crystalfontz.com
https://www.crystalfontz.com/product/WRPWRY12
https://www.crystalfontz.com/product/wr232y22

Crystalfontz CFA533 I2C Modules

www.crystalfontz.com Datasheet Release Date 2021-05-03
 Hardware v1.4 / Firmware c1v2

Page | 19

 ATX Host Power Sense through +5v on J_PWR

By default, J8 is closed by RJP8 and the +5v pin on the J_PWR connector is connected to the +5v net on
the CFA533KC. In order to use J_PWR to sense the host power, open JP8 to disconnect it the +5v pin

on P R from the + v net. Then, the P R + v pin can be used at the “ ost Power Sense.”

Connect the othe boa d’s powe switch input to GP O[2] (pin 5 on the J8 header). This will be the
Power Control Pin, and is configured as a high-impedance input. When a host on or off command is sent,

pin 5 will be changed to a low impedance output and drive either low or high depending on the setting of
POWER_INVERT.

Connect the othe boa d’s eset switch input to GP O[3] (pin 4 on the J8 header). This will be the
Reset Pin, and is configured as a high-impedance input. When a Reset signal is sent to the host, pin 4

will be changed to a low impedance output, driving either low or high.

Crystalfontz offers two power cables to simplify ATX power supply control connections: the WR-PWR-Y14

and the WR-PWR-Y44. When using either of these cables, open JP8 by removing the RJP8 resistor.

Additional information about setting the ATX switch functionality can be found in Command 28.

https://www.crystalfontz.com/
https://www.crystalfontz.com/product/WR-PWR-Y14
https://www.crystalfontz.com/product/WR-PWR-Y44

Crystalfontz CFA533 I2C Modules

www.crystalfontz.com Datasheet Release Date 2021-05-03
 Hardware v1.4 / Firmware c1v2

Page | 20

 ATX Host Power Sense through GPIO[1] on the J8 Connector

For backwards compatibility with legacy CFA633 applications, the HOST POWER SENSE can alternately

be provided through GPIO[1] (pin 6 of the J8 header). This configuration requires the +5v VSB, Ground,
Power Control (GPIO[2]), Reset Control (GPIO[3]) and +5v Host Power. In this method only, both RJP8

and RJPGPIO1 should be removed to open the corresponding jumpers.

 ATX Keypad Control
Keypad control is configured using command 28 (0x1C): Set ATX Switch Functionality. The following
functions may be individually enabled:

• System Power On. This function enables the use of the green check (enter) key to turn the host on when
the HOST POWER SENSE is low. By default, pressing the enter key for 0.25 seconds will drive the

POWER CONTROL line high for one pulse width as set in command 28 (1.0 seconds by default).

• System Hard Power Off. This function enables the use of the red X (cancel) key to turn the host off by
driving the POWER CONTROL line down. This is initiated only when HOST POWER SENSE is high

and the cancel key is pressed and held for 4 seconds. The line will be driven for a minimum of the
pulse width set in command 28. Holding the cancel key longer than 4 seconds will cause the module to

continue to drive the line for a maximum of an additional 5 seconds.

• System Hard Reset. This function enables forcing the host system to reset itself. If the green check (enter)
key is pressed for 4 seconds when HOST POWER SENSE is high, the module will drive the RESET

line for one pulse width. The module will reset the host, then reboot itself.

The module can also be configured to blank the display any time to HOST POWER SENSE line is low in
order to appear off when the host is off.

https://www.crystalfontz.com/

Crystalfontz CFA533 I2C Modules

www.crystalfontz.com Datasheet Release Date 2021-05-03
 Hardware v1.4 / Firmware c1v2

Page | 21

7. Connections

 I2C Connections
CFA533-KC modules communicate using I2C. The data (SDA) and clock (SCL) lines require external
pull-up resistors (RP). The size of RP is determined by a combination of the supply voltage, clock speed,

and bus capacitance. The minimum sink current for any I2C device should be no less than 3 mA at
VOLMAX= 0.4v for the output stage. This limits the minimum RP value for a 5-volt system to about 1. kΩ.

The maximum value for RP depends on bus capacitance and clock speed. For a 5-volt system with a bus
capacitance of 150 pF, RP should be no larger than kΩ. For more information see the UM10204 I2C-bus
specification and user manual on NXP Semiconductors’ website.

For more about communicating via I2C with the CFA533-KC, see section 8: I2C Communication.

Note: Each command and related data bytes must be transmitted as a single packet to be processed
correctly.

 GPIO Connections
The CFA533-KC modules have five general purpose input/output (GPIO) pins. These pins can be used to
drive LEDs, relays, read switches or buttons and so on. Most of the CFA533 GPIOs have a default

function to provide additional functionality. If ATX Host Power Sense or the 1-Wire bus are being used, do
not reconfigure the related GPIO pins as user GPIO.

https://www.crystalfontz.com/
https://www.nxp.com/docs/en/user-guide/UM10204.pdf
https://www.nxp.com/docs/en/user-guide/UM10204.pdf

Crystalfontz CFA533 I2C Modules

www.crystalfontz.com Datasheet Release Date 2021-05-03
 Hardware v1.4 / Firmware c1v2

Page | 22

GPIO[0] = J8, Pin 7

GPIO[1] = J8, Pin 6 (optional ATX Host Power Sense, R3(5kΩ)in series)

GPIO[2] = J8, Pin 5 (default is ATX Host Power Control)

GPIO[3] = J8, Pin 4 (default is ATX Host Reset Control)

GPIO[4] = J_DOW, Pin 2 (default is DOW I/O -- has 1kΩ hardware pull-up: R2)

Refer to commands 34: Set/Configure GPIO and 35: Read GPIO Pin Levels and Configuration State for

additional details.

 Temperature Sensor 1-Wire Device (DOW) Connections
The CFA533-KC modules support Maxim 1-Wire (DOW) temperature sensors, which use the standard
Dallas Semiconductor 1-Wire protocol for data transfers. These temperature sensors (WR-DOW-Y17) are

an optional add-on to the CFA533.

The WR-DOW-Y17 has a DS18B20 sensor and a “daisy chain” cable. The mating connector for the
WR-DOW-Y17 is the Molex 0705430002.

The CFA533-KC can be configured to automatically read and display the temperature in °C or °F using
command 21: Set Up Live Temperature Display.

https://www.crystalfontz.com/
https://www.crystalfontz.com/product/wrdowy17

Crystalfontz CFA533 I2C Modules

www.crystalfontz.com Datasheet Release Date 2021-05-03
 Hardware v1.4 / Firmware c1v2

Page | 23

8. I2C Communication with Host
The CFA533-KC modules communicate with the host using a packet based I2C protocol. The I2C bus

mater, the host, initiates all transactions. The host identifies the CFA533-KC based on its address, then
writes the command and data to the input buffer of the CFA533-KC. The CFA533-KC executes the

commands in its input buffer and acknowledges or write a response packet to its output buffer. The host
then reads the output buffer of the CFA533-KC to verify the command or read the result of a query.

The I2C specification allows the I2C master (host) to run at clock speeds up to 100kHz.

For more information about I2C see the UM10204 I2C-bus specification and user manual on the NXP

Semiconductors website.

Crystalfontz supplies 533 I2C WinTest, a demonstration and test program along with C source code.

Included in the source code is a CRC algorithm and a packet validating algorithm. Use these algorithms
to realize the full benefits of using packet-based communication.

 I2C Address
The I2C address allows the host to identify an individual device (or group of devices). To communicate

with a device on the I2C bus, the host begins a read or write transaction using a byte that contains the
I2C address it would like to communicate with and a bit to indicate whether the operation is a read or

write operation. The first 7 bits indicate the address of the device and the last bit indicates read or write.

Valid addresses are between 0 and 12710. The least significant bit (LSB) of the byte contains the R/W bit.

If this bit is 0, the address will be written to. If the LSB is 1, the address will have data read from it.

By default, the display module uses an I2C address of 01010102 (4210, 0x2A16). To write to the display,
the host device transmits the address left bit-shifted with a 0, which is 010101002 (8410, 0x5416). To read
from the display the address is instead left-shift with a 1 to get 010101012 (8510, 0x5516).

The I2C address of the CFA533-KC can be set using command 33 (0x21): Set I2C Address. To make the

change permanent, save it using command 4 (0x04): Store Current State as Boot State.

To display the current I2C address of the module on the LCD, press and hold both the up and down arrow
keys for four seconds.

 Packet Structure
Communication between the CFA533-KC and the host takes place in simple and robust CRC checked
packets. The packet format enables reliable communication between the module and the host, avoiding

problems that occur in stream-based serial communication.

The packets follow this structure: <type><data_length><data><CRC>

Alternately, it may be useful to think of the packet as follows:

I C Start I C Address I C R I C data 0 I C data 1 I C Stop

 33 ty pe

I C Payload

 33 Packet

 33 CRC MS 33 data 0 33 CRC LS 33 data length 33 data 1 33 data data length 1

https://www.crystalfontz.com/
https://www.nxp.com/docs/en/user-guide/UM10204.pdf
https://www.crystalfontz.com/product/533i2cwintest

Crystalfontz CFA533 I2C Modules

www.crystalfontz.com Datasheet Release Date 2021-05-03
 Hardware v1.4 / Firmware c1v2

Page | 24

typedef struct {

 unsigned char command;

 unsigned char data_length;

 unsigned char data[data_length];

 unsigned short CRC;

}COMMAND_PACKET;

8.2.1. <type>
<type> is one byte that identifies the type and function of the packet. The first two bits indicate the type

of packet (command, response, report, error) and the last six bits encode the details.

TTcc cccc

|||| ||||--Command, response, error or report code 0-6310
||---------Type:

00 = normal command from host to CFA533

01 = normal response from CFA533 to host

10 = normal report from CFA533 to host (not in direct response to a command

from the host)

11 = error response from CFA533 to host (a packet with valid structure but

illegal content was received by the CFA533)

8.2.2. <data_length>
<data_length> is one byte that specifies the number of bytes that will follow in the <data> field. The

valid range for <data_length> is 0-1810.

8.2.3. <data>
<data> is the payload of the packet. Each command is associated with a <data_length>. The data

field contains up to 18 bytes of information related to the command specified in the <type>.

8.2.4. <crc>
<crc> is a standard 16-bit CRC (cyclic redundancy check) which verifies all the information in the

packet, excluding the <crc> itself. The <crc> immediately follows the last used element of <data>, and

is sent LSB first.

See Appendix A for several examples of how to calculate the CRC in a variety of programming
languages.

 I2C Buffers

Reading and writing data to the CFA533-KC is accomplished using buffers. The buffers are called the
input or write buffer for data written to the CFA533-KC by the host, and the output or read buffer for data

to be read by the host.

During Read: The host, acting as the I2C master, reads data from the CFA533-KC output buffer. The host
must read at least as many bytes as are included in the CFA533-KC’s response packet. If the host
attempts to read more data than the buffer contains, the last byte will be retransmitted until the host stops

reading. The host must NAK the last byte that it reads so the CFA533-KC knows the read is terminated.
The NAK should come just before the STOP.

During Write: The host writes data to the CFA533-KC input buffer. When the CFA533-KC input buffer
memory is full, the CFA533-KC generates a NAK (negative acknowledgement). If the host continues to

write data overflowing the buffer, the CFA533-KC will continue to NAK it. Any data written once the input
buffer is full is not stored.

https://www.crystalfontz.com/

Crystalfontz CFA533 I2C Modules

www.crystalfontz.com Datasheet Release Date 2021-05-03
 Hardware v1.4 / Firmware c1v2

Page | 25

The CFA533-KC requires some time to execute a command after it has been written to its input buffer.
For most commands 5mS is enough time for the CFA533-KC to have executed the command and have
the result in the output buffer for the host to read.

Commands that take more time include:

• 2 (0x02): Write User Flash Area – 25mS

• 4 (0x04): Store Current State as Boot State – 50mS

• 5 (0x05): Reboot CFA533, Reset Host, or Power Off Host – up to 9S depending on function

• 14 (0x0E): Set LCD and Keypad Backlight – 50ms

• 20 (0x14): Arbitrary DOW Transaction – 50mS, though varies depending on transaction

Reconciling packets is recommended over using delays when communicating with the CFA533-KC. To
reconcile packets, ensure the ACK for the most recent packet has been received before sending

additional packets to the display module. This will prevent dropping packets or missing communication
with the display module.

 Command Codes

Below is a list of valid commands for the CFA533-KC. The CFA533-KC responds to each packet either by

a response or error packet. As described in 8.2 Packet Structure, the first two bits of the response packet
indicate the type (response or error) and the last six bits correspond to the type of command packet being

acknowledged.

https://www.crystalfontz.com/

Crystalfontz CFA533 I2C Modules

www.crystalfontz.com Datasheet Release Date 2021-05-03
 Hardware v1.4 / Firmware c1v2

Page | 26

9. CFA533-KC Command Codes

0 (0x00): Ping Command
The host sends a packet include ng:
 type: 0x00 = 0000 00002 = 010

 data_length: between 0 and 16

 data[0-(data_length-1)]: any data can be sent

The CFA533-KC return packet is identical to the packet sent by the host, except the first two bits of the
type now indicate the packet is a normal response to the host:
 type: 0x40 | 0x00 = 0x40 = 0100 00002 = 6410

 data_length: between 0 and 16

 data[0-(data_length-1)]: same data as sent by host

1 (0x01): Get Hardware and Firmware Version
The host sends a packet including:

type: 0x01 = 110

data_length: 0

The CFA533-KC return packet:
type: 0x40 | 0x01 = 0x41 = 0100 00012 = 6510

data_length: 16

data[]: "CFA533:hX.X,yY.Y"

hX.X is the hardware revision e.g., "1.4"

yY.Y is the firmware version e.g., "c1.2"

(0x02): Write User Flash Area
The CFA533 reserves 16 bytes of nonvolatile memory as user accessible flash. This memory can be
used to store data such as a serial number, IP address, gateway address, netmask, or any other data. All

16 bytes must be supplied. A delay of 25mS after the I2C write phase completes is required to guarantee
the CFA533-KC will have the acknowledge or response packet ready to be read by the host.

type: 0x02 = 210

data_length: 16

data[]: 16 bytes of arbitrary user data to be stored in the CFA533's non-

volatile memory

The return packet will be:
type: 0x40 | 0x02 = 0x42 = 6610

data_length: 0

3 (0x03): Read User Flash Area
This command reads the User Flash Area and return the data to the host.

type: 0x03 = 310

data_length: 0

The return packet will be:
type: 0x40 | 0x03 = 0x43 = 6710

data_length: 16

data[]: 16 bytes user data recalled from the CFA533's non-volatile memory

https://www.crystalfontz.com/

Crystalfontz CFA533 I2C Modules

www.crystalfontz.com Datasheet Release Date 2021-05-03
 Hardware v1.4 / Firmware c1v2

Page | 27

4 (0x04): Store Current State as Boot State
The CFA533 loads its power-up configuration from nonvolatile memory when power is applied. The

CFA533 is configured at the factory to display a Crystalfontz boot screen when power is applied. This
command can be used to customize the boot screen, along with the following settings:

• The contents of the DDRAM (characters shown on LCD), affected by:
o Command 6 (0x06): Clear LCD Screen

o Command 31 (0x1F): Send Data to LCD
o Depreciated commands 7 and 8

• Command 9 (0x09): Set LCD Special Character Data

• Command 11 (0x0B): Set LCD Cursor Position

• Command 12 (0x0C): Set LCD Cursor Style

• Command 13 (0x0D): Set LCD Contrast

• Command 14 (0x0E): Set LCD & Keypad Backlight

• Command 21 (0x15): Set Up Live Temperature Display*

• Command 28 (0x1C): Set ATX Switch Functionality**

• Command 33 (0x21): Set I2C Address

• Command 34 (0x22): Set/Configure GPIO

*Temperature reporting cannot be stored, though the live display of temperatures can be saved.
 ** The host watchdog cannot be stored. The host software should enable this item once the system is

initialized and ready to receive the data.

type: 0x04 = 410

data_length: 0

This command may take longer to resolve. Wait 50mS after the I2C write phase completes to guarantee
the CFA533-KC will have the acknowledge or response packet ready to be read by the host. The return

packet will be:
type: 0x40 | 0x04 = 0x44 = 6810

data_length: 0

Note: Saving the boot state may not work properly at voltages lower the +5v. It is recommended to only

save the boot state when operating at +5v logic. Saving the boot state at a +3.3v logi level may cause
corrupted characters to appear on the display module.

5 (0x05): Reboot CFA533, Reset Host, or Power Off Host
This command instructs the CFA533 to simulate a power-on restart of itself, reset the host, or turn the
host's power off.

Rebooting the CFA533 may be useful when testing the boot configuration. It may also be useful to re-
enumerate the devices on the 1-Wire (DOW) bus. To reboot the CFA533, send the following packet:

type: 0x05 = 510

data_length: 3

data[0]: 8

data[1]: 18

data[2]: 99

To reset the host, when the host's reset line is connected to GPIO[3] in one of the ATX configurations,
send the following packet:

type: 0x05 = 510

data_length: 3

data[0]: 12

data[1]: 28

data[2]: 97

https://www.crystalfontz.com/

Crystalfontz CFA533 I2C Modules

www.crystalfontz.com Datasheet Release Date 2021-05-03
 Hardware v1.4 / Firmware c1v2

Page | 28

To turn the host's power off, assuming the host's power control line is connected to GPIO[2] in an ATX
configuration send the following packet:

type: 0x05 = 510

data_length: 3

data[0]: 3

data[1]: 11

data[2]: 95

Wait after the write phase completes to guarantee the CFA533 will have the acknowledge or response
packet ready to be read by the host. Execute times are up to:

500mS for parameters \008\018\099, Reboot CFA533
The CFA533 resets itself, then prepares the acknowledge packet. The host may read the acknowledge

packet from the display module any time starting at 500mS after the command was sent.
2mS ~ 1500mS for parameters \012\028\097, Reset host

The CFA533 prepares the acknowledge packet immediately then waits 100mS for the host to read the

acknowledge packet. After that, the CFA533 will be unavailable for ~1500mS (1000mS is the length of the
host reset pulse, plus ~500mS for the CFA533 to reset itself). Typically, this variable delay will not be a

concern, as the host system will be rebooting. When the CFA533 resets, it will display its boot screen,
which can be configured using command 4.

2mS ~ 9S for parameters \003\011\095, Power off host

The CFA533 prepares the acknowledge packet immediately then waits 100mS for the host to read the
acknowledge packet. After that, the CFA533 will be unavailable for a variable amount of time, depending

on how long after the CFA533 asserts the power signal until the host power falls. The maximum time is
~9S (1000mS is the length of the host reset pulse, up to 7.5S for the host power to fall, plus allow

~500mS for the CFA533 to reset itself). Typically, this variable delay will not be a concern, as the host
system will be powering down. The CFA533 can be set to blank its screen when the host power falls so
the system appears powered off.

In any of the above cases, the return packet will be:

type: 0x40 | 0x05 = 0x45 = 6910

data_length: 0

6 (0x06): Clear LCD Screen
This command empties the contents of the LCD’s DDRAM (removes the characters from the display) and
moves the cursor to the left-most column of the top line. The contents of the DDRAM are saved by

Command 4: Store Current State as Boot State.

type: 0x06 = 610

data_length: 0

The return packet will be:
type: 0x40 | 0x06 = 0x46 = 7010

data_length: 0

7 (0x07): Set LCD Contents, Line 1 and 8 (0x08): Set LCD Contents, Line 2
(Deprecated)

These commands were used to set the 16 characters displayed on either the top (command 7) or bottom
(command 8) line of the display. These commands have been replaced by Command 31: Send Data to
LCD, though the commands are still supported for backwards compatibility in legacy systems. These

commands affect the DDRAM which is saved by Command 4: Store Current State as Boot State.

https://www.crystalfontz.com/

Crystalfontz CFA533 I2C Modules

www.crystalfontz.com Datasheet Release Date 2021-05-03
 Hardware v1.4 / Firmware c1v2

Page | 29

9 (0x09): Set LCD Special Character Data
This command sets the bitmap for the eight special characters in the CGROM.

type: 0x09 = 910

data_length: 9

data[0]: index of special character to modify, 0-7 are valid

data[1-8]: bitmap of the character

data[1-8] are the bitmap information for the character. Any value between 0 and 31 is valid. The MSB

is at the left of the character cell of the row, and the LSB is at the right of the character cell. data[1] is

at the top of the cell, data[8] is at the bottom of the cell.

The return packet will be:

type: 0x40 | 0x09 = 0x49 = 7310

data_length: 0

The special characters can be saved using Command 4 (0x04): Store Current State as Boot State.

10 (0x0A): Read 8 Bytes of LCD Memory
This command returns the contents of the LCD’s DDRAM or C ROM. This command is intended for
debugging.

type: 0x0A = 1010

data_length: 1

data[0]: address code of desired data

data[0] is the address code native to the LCD controller:
0x40 (\064) to 0x7F (\127) for CGROM

0x80 (\128) to 0x8F (\143) for DDRAM, line 1

0xC0 (\192) to 0xCF (\207) for DDRAM, line 2

The return packet will be:

type: 0x40 | 0x0A = 0x4A = 7410

data_length: 9

data[0]: address code.

data[1-8]: data read from the LCD controller's memory.

11 (0x0B): Set LCD Cursor Position

This command places the cursor at the given location on the CFA 33’s LCD screen . Cursor visibility is set
by Command 12 (0x0C): Set LCD Cursor Style.

type: 0x0B = 1110

data_length: 2

data[0]: column (0-15 valid)

data[1]: row (0-1 valid)

The return packet will be:

type: 0x40 | 0x0B = 0x4B = 7510

data_length: 0

Set LCD Cursor Position is stored by Command 4 (0x04): Store Current State as Boot State.

12 (0x0C): Set LCD Cursor Style
This command selects among four hardware generated cursor options.

https://www.crystalfontz.com/

Crystalfontz CFA533 I2C Modules

www.crystalfontz.com Datasheet Release Date 2021-05-03
 Hardware v1.4 / Firmware c1v2

Page | 30

type: 0x0C = 1210

data_length: 1

data[0]: cursor style (0-3 valid)

0 = no cursor

1 = blinking block cursor

2 = underscore cursor

3 = blinking underscore (Note: This behavior differs from the CFA633

series which is: blinking block plus underscore.)

The return packet will be:
type: 0x40 | 0x0C = 0x4C = 7610

data_length: 0

Set LCD Cursor Style is stored by Command 4 (0x04): Store Current State as Boot State.

13 (0x0D): Set LCD Contrast
This command sets the contrast of the display.

CFA533 Enhanced
Using two bytes to set the contrast takes advantage of the CFA533’s native enhanced contrast

resolution (compared to the CFA633). The first byte, data[0], simply indicates the enhanced version,
any value from 0 to 254 is accepted. The second byte, data[1], controls the CFA533 contrast resolution.

type: 0x0D = 1310

data_length: 2

data[0]: required but ignored

data[1]: contrast setting (0-200 valid)

0-99 = lighter

100 = no correction

101-200 = darker

CFA633 Compatible
The CFA633 compatible version allows the contrast to be set using only 1 byte.

type: 0x0D = 1310

data_length: 1

data[0]: contrast setting (0-50 useful)

0 = light

16 = about right

29 = dark

30-50 = very dark

The return packet for either method is:

type: 0x40 | 0x0D = 0x4D = 7710

data_length: 0

Set LCD Contrast is stored by Command 4 (0x04): Store Current State as Boot State.

14 (0x0E): Set LCD & Keypad Backlight

This command sets the brightness of the LCD and keypad backlights. Wait 50mS after the write phase
completes to guarantee the acknowledge or response packet is ready to be read by the host.

CFA533 Enhanced
Using two bytes allows the LCD and keypad brightness to be separately set. The LCD brightness is set

by the first byte and the keypad by the second byte.

https://www.crystalfontz.com/

Crystalfontz CFA533 I2C Modules

www.crystalfontz.com Datasheet Release Date 2021-05-03
 Hardware v1.4 / Firmware c1v2

Page | 31

type: 0x0E = 1410

data_length: 2

data[0]: LCD backlight power setting (0-100 valid)

0 = off

1-99 = variable brightness

100 = on

data[1]: keypad backlight power setting (0-100 valid)

0 = off

1-99 = variable brightness

100 = on

CFA633 Compatible
Using one byte sets both the keypad and LCD backlights to the same brightness. This method is

CFA633 compatible.

type: 0x0E = 1410

data_length: 1

data[0]: keypad and LCD backlight power setting (0-100 valid)

0 = off

1-99 = variable brightness

100 = on

The return packet for either method is:

type: 0x40 | 0x0E = 0x4E = 7810

data_length: 0

Set LCD & Keypad Backlight is stored by Command 4 (0x04): Store Current State as Boot State.

15 (0x0F): Read Temperature
The command retrieves the most recent temperature sensor reading. Each temperature sensor is read

once every second.

type: 0x0F = 1510

data_length: 1

data[0]: 0 to 31 DOW device index

The family code for the device at "device index" must be 0x22 (DS1822) or 0x28 (DS12B20). This can be

verified with Command 18 (0x12): Read DOW Device Information.

The return packet will be:

type: 0x40 | 0x0F = 0x4F = 7910

data_length: 4

data[0]: index of the temperature sensor being reported:

0 = temperature sensor 1

1 = temperature sensor 2

. . .

31 = temperature sensor 32

data[1]: LSB of Temperature_Sensor_Counts

data[2]: MSB of Temperature_Sensor_Counts

data[3]: DOW_crc_status

https://www.crystalfontz.com/

Crystalfontz CFA533 I2C Modules

www.crystalfontz.com Datasheet Release Date 2021-05-03
 Hardware v1.4 / Firmware c1v2

Page | 32

The following C function decodes the Temperature Sensor Report packet into °C and °F:

void OnReceivedTempReport(COMMAND_PACKET *packet, char *output)

 {

 //First check the DOW CRC return code from the CFA533

 if(packet->data[3]==0)

 strcpy(output,"BAD CRC");

 else

 {

 double

 degc;

 degc=(*(short *)&(packet->data[1]))/16.0;

 double

 degf;

 degf=(degc*9.0)/5.0+32.0;

 sprintf(output,"%9.4f°C =%9.4f°F",

 degc,

 degf);

 }

}

16 and 17: Reserved

18 (0x12): Read DOW Device Information
This command provides device information about devices connected to the 1-Wire (DOW) bus. On
power-up, the CFA533-KC detects any devices connected to the bus and stores the device information.

The first byte returned is the “family code” of the 1-Wire device. A list of the possible 1-Wire device family
codes is available on the Maxim website.

type: 0x12 = 1810

data_length: 1

data[0] = device index (0-31 valid)

The return packet will be:

type: 0x40 | 0x12 = 0x52 = 8210

data_length: 9

data[0]: device index (0-31 valid)

data[1-8]: ROM ID of the device

Note: In order for the DOW subsystem to operate correctly, GPIO[4] must be configured in the default
drive mode, as follows:

DDD = "111: 1=Hi-Z, 0=Slow, Strong Drive Down"

F = "0: Port unused for user GPIO."

This can be achieved by sending the following command and saving the boot state (Command 4):

type: 34

data_length: 3

data[0]: 4

data[1]: 100

data[2]: 7

19 Reserved

https://www.crystalfontz.com/
https://www.maximintegrated.com/en/design/technical-documents/app-notes/1/155.html

Crystalfontz CFA533 I2C Modules

www.crystalfontz.com Datasheet Release Date 2021-05-03
 Hardware v1.4 / Firmware c1v2

Page | 33

20 (0x14): Arbitrary DOW Transaction
This command enables arbitrary transactions on the 1-Wire bus to be specified. The CFA533 can function

as an I2C to 1-Wire bridge. The CFA533 can send up to 15 bytes and receive up to 14 bytes. Some
devices require larger transactions and cannot be fully used with the CFA533. 1-Wire commands follow

this basic layout:

<bus reset> //Required

<address_phase> //Must be "Match ROM" or "Skip ROM"

<write_phase> //At least one of write_phase or read_phase must be sent

<read_phase> //At least one of write_phase or read_phase must be sent

See APPENDIX B: CONNECTING A DS2450 1-WIRE QUAD A/D CONVERTER for an example of using

this command.

type: 0x14 = 2010

data_length: 2 to 16

data[0]: device_index (0-32 valid)

data[1]: number_of_bytes_to_read (0-14 valid)

data[2-[data_length-1]]: data_to_be_written

If device_index is 32, no address phase will be executed.

If device_index is in the range of 0 to 31 and a 1-Wire device was detected at that device_index at

power-up, then the write cycle will be prefixed with a "Match ROM” command and the address information
for that device.
If data_length is two, then no specific write phase will be executed (although address information may

be written independently of data_length depending on the value of device_index).

If data_length is greater than two, then data_length-2 bytes of data_to_be_written will be

written to the 1-Wire bus immediately after the address phase.
If number_of_bytes_to_read is zero, then no read phase will be executed.

If number_of_bytes_to_read is not zero then number_of_bytes_to_read will be read from the bus

and loaded into the response packet.

Wait 50mS after the write phase completes to guarantee the CFA533 has the acknowledge or response

packet ready for the host.

The return packet will be:

type: 0x40 | 0x14 = 0x54 = 8410

data_length: 2 to 16

data[0]: device index (0-31 valid)

data[1-[data_length-2]]: Data read from the 1-Wire bus. The number of bytes

is specified as number_of_bytes_to_read in the command.

data[data_length-1]: 1-Wire CRC

21 (0x15): Set Up Live Temperature Display
This command configures live temperature display. The CFA533 can automatically update portions of the
LCD with a live temperature reading. Once configured, the CFA533 will continue to display the live

reading without intervention. The settings from this command are stored by Command 4: Store Current
State as Boot State. This allows the CFA533 to display system temperatures as soon as power is applied.

The live display uses display “slots”. There are 4 slots, and each of the 4 slots may be enabled or
disabled independently. Any slot can display any data that is available. For instance, slot 0 could display

temperature sensor 3 in °C, while slot 1 could simultaneously display temperature sensor 3 in °F. Any slot
may be positioned at any location on the LCD, as long as all the digits of that slot fall fully within the

display area. The display area of one slot can overlap the display area of another slot, but should be
avoided in order to have meaningful information displayed.

https://www.crystalfontz.com/

Crystalfontz CFA533 I2C Modules

www.crystalfontz.com Datasheet Release Date 2021-05-03
 Hardware v1.4 / Firmware c1v2

Page | 34

type: 0x15 = 2110

data_length: 7 or 2 (for turning a slot off)

data[0]: display slot (0-3)

data[1]: type of item to display in this slot

0 = nothing (data_length then must be 2)

1 = (invalid)

2 = temperature (data_length then must be 7)

data[2]: index of the sensor to display in this slot:

0-31 are valid for temperatures (and the temperature device must be

attached)

data[3]: number of digits

for a temperature: 3 digits (-XX or XXX)

for a temperature: 5 digits (-XX.X or XXX.X)

data[4]: display column

0-13 valid for a 3-digit temperature

0-11 valid for a 5-digit temperature

data[5]: display row (0-1 valid)

data[6]: temperature units(0 = deg C, 1 = deg F)

If a 1-Wire CRC error is detected, the temperature will be displayed as "ERR" or "ERROR".

The return packet will be:

type: 0x40 | 15 = 0x55 = 8510

data_length: 0

22 (0x16): Send Command Directly to the LCD Controller
This command allows direct access to the LCD’s controller. It is possible to corrupt the CFA 33 display

using this command. The controller on the CFA533 is the Neotec NT7070B (HD44780 compatible).
Generally low-level access to the LCD controller is unnecessary. This command ensures full functionality

of the display is accessible.

type: 0x16 = 2210

data_length: 2

data[0]: location code

0 = "Data" register

1 = "Control" register

data[1]: data to write to the selected register

The return packet will be:
type: 0x40 | 0x16 = 0x56 = 8610

data_length: 0

23 (0X17) Enable Key Ready Flag
This command allows GPIO[0] (J8's Pin 7) to act as a key ready flag. If enabled, it sets GPIO[0] high until

read by the host using 24 (0x18): Read Keypad, Polled Mode.

type: 0x17 = 2310

data_length: 1

data[0]: Enable or disable Key Ready Flag

0 = GPIO[0] is normal

1 = Key Ready Flag enabled on GPIO[0]

GPIO[0] is driven high if a key is ready and driven low if no keys

are ready

The return packet will be
type: 0x40 | 0x17 = 0x57 = 8710

data_length: 0

https://www.crystalfontz.com/
https://crystalfontz.com/controllers/neotec/NT7070B

Crystalfontz CFA533 I2C Modules

www.crystalfontz.com Datasheet Release Date 2021-05-03
 Hardware v1.4 / Firmware c1v2

Page | 35

24 (0x18): Read Keypad, Polled Mode
This command allows the host to detect key presses including which keys are currently pressed, which
keys have been pressed since the last poll, and which keys have been released since the last poll.

#define KP_UP 0x01

#define KP_ENTER 0x02

#define KP_CANCEL 0x04

#define KP_LEFT 0x08

#define KP_RIGHT 0x10

#define KP_DOWN 0x20

type: 0x18 = 2410

data_length: 0

The return packet will be:

type: 0x40 | 0x18 = 0x58 = 8810

data_length: 3

data[0]: bitmask of keys currently pressed

data[1]: bitmask of keys pressed since the last poll

data[2]: bitmask of keys released since the last poll

25-27 Reserved

28 (0x1C): Set ATX Switch Functionality
This command sets which of the four possible ATX functions are active. Activating ATX functionality,
when used with an ATX-compatible system, allows the CFA533 to replace the power and reset switches

in the system. These settings are stored by Command 4: Store Current State as Boot State.

By default there is an internal HOST POWER SENSE connected to the +5v pin of J_PWR, selected by
setting data[2] to 1. Alternatively, GPIO[1] may be configured to act as HOST POWER SENSE. More
information about ATX connections can be found in Section 6: Power Supply Connections.

FOUR FUNCTIONS CONTROLLED BY COMMAND 28

Function 1: KEYPAD_RESET

If HOST POWER SENSE is high, holding the green check key for 4 seconds will pulse RESET
(GPIO[3]) pin for 1 second. During the 1-second pulse, the CFA533 will show "RESET". Then the
CFA533 will reset itself, showing its boot state as if it had just powered on. After the pulse, the

CFA533 will not respond to any commands until it has reset the host and itself.
Function 2: KEYPAD_POWER_ON

If HOST POWER SENSE is low, pressing the green check key for 0.25 seconds will pulse
POWER CONTROL (GPIO[2]) for the duration specified by in data[1] or the default of 1 second.
During this time the CFA533 will show "POWER ON", then the CFA533 will reset itself.

Function 3: KEYPAD_POWER_OFF
If HOST POWER SENSE is high, holding the red X key for 4 seconds will pulse POWER

CONTROL (GPIO[2]) for the duration specified by in data[1] or the default of 1 second. If the user
continues to hold the power key down, then the CFA533 will continue to drive the line for a

maximum of 5 additional seconds. During this time the CFA533 will show "POWER OFF".
Function 4: LCD_OFF_IF_HOST_IS_OFF

If LCD_OFF_IF_HOST_IS_OFF is set, the CFA533 will blank its screen and turn off its backlight

to simulate its power being off any time HOST POWER SENSE is low.

The RESET (GPIO[3]) and POWER CONTROL (GPIO[2]) lines on the CFA533 are normally high-
impedance. Electrically, they appear to be disconnected or floating. When the CFA533 asserts the
RESET or POWER CONTROL lines, they are momentarily driven high or low (as determined by the

https://www.crystalfontz.com/

Crystalfontz CFA533 I2C Modules

www.crystalfontz.com Datasheet Release Date 2021-05-03
 Hardware v1.4 / Firmware c1v2

Page | 36

AUTO_POLARITY, RESET_INVERT or POWER_INVERT bits). To end the power or reset pulse, the
CFA533 changes the lines back to high impedance.

#define AUTO_POLARITY 0x01 //Automatically detects polarity for reset and

 //power (recommended)

#define RESET_INVERT 0x02 //Reset pin drives high instead of low (ignored

 //if AUTO_POLARITY is set)

#define POWER_INVERT 0x04 //Power pin drives high instead of low (ignored

 //if AUTO_POLARITY is set)

#define LCD_OFF_IF_HOST_IS_OFF 0x10

#define KEYPAD_RESET 0x20

#define KEYPAD_POWER_ON 0x40

#define KEYPAD_POWER_OFF 0x80

type: 0x1C = 2810

data_length: 1, 2 or 3

data[0]: bitmask of enabled functions

data[1]: (optional) length of power on & off pulses in 1/32 second

1 = 1/32 sec

2 = 1/16 sec

16 = 1/2 sec

255 = 8 sec

data[2]: (optional) atx_sense_on_floppy

0: sense ATX host state on P2.1 (J8, pin 6 / GPIO [1] -- R3 must be

loaded)

1: sense ATX host state on P0.7 (JPWR,+5v -- recommended

configuration))

The return packet will be:

type: 0x40 | 0x1C = 0x5C = 9210

data_length: 0

GPIO Configuration for ATX

To use the ATX functionality, the relevant GPIO pins must be configured appropriately for ATX. This is
the default configuration, but can be changed using Command 34: Set/Configure GPIO.

If using GPIO[1] as HOST POWER SENSE, GPIO[1] must be configured as:

DDD = "011: 1=Resistive Pull Up, 0=Fast, Strong Drive Down".

F = "0: Port unused for user GPIO."

This configuration can be assured by sending the following command:
type: 34

data_length: 3

data[0]: 1

data[1]: 0

data[2]: 3

For GPIO[2] to operate correctly as ATX POWER CONTROL, GPIO[2] must be configured as:
DDD = "010: Hi-Z, use for input".

F = "0: Port unused for user GPIO."

This configuration can be assured by sending the following command:
type: 34

data_length: 3

data[0]: 2

data[1]: 0

data[2]: 2

https://www.crystalfontz.com/

Crystalfontz CFA533 I2C Modules

www.crystalfontz.com Datasheet Release Date 2021-05-03
 Hardware v1.4 / Firmware c1v2

Page | 37

For GPIO[3] to operate correctly as ATX RESET, user GPIO[3] must be configured as:

DDD = "010: Hi-Z, use for input".

F = "0: Port unused for user GPIO."

This configuration can be assured by sending the following command:
type: 34

data_length: 3

data[0]: 3

data[1]: 0

data[2]: 2

These settings must be saved as the boot state using Command 4: Store Current State as Boot State.

29 (0x1D): Enable/Feed Host Watchdog Reset
This command sets a timeout length in seconds for systems which use hardware watchdog timers to
ensure that a software or hardware failure does not result in an extended system outage. Once the host

system has booted, a system monitor program is started. The system monitor program enables the
watchdog timer on the CFA 33. If the system monitor program fails to feed the CFA 33’s watchdog timer,
the CFA533 will reset the host system. To use this command ATX functionality must be enabled.

type: 0x1D = 2910

data_length: 1

data[0]: enable/timeout

If timeout is 0, the watchdog is disabled.

If timeout is 1-255, then this command must be issued again within timeout

seconds to feed the watchdog and avoid a watchdog reset.

To turn the watchdog off, simply set the timeout to 0. If the command is not re-issued within timeout
seconds, the CFA533 will reset the host (see command 28). As the watchdog is off by default when the
CFA533 powers up, the CFA533 will not issue a host reset until the host has re-enabled the watchdog.

The return packet will be:
type: 0x40 | 0x1D = 0x5D = 9310

data_length: 0

30 (0x1E): Read Reporting/ATX/Watchdog (debug)

This command verifies the items configured to report to the host, and other status information. The

information returned by the CFA533 differs from the information returned by similar Crystalfontz displays.

type: 30

data_length: 0

The return packet will be:
type: 0x1E = 3010

data_length: 15

data[0]-data[6]: 0

data[7]: ATX Power Switch Functionality (as set by command 28)

data[8]: Current watchdog counter (as set by command 29)

data[9]: User Contrast Adjust (as set by command 13, data[1])

data[10]: Key backlight setting (as set by command 14, data[1])

data[11]: atx_sense_on_floppy (as set by command 28)

data[12]: 0

data[13]: CFA633-style contrast setting (as set by command 13, data[0])

data[14]: LCD backlight setting (as set by command 14, data[0])

Note: Previous and future firmware versions may return fewer or additional bytes.

https://www.crystalfontz.com/

Crystalfontz CFA533 I2C Modules

www.crystalfontz.com Datasheet Release Date 2021-05-03
 Hardware v1.4 / Firmware c1v2

Page | 38

31 (0x1F): Send Data to LCD
This command places data at a given position on the LCD. The command changes the contents of the
DDRAM which is saved by Command 4: Store Current State as Boot State.

type: 0x1F = 3110

data_length: 3 to 18

data[0]: col = x = 0 to 15

data[1]: row = y = 0 to 1

data[2-21]: text to place on the LCD, variable from 1 to 16 characters

The return packet will be:
type: 0x40 | 0x1F = 0x5F = 9510

data_length: 0

32 Reserved

33 (0x21): Set I2C Address
This command sets the I2C address. An I2C address is a 7-bit number (0-12710) that allows the host to

read or write from a device specified by the address. The address and R/W bit are combined into a byte.
The R/W bit is the LSB, thus the address is bit shifted left by one and combined with the R/W bit to make

the actual I2C address byte. The default address of the CFA533-KC is 4210 (8410 writes, 8510 reads), in
hexadecimal 0x2A (0x54 writes, 0x55 reads). In binary, this looks like: 0101 010[R/W]

type: 0x21 = 3310

data_length: 1

data[0]: 0 to 127

The return packet will be:
type: 0x40 | 0x21 = 0x61 = 9710

data_length: 0

Debugging Tip: To display the I2C address of the display module on the LCD, hold both the up and the
down arrows for 4 seconds.

34 (0x22): Set/Configure GPIO
This command configures the five user-definable general-purpose input / output (GPIO) pins. These pins
are shared with the DOW and ATX functions. DOW and ATX functions require specific GPIO settings and

changing the related GPIO pin settings may cause undesired behavior from the DOW and ATX systems.

The architecture of the CFA533 allows flexibility in the configuring the GPIOs. They can be set as input or
output. They can output constant high or low signals or a variable duty cycle 100 Hz PWM signal. In

output mode using PWM (and a current limiting resistor), an LED may be turned on, off, or dimmed under
host software control. With external circuitry, the GPIOs can drive external logic or power transistors.

The CFA533 continuously polls the GPIOs as inputs at 32 Hz. The present level can be queried by the
host software at a lower rate. The CFA533 keeps track rising and falling edges between host queries

(subject to the resolution of the 32 Hz sampling) so the host is not forced to poll quickly in order to detect
short events.

The algorithm used by the CFA 33 to read the inputs is inherently “debounced”.

The PIOs also have “pull-up” and “pull-down” modes. These modes can be useful when using the GPIO
as an input connected to a switch since no external pull-up or pull-down resistor is needed. For instance,

the GPIO can be set to pull-up. When a switch connected between the GPIO and ground is open, reading
the GPIO will return a "1". When the switch is closed, the input will return a "0".

https://www.crystalfontz.com/

Crystalfontz CFA533 I2C Modules

www.crystalfontz.com Datasheet Release Date 2021-05-03
 Hardware v1.4 / Firmware c1v2

Page | 39

Pull-up/pull-down resistance values are approximately 5kΩ. Do not exceed a current of 25 mA per GPIO.
 PIO 1 may be connected to the host’s power in order to sense the host’s power on off state. R3, a

5.6kΩ resistor is in series with GPIO[1] to limit the possibility of latchup.

The GPIO configuration is stored by the command 4 (0x04): Store Current State as Boot State.

type: 0x22 = 3410

data_length: 2 bytes to change value only

3 bytes to change value and configure function and drive mode

data[0]: index of GPIO to modify

0 = GPIO[0] = J8, Pin 7

1 = GPIO[1] = J8, Pin 6 (may be ATX Host Power Sense, as configured

by command 28, data[2])

2 = GPIO[2] = J8, Pin 5 (default is ATX Host Power Control)

3 = GPIO[3] = J8, Pin 4 (default is ATX Host Reset Control)

4 = GPIO[4] = J_DOW, Pin 2 (default is DOW I/O -- has 1kΩ resistor
hardware pull-up: R2)

5-255 = reserved

data[1]: Pin output state (actual behavior depends on drive mode):

0 = Output set to low

1-99 = Output duty cycle percentage (100 Hz nominal)

100 = Output set to high

101-255 = invalid

data[2]: Pin function select and drive mode (optional)

---- FDDD

|||| ||||-- DDD = Drive Mode (based on output state of 1 or 0)

|||| | ===

|||| | 000: 1=Fast, Strong Drive Up, 0=Resistive Pull Down

|||| | 001: 1=Fast, Strong Drive Up, 0=Fast, Strong Drive Down

|||| | 010: Hi-Z, use for input

|||| | 011: 1=Resistive Pull Up, 0=Fast, Strong Drive Down

|||| | 100: 1=Slow, Strong Drive Up, 0=Hi-Z

|||| | 101: 1=Slow, Strong Drive Up, 0=Slow, Strong Drive Down

|||| | 110: reserved, do not use

|||| | 111: 1=Hi-Z, 0=Slow, Strong Drive Down

|||| |

|||| |----- F = Function

|||| ===

|||| 0: Port unused for GPIO. It will take on the default

|||| function such as ATX, DOW or unused. The user is

|||| responsible for setting the drive to the correct

|||| value in order for the default function to work

|||| correctly.

|||| 1: Port used for GPIO under user control. The user is

|||| responsible for setting the drive to the correct

|||| value in order for the desired GPIO mode to work

|||| correctly.

||||------- reserved, must be 0

For DOW on GPIO[4], data[2] should be 7 (111: 1=Hi-Z, 0=Slow, Strong Drive Down).

For ATX POWER CONTROL and RESET, data[2] should be 2 (010: Hi-Z, use for input). If using

GPIO[1] for HOST POWER SENSE, data[2] should be 3 (011: 1=Resistive Pull Up, 0=Fast,

Strong Drive Down).

The return packet will be:
type: 0x40 | 0x22 = 0x62 = 9810

data_length: 0

https://www.crystalfontz.com/

Crystalfontz CFA533 I2C Modules

www.crystalfontz.com Datasheet Release Date 2021-05-03
 Hardware v1.4 / Firmware c1v2

Page | 40

35 (0x23): Read GPIO Pin Levels and Configuration State
See command 34 (0x22): Set/Configure GPIO for details on the GPIO architecture.

type: 0x23 = 3510

data_length: 1

data[0]: index of GPIO to query

0 = GPIO[0] = J8, Pin 7

1 = GPIO[1] = J8, Pin 6 (may be ATX Host Power Sense, as configured

by command 28, data[2])

2 = GPIO[2] = J8, Pin 5 (default is ATX Host Power Control)

3 = GPIO[3] = J8, Pin 4 (default is ATX Host Reset Control)

4 = GPIO[4] = J_DOW, Pin 2 (default is DOW I/O)

5-255 = reserved

The return packet will be:
type: 0x23 = 3510

data_length: 4

data[0]: index of GPIO read

data[1]: Pin state & changes since last poll

---- -RFS

|||| ||||-- S = state at the last reading

|||| |||--- F = at least one falling edge detected since last poll

|||| ||---- R = at least one rising edge detected since last poll

|||| |----- reserved

This reading is the actual pin state which may not agree with the pin

setting, depending on drive mode and load presented by external circuitry.

The pins are polled at approximately 32 Hz asynchronously with respect to

this command. Transients that happen between polls will not be detected.

data[2]: Requested Pin level/PWM level

0-100 = Output duty cycle percentage

This value is the requested PWM duty cycle. The actual pin may not toggle

in agreement with this value, depending on the drive mode and the load

presented by external circuitry.

data[3]: Pin function select and drive mode

---- FDDD

|||| ||||-- DDD = Drive Mode

|||| | ===

|||| | 000: 1=Fast, Strong Drive Up, 0=Resistive Pull Down

|||| | 001: 1=Fast, Strong Drive Up, 0=Fast, Strong Drive Down

|||| | 010: Hi-Z, use for input

|||| | 011: 1=Resistive Pull Up, 0=Fast, Strong Drive Down

|||| | 100: 1=Slow, Strong Drive Up, 0=Hi-Z

|||| | 101: 1=Slow, Strong Drive Up, 0=Slow, Strong Drive Down

|||| | 110: reserved

|||| | 111: 1=Hi-Z, 0=Slow, Strong Drive Down

|||| |

|||| |----- F = Function

|||| ===

|||| 0: Port unused for GPIO. It will take on the default

|||| function (ATX, DOW or unused). The user must set the

|||| drive to the appropriate value for the default function

|||| to work

|||| 1: Port used for GPIO under user control. The user is

|||| responsible for setting the drive to the correct

|||| value in order for the desired GPIO mode to work

|||| correctly.

||||------- reserved, will return 0

https://www.crystalfontz.com/

Crystalfontz CFA533 I2C Modules

www.crystalfontz.com Datasheet Release Date 2021-05-03
 Hardware v1.4 / Firmware c1v2

Page | 41

10. Character Generator ROM (CGROM)
The CFA533-KC includes a built in CGROM. To find the code for any given character, add the two base

ten numbers of the row and column for the character. For example, to send an “A” from column 4 d and
row 1d add 64 and 1 to get 65. When a byte with a value of is sent to the display an “A” will be shown.

In binary, the columns represent the upper 4 bits of the byte, and the row the lower 4. So, the value for
the letter is found by appending the two sets of bits. For the “A” the value sent is 0100 0001.

https://www.crystalfontz.com/

Crystalfontz CFA533 I2C Modules

www.crystalfontz.com Datasheet Release Date 2021-05-03
 Hardware v1.4 / Firmware c1v2

Page | 42

11. Module Reliability and Lifetime

 Display Module Reliability
The following specifications are given for modules operated and stored according to the specifications in
this datasheet, and in humidity non-condensing RH under 65% and with no direct exposure to sunlight.

The values listed are approximate and represent typical values.

Part Number Item Specification

CFA533-xxx-KC (all variants)
LCD Display Portion 50,000 – 100,000 hours

Keypad 1,000,000 keystrokes

CFA533-TFH-KC
CFA533-TMI-KC

White LED backlights and white
or blue keypad backlights*

% of initial

Brightness

Power-On

hours

>90% 10,000

>50% 50,000

CFA533-YYH-KC
Yellow-green LED display and

keypad backlights
50,000-100,000 hours

 Display Longevity and EOL/Replacement Policy

Crystalfontz is committed to making all of our display modules available for as long as possible. Each
display module we introduce, we intend to offer indefinitely. We do not pre-plan a display module's
obsolescence. The majority of modules we have introduced are still available.

We recognize that discontinuing a display module may cause problems for some customers. However,

rapidly changing technologies, component availability, or low customer order levels may force us to
discontinue (“End of Life”, EOL) a display module. For example, we must occasionally discontinue a

display module when a supplier discontinues a component or a manufacturing process becomes
obsolete. When we discontinue a display module, we will do our best to find an acceptable replacement
display module with the same fit, form, and function. In most situations, you will not notice a difference

when comparing a “fit, form, and function” replacement display module to the discontinued display
module it replaces. However, sometimes a change in component or process for the replacement display

module results in a slight variation, perhaps an improvement, over the previous design. Although the
replacement display module is still within the stated Datasheet specifications and tolerances of the

discontinued display module, changes may require modification to your circuit and/or firmware. Possible
changes include:

• Backlight LEDs. Brightness may be affected (perhaps the new LEDs have better efficiency) or the current

they draw may change (new LEDs may have a different VF).

• Controller. A new controller may require minor changes in your code.

• Component tolerances. Display module components have manufacturing tolerances. In extreme cases,

the tolerance stack can change the visual or operating characteristics.

We avoid changing a display module whenever possible; we only discontinue a display module if we have
no other option. We will post Part Change Notices (PCN) on the product's web page as soon as possible.
To be notified, subscribe to future part change notifications.

https://www.crystalfontz.com/
https://www.crystalfontz.com/news/pcn.php

Crystalfontz CFA533 I2C Modules

www.crystalfontz.com Datasheet Release Date 2021-05-03
 Hardware v1.4 / Firmware c1v2

Page | 43

12. Appendix A: Demonstrations Software and Sample Code
We encourage you to use the free sample code listed below. Please leave the original copyrights in the

code. Many examples are located in the Datasheets and Files section of the module web page.

• Connect CFA533-KC to an Arduino Uno using this example
https://www.crystalfontz.com/products/document/3719/CFA533-I2C-Arduino-Example.zip

• Windows compatible test/demonstration program and source.
https://www.crystalfontz.com/product/533i2cwintest with TotalPhase AardvarkI2C/SPI adapter

• Linux compatible command-line demonstration program with C source code. 8K.
https://www.crystalfontz.com/product/linuxexamplecode

• Supported by CrystalControl freeware. https://www.crystalfontz.com/product/CrystalControl2

• http://lcdproc.org/index.php3 for Linux LCD drivers. LCDproc is an open-source project that supports
many of the Crystalfontz displays.

 Algorithms to Calculate the CRC
Below are eight sample algorithms that will calculate the CRC of a CFA533 packet. Some algorithms
were contributed by forum members and originally written for CFA631 and CFA635. The CRC used in the
CFA533 is the same one that is used in IrDA, which came from PPP, which seems to be related to a

CCITT (ref: Network Working Group Request for Comments: 1171) standard. At that point, the trail was
getting a bit cold and diverged into several referenced articles and papers, dating back to 1983.

The polynomial used is X16 + X12 + X5 + X0 (0x8408)

The result is bit-wise inverted before being returned.

12.1.1. Algorithm 1 “C” T I p
This algorithm is typically used on the host computer, where code space is not an issue.

//This code is from the IRDA LAP documentation, which appears to

//have been copied from PPP:

//
//http://irda.affiniscape.com/associations/2494/files/Specifications/
//IrLAP11_Plus_Errata.zip

//

//I doubt that there are any worries about the legality of this code,
//searching for the first line of the table below, it appears that

//the code is already included in the linux 2.6 kernel "Driver for

//ST5481 USB ISDN modem". This is an "industry standard" algorithm
//and I do not think there are ANY issues with it at all.
typedef unsigned char ubyte;

typedef unsigned short word;

word get_crc(ubyte *bufptr,word len)

{
//CRC lookup table to avoid bit-shifting loops. static
const word crcLookupTable[256] =

{0x00000,0x01189,0x02312,0x0329B,0x04624,0x057AD,0x06536,0x074BF,
0x08C48,0x09DC1,0x0AF5A,0x0BED3,0x0CA6C,0x0DBE5,0x0E97E,0x0F8F7,

0x01081,0x00108,0x03393,0x0221A,0x056A5,0x0472C,0x075B7,0x0643E,

0x09CC9,0x08D40,0x0BFDB,0x0AE52,0x0DAED,0x0CB64,0x0F9FF,0x0E876,
0x02102,0x0308B,0x00210,0x01399,0x06726,0x076AF,0x04434,0x055BD,

0x0AD4A,0x0BCC3,0x08E58,0x09FD1,0x0EB6E,0x0FAE7,0x0C87C,0x0D9F5,

0x03183,0x0200A,0x01291,0x00318,0x077A7,0x0662E,0x054B5,0x0453C,

0x0BDCB,0x0AC42,0x09ED9,0x08F50,0x0FBEF,0x0EA66,0x0D8FD,0x0C974,

0x04204,0x0538D,0x06116,0x0709F,0x00420,0x015A9,0x02732,0x036BB,

0x0CE4C,0x0DFC5,0x0ED5E,0x0FCD7,0x08868,0x099E1,0x0AB7A,0x0BAF3,

0x05285,0x0430C,0x07197,0x0601E,0x014A1,0x00528,0x037B3,0x0263A,
0x0DECD,0x0CF44,0x0FDDF,0x0EC56,0x098E9,0x08960,0x0BBFB,0x0AA72,

0x06306,0x0728F,0x04014,0x0519D,0x02522,0x034AB,0x00630,0x017B9,

0x0EF4E,0x0FEC7,0x0CC5C,0x0DDD5,0x0A96A,0x0B8E3,0x08A78,0x09BF1,

0x07387,0x0620E,0x05095,0x0411C,0x035A3,0x0242A,0x016B1,0x00738,

0x0FFCF,0x0EE46,0x0DCDD,0x0CD54,0x0B9EB,0x0A862,0x09AF9,0x08B70,
0x08408,0x09581,0x0A71A,0x0B693,0x0C22C,0x0D3A5,0x0E13E,0x0F0B7,

0x00840,0x019C9,0x02B52,0x03ADB,0x04E64,0x05FED,0x06D76,0x07CFF,

https://www.crystalfontz.com/
https://www.crystalfontz.com/products/document/3719/CFA533-I2C-Arduino-Example.zip
https://www.crystalfontz.com/product/533i2cwintest
http://www.totalphase.com/products/aardvark-i2cspi/
https://www.crystalfontz.com/product/linuxexamplecode
https://www.crystalfontz.com/product/CrystalControl2
http://lcdproc.org/index.php3
http://irda.affiniscape.com/associations/2494/files/Specifications/

Crystalfontz CFA533 I2C Modules

www.crystalfontz.com Datasheet Release Date 2021-05-03
 Hardware v1.4 / Firmware c1v2

Page | 44

0x09489,0x08500,0x0B79B,0x0A612,0x0D2AD,0x0C324,0x0F1BF,0x0E036,

0x018C1,0x00948,0x03BD3,0x02A5A,0x05EE5,0x04F6C,0x07DF7,0x06C7E,

0x0A50A,0x0B483,0x08618,0x09791,0x0E32E,0x0F2A7,0x0C03C,0x0D1B5,

0x02942,0x038CB,0x00A50,0x01BD9,0x06F66,0x07EEF,0x04C74,0x05DFD,
0x0B58B,0x0A402,0x09699,0x08710,0x0F3AF,0x0E226,0x0D0BD,0x0C134,

0x039C3,0x0284A,0x01AD1,0x00B58,0x07FE7,0x06E6E,0x05CF5,0x04D7C,

0x0C60C,0x0D785,0x0E51E,0x0F497,0x08028,0x091A1,0x0A33A,0x0B2B3,

0x04A44,0x05BCD,0x06956,0x078DF,0x00C60,0x01DE9,0x02F72,0x03EFB,

0x0D68D,0x0C704,0x0F59F,0x0E416,0x090A9,0x08120,0x0B3BB,0x0A232,
0x05AC5,0x04B4C,0x079D7,0x0685E,0x01CE1,0x00D68,0x03FF3,0x02E7A,

0x0E70E,0x0F687,0x0C41C,0x0D595,0x0A12A,0x0B0A3,0x08238,0x093B1,

0x06B46,0x07ACF,0x04854,0x059DD,0x02D62,0x03CEB,0x00E70,0x01FF9,

0x0F78F,0x0E606,0x0D49D,0x0C514,0x0B1AB,0x0A022,0x092B9,0x08330,

0x07BC7,0x06A4E,0x058D5,0x0495C,0x03DE3,0x02C6A,0x01EF1,0x00F78};

register word

newCrc;
newCrc=0xFFFF;
//This algorithm is based on the IrDA LAP example.
while(len--)

newCrc = (newCrc >> 8) ^ crcLookupTable[(newCrc ^ *bufptr++) & 0xff];

//Make this crc match the one’s complement that is sent in the packet.

return(~newCrc);

}

12.1.2. A 2 “C” B Shift Implementation
This algorithm was mainly written to avoid any possible legal issues about the source of the routine (at
the request of the LCDproc group). This routine was “clean” coded from the definition of the CRC. It is

ostensibly smaller than the table-driven approach but will take longer to execute. This routine is
offered under the GPL.

typedef unsigned char ubyte; typedef

unsigned short word;

word get_crc(ubyte *bufptr,word len)

{
register unsigned int

newCRC;
//Put the current byte in here. ubyte

data;

int

bit_count;

//This seed makes the output of this shift based algorithm match

//the table based algorithm. The center 16 bits of the 32-bit
//"newCRC" are used for the CRC. The MSb of the lower byte is used

//to see what bit was shifted out of the center 16 bit CRC
//accumulator ("carry flag analog");
newCRC=0x00F32100;

while(len--)
{
//Get the next byte in the stream.
data=*bufptr++;

//Push this byte’s bits through a software
//implementation of a hardware shift & xor.
for(bit_count=0;bit_count<=7;bit_count++)

{
//Shift the CRC accumulator
newCRC>>=1;

//The new MSB of the CRC accumulator comes
//from the LSB of the current data byte.
if(data&0x01)

newCRC|=0x00800000;

https://www.crystalfontz.com/

Crystalfontz CFA533 I2C Modules

www.crystalfontz.com Datasheet Release Date 2021-05-03
 Hardware v1.4 / Firmware c1v2

Page | 45

//If the low bit of the current CRC accumulator was set

//before the shift, then we need to XOR the accumulator
//with the polynomial (center 16 bits of 0x00840800)
if(newCRC&0x00000080)

newCRC^=0x00840800;

//Shift the data byte to put the next bit of the stream
//into position 0.
data>>=1;

}

}

//All the data has been done. Do 16 more bits of 0 data.

for(bit_count=0;bit_count<=15;bit_count++)

{
//Shift the CRC accumulator
newCRC>>=1;

//If the low bit of the current CRC accumulator was set

//before the shift we need to XOR the accumulator with
//0x00840800.
if(newCRC&0x00000080)

newCRC^=0x00840800;

}

//Return the center 16 bits, making this CRC match the one’s
//complement that is sent in the packet.
return((~newCRC)>>8);

}

12.1.3. A 2B “C” Improved Bit Shift Implementation
This is a simplified algorithm that implements the CRC.

unsigned short get_crc(unsigned char count,unsigned char *ptr)

{

unsigned short

crc; //Calculated CRC unsigned char

i; //Loop count, bits in byte unsigned char

data; //Current byte being shifted

crc = 0xFFFF; // Preset to all 1's, prevent loss of leading zeros

while(count--){

data = *ptr++;

i = 8;

do

{

if((crc ^ data) & 0x01)

{

crc >>= 1; crc ^= 0x8408;

}

else

crc >>= 1;

data >>= 1;

} while(--i != 0);

}

return (~crc);

}

https://www.crystalfontz.com/

Crystalfontz CFA533 I2C Modules

www.crystalfontz.com Datasheet Release Date 2021-05-03
 Hardware v1.4 / Firmware c1v2

Page | 46

12.1.4. A 3 “ IC A y” B f I p
This routine was graciously donated by one of our customers.

;==

; Crystalfontz CFA533 PIC CRC Calculation Example

;

; This example calculates the CRC for the hard coded example provided in the

documentation.

;

; It uses "This is a test. " as input and calculates the proper CRC of 0x93FA.

;==

#include "p16f877.inc"

;==

; CRC16 equates and storage

;--

accuml equ 40h ; BYTE - CRC result register high byte

accumh equ 41h ; BYTE - CRC result register high low byte

datareg equ 42h ; BYTE - data register for shift

j equ 43h ; BYTE - bit counter for CRC 16 routine

Zero equ 44h ; BYTE - storage for string memory read

index equ 45h ;BYTE - index for string memory read

savchr equ 46h ;BYTE - temp storage for CRC routine

;

seedlo equ 021h ;initial seed for CRC reg lo byte

seedhi equ 0F3h ;initial seed for CRC reg hi byte

;

polyL equ 008h ;polynomial low byte

polyH equ 084h ;polynomial high byte

;==

; CRC Test Program

;--

 org 0 ; reset vector = 0000H

;

 clrf PCLATH ; ensure upper bits of PC are cleared

 clrf STATUS ; ensure page bits are cleared

 goto main ; jump to start of program

;

; ISR Vector

;

 org 4 ; start of ISR

 goto $; jump to ISR when coded

;

 org 20 ; start of main program

main

 movlw seedhi ; setup intial CRC seed value.

 movwf accumh ; This must be done prior to

 movlw seedlo ; sending string to CRC routine.

 movwf accuml ;

 clrf index ; clear string read variables

;

main1

 movlw HIGH InputStr ; point to LCD test string

 movwf PCLATH ; latch into PCL

 movfw index ; get index

 call InputStr ; get character

 movwf Zero ; setup for terminator test

 movf Zero,f ; see if terminator

 btfsc STATUS,Z ; skip if not terminator

 goto main2 ; else terminator reached, jump out of loop

 call CRC16 ; calculate new crc

 call SENDUART ; send data to LCD

https://www.crystalfontz.com/

Crystalfontz CFA533 I2C Modules

www.crystalfontz.com Datasheet Release Date 2021-05-03
 Hardware v1.4 / Firmware c1v2

Page | 47

 incf index,f ; bump index

 goto main1 ; loop

;

main2

 movlw 00h ; shift accumulator 16 more bits.

 call CRC16 ; This must be done after sending

 movlw 00h ; string to CRC routine.

 call CRC16 ;

;

 comf accumh,f ; invert result

 comf accuml,f ;

;

 movfw accuml ; get CRC low byte

 call SENDUART ; send to LCD

 movfw accumh ; get CRC hi byte

 call SENDUART ; send to LCD

;

stop goto stop ; word result of 0x93FA is in accumh/accuml

;==

; calculate CRC of input byte

;--

CRC16

 movwf savchr ; save the input character

 movwf datareg ; load data register

 movlw . 8 ; setup number of bits to test

 movwf j ; save to incrementor

_loop

 clrc ; clear carry for CRC register shift

 rrf datareg,f ; perform shift of data into CRC register

 rrf accumh,f ;

 rrf accuml,f ;

 btfss STATUS,C ; skip jump if if carry

 goto _notset ; otherwise goto next bit

 movlw polyL ; XOR poly mask with CRC register

 xorwf accuml,F ;

 movlw polyH ;

 xorwf accumh,F ;

_notset

 decfsz j,F ; decrement bit counter

 goto _loop ; loop if not complete

 movfw savchr ; restore the input character

 return ; return to calling routine

;==

; USER SUPPLIED Serial port transmit routine

;--

SENDUART

 return ; put serial xmit routine here

;==

; test string storage

;--

 org 0100h

;

InputStr

 addwf PCL,f

 dt 7h,10h,"This is a test. ",0

;

;==

 end

https://www.crystalfontz.com/

Crystalfontz CFA533 I2C Modules

www.crystalfontz.com Datasheet Release Date 2021-05-03
 Hardware v1.4 / Firmware c1v2

Page | 48

12.1.5. A 4 “V B ” T I p
Visual BASIC has its own challenges as a language (such as initializing static arrays), and it is also

challenging to use Visual ASIC to work with “binary” (arbitrary length character data possibly containing
nulls—such as the “data” portion of the CFA533 packet) data. This routine was adapted from the C table

implementation. The complete project can be found in our forums.

'Written by Crystalfontz America, Inc. 2004 http://www.crystalfontz.com

'Free code, not copyright copy left or anything else.

'Some visual basic concepts taken from:

'http://www.planet-source-

code.com/vb/scripts/ShowCode.asp?txtCodeId=21434&lngWId=1

'most of the algorithm is from functions in 633_WinTest:

'http://www.crystalfontz.com/products/633/633_WinTest.zip

'Full zip of the project is available in our forum:

'https://www.crystalfontz.com/forum/showthread.php?postid=9921#post9921

Private Type WORD

Lo As Byte
Hi As Byte

End Type

Private Type PACKET_STRUCT

command As Byte
data_length As Byte
data(22) As Byte
crc As WORD

End Type

Dim crcLookupTable(256) As WORD

Private Sub MSComm_OnComm()

'Leave this here
End Sub

'My understanding of visual basic is very limited--however it appears that there is
no way to initialize an array of structures.
Sub Initialize_CRC_Lookup_Table()

crcLookupTable(0).Lo = &H0
crcLookupTable(0).Hi = &H0

. . .
'For purposes of brevity in this Datasheet, removed 251 entries of this table, ‘the
'full source is available in our forum:
'https://www.crystalfontz.com/forum/showthread.php?postid=9921#post9921

. . .
crcLookupTable(255).Lo = &H78
crcLookupTable(255).Hi = &HF

End Sub

'This function returns the CRC of the array at data for length positions Private

Function Get_Crc(ByRef data() As Byte, ByVal length As Integer) As WORD

Dim Index As Integer
Dim Table_Index As Integer
Dim newCrc As WORD newCrc.Lo = &HFF

newCrc.Hi = &HFF
For Index = 0 To length - 1

'exclusive-or the input byte with the low-order byte of the CRC register to
‘get an index into crcLookupTable

Table_Index = newCrc.Lo Xor data(Index)
'shift the CRC register eight bits to the right
newCrc.Lo = newCrc.Hi

newCrc.Hi = 0
' exclusive-or the CRC register with the contents of Table at Table_Index
newCrc.Lo = newCrc.Lo Xor crcLookupTable(Table_Index).Lo
newCrc.Hi = newCrc.Hi Xor crcLookupTable(Table_Index).Hi
Next Index

'Invert & return newCrc

https://www.crystalfontz.com/
http://www.crystalfontz.com/
http://www.crystalfontz.com/products/633/633_WinTest.zip
http://www.crystalfontz.com/forum/showthread.php?postid=9921&post9921
http://www.crystalfontz.com/forum/showthread.php?postid=9921&post9921
https://www.crystalfontz.com/forum/showthread.php?postid=9921&post9921
https://www.crystalfontz.com/forum/showthread.php?postid=9921&post9921

Crystalfontz CFA533 I2C Modules

www.crystalfontz.com Datasheet Release Date 2021-05-03
 Hardware v1.4 / Firmware c1v2

Page | 49

Get_Crc.Lo = newCrc.Lo Xor &HFF
Get_Crc.Hi = newCrc.Hi Xor &HFF

End Function

Private Sub Send_Packet(ByRef packet As PACKET_STRUCT)

Dim Index As Integer
'Need to put the whole packet into a linear array 'since
you can’t do type overrides. VB, gotta love it.
Dim linear_array(26) As Byte
linear_array(0) = packet.command
linear_array(1) = packet.data_length
For Index = 0 To packet.data_length - 1

linear_array(Index + 2) = packet.data(Index)

Next Index
packet.crc = Get_Crc(linear_array, packet.data_length + 2)
'Might as well move the CRC into the linear array too
linear_array(packet.data_length + 2) = packet.crc.Lo
linear_array(packet.data_length + 3) = packet.crc.Hi
'Now a simple loop can dump it out the port.
For Index = 0 To packet.data_length + 3

MSComm.Output = Chr(linear_array(Index))
Next Index

End Sub

12.1.6. A 5 “J ” T I p
This code was posted in our forum by user “norm” as a working example of a ava CRC calculation.

public class CRC16 extends Object

{

public static void main(String[] args)

{

byte[] data = new byte[2];
// hw - fw
data[0] = 0x01;
data[1] = 0x00;
System.out.println("hw -fw req");
System.out.println(Integer.toHexString(compute(data)));

// ping
data[0] = 0x00;
data[1] = 0x00;
System.out.println("ping");
System.out.println(Integer.toHexString(compute(data)));

// reboot data[0]
= 0x05; data[1] =
0x00;
System.out.println("reboot");
System.out.println(Integer.toHexString(compute(data)));
// clear lcd
data[0] = 0x06;
data[1] = 0x00;
System.out.println("clear lcd");
System.out.println(Integer.toHexString(compute(data)));

// set line 1
data = new byte[18];
data[0] = 0x07; data[1]
= 0x10;
String text = "Test Test Test ";
byte[] textByte = text.getBytes();
for (int i=0; i < text.length(); i++) data[i+2] = textByte[i];
System.out.println("text 1");
System.out.println(Integer.toHexString(compute(data)));

}

private CRC16()

{

}

https://www.crystalfontz.com/
https://www.crystalfontz.com/forum/showthread.php?postid=6623&post6623

Crystalfontz CFA533 I2C Modules

www.crystalfontz.com Datasheet Release Date 2021-05-03
 Hardware v1.4 / Firmware c1v2

Page | 50

private static final int[] crcLookupTable =
{
0x00000,0x01189,0x02312,0x0329B,0x04624,0x057AD,0x06536,0x074BF,

0x08C48,0x09DC1,0x0AF5A,0x0BED3,0x0CA6C,0x0DBE5,0x0E97E,0x0F8F7,
0x01081,0x00108,0x03393,0x0221A,0x056A5,0x0472C,0x075B7,0x0643E,

0x09CC9,0x08D40,0x0BFDB,0x0AE52,0x0DAED,0x0CB64,0x0F9FF,0x0E876,

0x02102,0x0308B,0x00210,0x01399,0x06726,0x076AF,0x04434,0x055BD,

0x0AD4A,0x0BCC3,0x08E58,0x09FD1,0x0EB6E,0x0FAE7,0x0C87C,0x0D9F5,

0x03183,0x0200A,0x01291,0x00318,0x077A7,0x0662E,0x054B5,0x0453C,
0x0BDCB,0x0AC42,0x09ED9,0x08F50,0x0FBEF,0x0EA66,0x0D8FD,0x0C974,

0x04204,0x0538D,0x06116,0x0709F,0x00420,0x015A9,0x02732,0x036BB,

0x0CE4C,0x0DFC5,0x0ED5E,0x0FCD7,0x08868,0x099E1,0x0AB7A,0x0BAF3,

0x05285,0x0430C,0x07197,0x0601E,0x014A1,0x00528,0x037B3,0x0263A,
0x0DECD,0x0CF44,0x0FDDF,0x0EC56,0x098E9,0x08960,0x0BBFB,0x0AA72,

0x06306,0x0728F,0x04014,0x0519D,0x02522,0x034AB,0x00630,0x017B9,

0x0EF4E,0x0FEC7,0x0CC5C,0x0DDD5,0x0A96A,0x0B8E3,0x08A78,0x09BF1,

0x07387,0x0620E,0x05095,0x0411C,0x035A3,0x0242A,0x016B1,0x00738,

0x0FFCF,0x0EE46,0x0DCDD,0x0CD54,0x0B9EB,0x0A862,0x09AF9,0x08B70,
0x08408,0x09581,0x0A71A,0x0B693,0x0C22C,0x0D3A5,0x0E13E,0x0F0B7,

0x00840,0x019C9,0x02B52,0x03ADB,0x04E64,0x05FED,0x06D76,0x07CFF,

0x09489,0x08500,0x0B79B,0x0A612,0x0D2AD,0x0C324,0x0F1BF,0x0E036,

0x018C1,0x00948,0x03BD3,0x02A5A,0x05EE5,0x04F6C,0x07DF7,0x06C7E,

0x0A50A,0x0B483,0x08618,0x09791,0x0E32E,0x0F2A7,0x0C03C,0x0D1B5,
0x02942,0x038CB,0x00A50,0x01BD9,0x06F66,0x07EEF,0x04C74,0x05DFD,

0x0B58B,0x0A402,0x09699,0x08710,0x0F3AF,0x0E226,0x0D0BD,0x0C134,

0x039C3,0x0284A,0x01AD1,0x00B58,0x07FE7,0x06E6E,0x05CF5,0x04D7C,

0x0C60C,0x0D785,0x0E51E,0x0F497,0x08028,0x091A1,0x0A33A,0x0B2B3,

0x04A44,0x05BCD,0x06956,0x078DF,0x00C60,0x01DE9,0x02F72,0x03EFB,

0x0D68D,0x0C704,0x0F59F,0x0E416,0x090A9,0x08120,0x0B3BB,0x0A232,

0x05AC5,0x04B4C,0x079D7,0x0685E,0x01CE1,0x00D68,0x03FF3,0x02E7A,
0x0E70E,0x0F687,0x0C41C,0x0D595,0x0A12A,0x0B0A3,0x08238,0x093B1,

0x06B46,0x07ACF,0x04854,0x059DD,0x02D62,0x03CEB,0x00E70,0x01FF9,

0x0F78F,0x0E606,0x0D49D,0x0C514,0x0B1AB,0x0A022,0x092B9,0x08330,

0x07BC7,0x06A4E,0x058D5,0x0495C,0x03DE3,0x02C6A,0x01EF1,0x00F78
};

public static int compute(byte[] data)

{

int newCrc = 0x0FFFF;

for (int i = 0; i < data.length; i++)
{
int lookup = crcLookupTable[(newCrc ^ data[i]) & 0xFF];

newCrc = (newCrc >> 8) ^ lookup;

}

return(~newCrc);
}

}

12.1.7. A 6 “ ” T Implementation
This code was translated from the C version by one of our customers.

#!/usr/bin/perl

use strict;

my @CRC_LOOKUP =

(0x00000,0x01189,0x02312,0x0329B,0x04624,0x057AD,0x06536,0x074BF,

0x08C48,0x09DC1,0x0AF5A,0x0BED3,0x0CA6C,0x0DBE5,0x0E97E,0x0F8F7,

0x01081,0x00108,0x03393,0x0221A,0x056A5,0x0472C,0x075B7,0x0643E,

0x09CC9,0x08D40,0x0BFDB,0x0AE52,0x0DAED,0x0CB64,0x0F9FF,0x0E876,

0x02102,0x0308B,0x00210,0x01399,0x06726,0x076AF,0x04434,0x055BD,
0x0AD4A,0x0BCC3,0x08E58,0x09FD1,0x0EB6E,0x0FAE7,0x0C87C,0x0D9F5,

0x03183,0x0200A,0x01291,0x00318,0x077A7,0x0662E,0x054B5,0x0453C,

0x0BDCB,0x0AC42,0x09ED9,0x08F50,0x0FBEF,0x0EA66,0x0D8FD,0x0C974,

0x04204,0x0538D,0x06116,0x0709F,0x00420,0x015A9,0x02732,0x036BB,

0x0CE4C,0x0DFC5,0x0ED5E,0x0FCD7,0x08868,0x099E1,0x0AB7A,0x0BAF3,
0x05285,0x0430C,0x07197,0x0601E,0x014A1,0x00528,0x037B3,0x0263A,

0x0DECD,0x0CF44,0x0FDDF,0x0EC56,0x098E9,0x08960,0x0BBFB,0x0AA72,

0x06306,0x0728F,0x04014,0x0519D,0x02522,0x034AB,0x00630,0x017B9,

https://www.crystalfontz.com/

Crystalfontz CFA533 I2C Modules

www.crystalfontz.com Datasheet Release Date 2021-05-03
 Hardware v1.4 / Firmware c1v2

Page | 51

0x0EF4E,0x0FEC7,0x0CC5C,0x0DDD5,0x0A96A,0x0B8E3,0x08A78,0x09BF1,

0x07387,0x0620E,0x05095,0x0411C,0x035A3,0x0242A,0x016B1,0x00738,

0x0FFCF,0x0EE46,0x0DCDD,0x0CD54,0x0B9EB,0x0A862,0x09AF9,0x08B70,

0x08408,0x09581,0x0A71A,0x0B693,0x0C22C,0x0D3A5,0x0E13E,0x0F0B7,
0x00840,0x019C9,0x02B52,0x03ADB,0x04E64,0x05FED,0x06D76,0x07CFF,

0x09489,0x08500,0x0B79B,0x0A612,0x0D2AD,0x0C324,0x0F1BF,0x0E036,

0x018C1,0x00948,0x03BD3,0x02A5A,0x05EE5,0x04F6C,0x07DF7,0x06C7E,

0x0A50A,0x0B483,0x08618,0x09791,0x0E32E,0x0F2A7,0x0C03C,0x0D1B5,

0x02942,0x038CB,0x00A50,0x01BD9,0x06F66,0x07EEF,0x04C74,0x05DFD,
0x0B58B,0x0A402,0x09699,0x08710,0x0F3AF,0x0E226,0x0D0BD,0x0C134,

0x039C3,0x0284A,0x01AD1,0x00B58,0x07FE7,0x06E6E,0x05CF5,0x04D7C,

0x0C60C,0x0D785,0x0E51E,0x0F497,0x08028,0x091A1,0x0A33A,0x0B2B3,

0x04A44,0x05BCD,0x06956,0x078DF,0x00C60,0x01DE9,0x02F72,0x03EFB,

0x0D68D,0x0C704,0x0F59F,0x0E416,0x090A9,0x08120,0x0B3BB,0x0A232,
0x05AC5,0x04B4C,0x079D7,0x0685E,0x01CE1,0x00D68,0x03FF3,0x02E7A,

0x0E70E,0x0F687,0x0C41C,0x0D595,0x0A12A,0x0B0A3,0x08238,0x093B1,

0x06B46,0x07ACF,0x04854,0x059DD,0x02D62,0x03CEB,0x00E70,0x01FF9,

0x0F78F,0x0E606,0x0D49D,0x0C514,0x0B1AB,0x0A022,0x092B9,0x08330,

0x07BC7,0x06A4E,0x058D5,0x0495C,0x03DE3,0x02C6A,0x01EF1,0x00F78);

 # our test packet read from an enter key press over the serial line:

type = 80 (key press)

data_length = 1 (1 byte of data)
data = 5

my $type = '80';
my $length = '01';
my $data = '05';

my $packet = chr(hex $type) .chr(hex $length) .chr(hex $data);

my $valid_crc = '5584' ;

print "A CRC of Packet ($packet) Should Equal($valid_crc)\n";

my $crc = 0xFFFF ;

printf("%x\n", $crc);

foreach my $char (split //, $packet)

{

newCrc = (newCrc >> 8) ^ crcLookupTable[(newCrc ^ *bufptr++) & 0xff];

& is bitwise AND
^ is bitwise XOR

>> bitwise shift right

$crc = ($crc >> 8) ^ $CRC_LOOKUP[($crc ^ ord($char)) & 0xFF] ;
print out the running crc at each byte
printf("%x\n", $crc);

}

get the complement

$crc = ~$crc ;

$crc = ($crc & 0xFFFF) ;

print out the crc in hex

printf("%x\n", $crc);

12.1.8. Algorithm 7: For PIC18F8722 or PIC18F2685
This code was written by customer Virgil Stamps of ATOM Instrument Corporation for our CFA635
module.

; CRC Algorithm for CrystalFontz CFA635 display (DB535)

; This code written for PIC18F8722 or PIC18F2685

; Your main focus here should be the ComputeCRC2 and CRC16_ routines

;===
ComputeCRC2:

https://www.crystalfontz.com/

Crystalfontz CFA533 I2C Modules

www.crystalfontz.com Datasheet Release Date 2021-05-03
 Hardware v1.4 / Firmware c1v2

Page | 52

 movlb RAM8

 movwf dsplyLPCNT ;w has the byte count

nxt1_dsply:

 movf POSTINC1 ;w
 call CRC16

 decfsz dsplyLPCNT

 goto nxt1_dsply

 movlw .0 ;shift accumulator 16 more bits

 call CRC16
 movlw .0

 call CRC16

 comf dsplyCRC,F ;invert result

 comf dsplyCRC+1,F

 return

;===
CRC16 movwf:

 dsplyCRCData ;w has the byte crc

 movlw .8

 movwf dsplyCRCCount

_cloop:
 bcf STATUS,C ; clear carry for CRC register shift

 rrcf dsplyCRCData,f ; perform shift of data into CRC

 ; register

 rrcf dsplyCRC,F

 rrcf dsplyCRC+1,F
 btfss STATUS,C ; skip jump if carry

 goto _ notset ; otherwise goto next bit

 movlw 0x84 ; XOR poly mask with CRC register

 xorwf dsplyCRC,F
_notset:

 decfsz dsplyCRCCount,F ; decrement bit counter

 bra cloop ; loop if not complete

 return

;===
; example to clear screen

dsplyFSR1_TEMP equ 0x83A ; ; 16-bit save for FSR1 for display
 ; message handler

dsplyCRC equ 0x83C ; 16-bit CRC (H/L)

dsplyLPCNT equ 0x83E ; 8-bit save for display message

 ; length - CRC
dsplyCRCData equ 0x83F ; 8-bit CRC data for display use

dsplyCRCCount equ 0x840 ; 8-bit CRC count for display use

SendCount equ 0x841 ; 8-bit byte count for sending to display

RXBUF2 equ 0x8C0 ; 32-byte receive buffer for Display

TXBUF2 equ 0x8E0 ; 32-byte transmit buffer for Display

;---
ClearScreen:
 movlb RAM8

 movlw .0

 movwf SendCount

 movlw 0xF3

 movwf dsplyCRC ; seed ho for CRC calculation
 movlw 0x21

 movwf dsplyCRC+1 ; seen lo for CRC calculation

 call ClaimFSR1

 movlw 0x06
 movwf TXBUF2

 LFSR FSR1,TXBUF2

 movf SendCount,w

 movwf TXBUF2+1 ; message data length

 call BMD1
 goto SendMsg

;===
; send message via interrupt routine. The code is made complex due
; to the limited FSR registers and extended memory space used

;

https://www.crystalfontz.com/

Crystalfontz CFA533 I2C Modules

www.crystalfontz.com Datasheet Release Date 2021-05-03
 Hardware v1.4 / Firmware c1v2

Page | 53

; example of sending a string to column 0, row 0

;---
SignOnL1:

 call ClaimFSR1

 lfsr FSR1,TXBUF2+4 ; set data string position

 SHOW C0R0,BusName ; move string to TXBUF2
 movlw .2 ;

 addwf SendCount ;

 movff SendCount,TXBUF2+1

 ; insert message data length

 call BuildMsgDSPLY
 call SendMsg

 return

;===
; BuildMsgDSPLY used to send a string to LCD
;---
 BuildMsgDSPLY:
 movlw 0xF3

 movwf dsplyCRC ; seed hi for CRC calculation
 movlw 0x21

 movwf dsplyCRC+1 ; seed lo for CRC calculation

 LFSR FSR1,TXBUF2 ; point at transmit buffer

 movlw 0x1F ; command to send data to LCD

 movwf TXBUF2 ; insert command byte from us to
 ; CFA635

 BMD1 movlw .2

 ddwf SendCount,w ; + overhead

 call ComputeCRC2 ; compute CRC of transmit message
 movf dsplyCRC+1,w

 movwf POSTINC1 ; append CRC byte

 movf dsplyCRC,w

 movwf POSTINC1 ; append CRC byte

 return

;===
SendMsg:
 call ReleaseFSR1

 LFSR FSR0,TXBUF2

 movff FSR0H,irptFSR0

 movff FSR0L,irptFSR0+1
 ; save interrupt use of FSR0

 movff SendCount,TXBUSY2

 bsf PIE2,TX2IE

 ; set transmit interrupt enable

 ; (bit 4)
 return

;===
; macro to move string to transmit buffer

SHOW macro src, stringname

 call src

 MOVLF upper stringname, TBLPTRU

 MOVLF high stringname, TBLPTRH
 MOVLF low stringname, TBLPTRL

 call MOVE_STR

 endm

;===
MOVE_STR:

 tblrd *+
 movf TABLAT,w

 bz ms1b

 movwf POSTINC1

 incf SendCount

 goto MOVE_STR

ms1b:

 return

;===

https://www.crystalfontz.com/

Crystalfontz CFA533 I2C Modules

www.crystalfontz.com Datasheet Release Date 2021-05-03
 Hardware v1.4 / Firmware c1v2

Page | 54

13. APPENDIX B: CONNECTING A DS2450 1-WIRE QUAD A/D

CONVERTER

This appendix describes a simple test circuit that demonstrates how to connect a DS2450 4-channel ADC

to the CFA- 33’s DO (Dallas One ire - The DS2450 uses the standard Dallas Semiconductor 1-Wire
protocol for data transfers) connector. It also gives a sample command sequence to initialize and read the
ADC. Up to 32 DOW devices can be connected to the CFA-533. In this example the DS2450 appears at

device index 0. Host software should query the connected devices using command 18 (0x12): Read
DOW Device Information to verify the locations and types of DOW devices connected.

Refer to the DS2450 Datasheet and the description for command 20 (0x14): Arbitrary DOW Transaction

for more information.

Start 533WinTest (works with CFA-533) and open the Packet Debugger dialog. Select Command 20 =

Arbitrary DOW Transaction, then paste each string below into the data field and send the packet.

The response should be similar to what is shown.

https://www.crystalfontz.com/

Crystalfontz CFA533 I2C Modules

www.crystalfontz.com Datasheet Release Date 2021-05-03
 Hardware v1.4 / Firmware c1v2

Page | 55

//Write 0x40 (=64) to address 0x1C (=28) to leave analog circuitry on

//(see page 6 of the data sheet)

<command 20> \000\002\085\028\000\064

<response> C=84(d=0):2E,05,22 //16 bit "i-button" CRC + 8-bit "DOW" CRC

 //Consult "i-button" docs to check 16-bit CRC

 //DOW CRC is probably useless for this device.

//Write all 8 channels of control/status (16 bits, 5.10v range)

<command 20> \000\002\085\008\000\000 // address = 8, channel A low

<response> C=84(d=0):6F,F1,68 // 16-bits, output off

<command 20> \000\002\085\009\000\001 // address = 9, channel A high

<response> C=84(d=0):FF,F1,AB // no alarms, 5.1v

<command 20> \000\002\085\010\000\000 // address = 10, channel B low

<response> C=84(d=0):CE,31,88 // 16-bits, output off

<command 20> \000\002\085\011\000\001 // address = 11, channel B high

<response> C=84(d=0):5E,31,4B // no alarms, 5.1v

<command 20> \000\002\085\012\000\000 // address = 12, channel C low

<response> C=84(d=0):2E,30,A3 // 16-bits, output off

<command 20> \000\002\085\013\000\001 // address = 13, channel C high

<response> C=84(d=0):BE,30,60 // no alarms, 5.1v

<command 20> \000\002\085\014\000\000 // address = 14, channel D low

<response> C=84(d=0):8F,F0,43 // 16-bits, output off

<command 20> \000\002\085\015\000\001 // address = 15, channel D high

<response> C=84(d=0):1F,F0,80 // no alarms, 5.1v

//Read all 4 channels of control/status (check only)

<command 20> \000\010\170\008\000

<response> C=84(d=0):00,01,00,01,00,01,00,01,E0,CF,01

//Repeat next two commands for each conversion (two cycles shown)

//Start conversion on all channels

<command 20> \000\002\060\015\000

<response> C=84(d=0):3A,03,28

//Read all 8 channels

<command 20> \000\010\170\000\000

<response> C=84(d=0):00,33,DF,64,84,96,6A,C8,5A,6B,BE

//Decoded response:

0x3300 = 13056 1.016015625 volts (channel A)

0x64DF = 25823 2.009541321 volts (channel B)

0x9684 = 38532 2.998553467 volts (channel C)

0xC86A = 51306 3.992623901 volts (channel D)

//Start conversion on all channels

<command 20> \000\002\060\015\000

<response> C=84(d=0):3A,03,28

//Read all 8 channels

<command 20> \000\010\170\000\000

<response> C=84(d=0):6B,33,B2,64,97,96,42,C8,0F,C9,0A

//Decoded response:

0x336B = 13163 1.024342346 volts (channel A)

0x64B2 = 25778 2.006039429 volts (channel B)

0x9697 = 38551 3.000032043 volts (channel C)

0xC842 = 51266 3.989511108 volts (channel D)

https://www.crystalfontz.com/

	1. General Information
	2. Introduction
	3. Mechanical Characteristics
	4. Electrical Characteristics
	5. Optical Characteristics
	6. Power Supply Connections
	7. Connections
	8. I2C Communication with Host
	9. CFA533-KC Command Codes
	0 (0x00): Ping Command
	1 (0x01): Get Hardware and Firmware Version
	(0x02): Write User Flash Area
	3 (0x03): Read User Flash Area
	4 (0x04): Store Current State as Boot State
	5 (0x05): Reboot CFA533, Reset Host, or Power Off Host
	6 (0x06): Clear LCD Screen
	7 (0x07): Set LCD Contents, Line 1 and 8 (0x08): Set LCD Contents, Line 2 (Deprecated)
	9 (0x09): Set LCD Special Character Data
	10 (0x0A): Read 8 Bytes of LCD Memory
	11 (0x0B): Set LCD Cursor Position
	12 (0x0C): Set LCD Cursor Style
	13 (0x0D): Set LCD Contrast
	14 (0x0E): Set LCD & Keypad Backlight
	15 (0x0F): Read Temperature
	16 and 17: Reserved
	18 (0x12): Read DOW Device Information
	19 Reserved
	20 (0x14): Arbitrary DOW Transaction
	21 (0x15): Set Up Live Temperature Display
	22 (0x16): Send Command Directly to the LCD Controller
	23 (0X17) Enable Key Ready Flag
	24 (0x18): Read Keypad, Polled Mode
	25-27 Reserved
	28 (0x1C): Set ATX Switch Functionality
	29 (0x1D): Enable/Feed Host Watchdog Reset
	30 (0x1E): Read Reporting/ATX/Watchdog (debug)
	31 (0x1F): Send Data to LCD
	32 Reserved
	33 (0x21): Set I2C Address
	34 (0x22): Set/Configure GPIO
	35 (0x23): Read GPIO Pin Levels and Configuration State

	10. Character Generator ROM (CGROM)
	11. Module Reliability and Lifetime
	12. Appendix A: Demonstrations Software and Sample Code
	13. APPENDIX B: CONNECTING A DS2450 1-WIRE QUAD A/D CONVERTER

